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Abstract This paper presents the speed control of DC

series motor supplied by photovoltaic system. The pro-

posed design problem of speed controller is formulated as

an optimization problem. Firefly algorithm (FA) is

employed to search for optimal proportional integral (PI)

parameters of speed controller by minimizing the time

domain objective function. The performance of the pro-

posed FA-based speed control of DC series motor has been

compared with genetic algorithm, and the conventional PI

controller tuned by Ziegler–Nichols under various operat-

ing conditions and disturbances. The results of the pro-

posed FA are demonstrated through time domain analysis

and various performance indices. Simulation results have

shown the validity of the proposed technique in controlling

the speed of DC series motor over other algorithms.

Keywords DC series motor � Firefly algorithm � Genetic
algorithm � Photovoltaic system � PI controller � Speed
control

1 Introduction

DC series motors are widely used in traction and applica-

tion that required high starting torque [1, 2]. Due to the

inherent characteristic possessed by the DC motor system,

such as the complexity of the nonlinear system, unavail-

ability of an accurate and precise mathematical model and

the use of conventional PI controller become a suitable

solution due to small steady-state error and low costs.

However, searching the parameters of PI controller is not

an easy task, particularly under varying load conditions,

parameter changes, and abnormal modes of operation

[3, 4].

Photovoltaic (PV) system refers to an array of cells

containing a solar photovoltaic material that converts solar

radiation into direct current electricity. Solar PV systems

work by converting light into electrical power. This is

achieved using a thin layer of semi-conducting material,

most commonly silicon, enclosed in a glass or plastic

casing. When exposed to sunlight, the semi-conducting

material causes electrons in the materials’ atoms to be

knocked loose. The electrons that are knocked loose then

flow through the material to produce an electric current

known as a DC. The DC is carried through wiring to an

inverter which converts the current to AC so it can be

connected to main electricity distribution board which

either used within the home or fed back into the national

grid [5–7]. PV is used in this paper to power DC series

motor.

Artificial Intelligence (AI) has been discussed in litera-

tures to solve problems related to speed control of DC

motor. Artificial Neural Network (ANN) is addressed in

[8–11]. The ANN approach has its own advantages and

disadvantages. The performance of the system is improved

by ANN-based controller, but the main problem of this

controller is the long training time, the selecting number of

layers, and the number of neurons in each layer. Another

AI approach such as Fuzzy Logic Control (FLC) has

received much attention in control applications. In contrast

with the conventional techniques, FLC formulates the

control action of a plant in terms of linguistic rules drawn

from the behavior of a human operator rather than in terms

of an algorithm synthesized from a model of the plant [12,

13]. It offers the following merits: It does not require an
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accurate model of the plant; it can be designed on the basis

of linguistic information obtained from the previous

knowledge of the control system and gives better perfor-

mance results than the conventional controllers. However,

a hard work is inevitable to get the effective signals when

designing FLC. Also, it requires finer tuning and simulation

before operations.

Recently, global optimization techniques have attracted

the attention in the field of controller parameter optimiza-

tion and enhancing speed tracking system. Tabu Search

(TS) is discussed in [14] to design a robust controller for

induction motor. However, it appears to be effective for the

design problem, the efficiency is reduced by the use of

highly epistatic objective functions and the large number of

parameters to be optimized. Furthermore, it is time-con-

suming method. Another heuristic technique like genetic

algorithm (GA) is illustrated in [15] for optimal design of

speed control of switched reluctance motor (SRM). Despite

this, optimization technique requires a very long run time

that may be several minutes or even several hours

depending on the size of the system under study. Swarming

strategies in fish schooling and bird flocking are used in the

particle swarm optimization (PSO) and presented in [16]

for optimal design of speed control of different motors [17–

19]. However, PSO suffers from the partial optimism,

which causes the less exact at the regulation of its speed

and the direction. In addition, the algorithm cannot work

out the problems of scattering and optimization [20, 21]. A

relatively newer evolutionary computation algorithm,

called bacteria foraging (BF) scheme, has been presented

by [22–24] and further established recently by [25–29], but

the BF algorithm depends on random search directions

which may lead to delay in reaching the global solution. A

new metaheuristic nature-inspired algorithm, called firefly

algorithm (FA), which was developed by Yang [30–32] to

describe a solution for many optimization problems. First,

some artificial firefly is randomly distributed in the prob-

lem space, and then any firefly emits light, the intensity of

which is in conformity to the optimization rate of the point

the firefly stands on. Then the light intensity of any firefly is

compared to the light intensity of the fireflies, and the low-

light firefly goes toward the intense lighted one. Also the

most intense firefly moves around the problem for finding

the global optimized answer randomly. So, in FA the

fireflies get in relationship with each other via the light.

The combination of these operations leads to the movement

of the all fireflies toward the more optimized points [33,

34]. Recent works have been carried out via FA in several

fields which are shown in [35–38].

This paper proposes FA for speed control of DC series

motor supplied by PV system. FA is used for tuning the PI

controller parameters to control the duty cycle of DC/DC

converter and therefore speed control of DC series motor.

The design problem of the proposed controller is formu-

lated as an optimization problem, and FA is employed to

search for optimal controller parameters. By minimizing

the time domain objective, function representing the error

between reference speed and actual one is optimized. The

effectiveness of the proposed controller is tested under

different operating conditions in comparison with the GA-

based PI controller and conventional one through time

domain simulation and some performance indices. Simu-

lation results show that the proposed algorithm achieves

good robust performance for speed tracking system under

different operating conditions and disturbances.

2 System under study

The system under study consists of PV system acts as a

voltage source for a connected DC series motor. The input

of PV system is the ambient temperature and radiation,

while the output is the DC voltage. The proposed controller

based on FA is used to control the duty cycle of DC/DC

converter and consequently the voltage and speed of motor.

The schematic block diagram is shown in Fig. 1.

2.1 DC series motor construction

The proposed system can be simulated with proper math-

ematic modeling. The DC series motor can be written in

terms of equations as follows [39–44]. The parameters of

DC series motor are shown in ‘‘Appendix.’’

diaðtÞ
dt

¼ VtðtÞ
La þ Lf

� Ra þ Rf

La þ Lf
iaðtÞ �

Maf

La þ Lf
iaðtÞxrðtÞ ð1Þ

dxrðtÞ
dt

¼ Maf

Jm
i2aðtÞ �

f

Jm
xrðtÞ �

TL

Jm
ð2Þ

where ia the armature current, Vt the motor terminal volt-

age, Ra and La the armature resistance and inductance, Rf

and Lf the field resistance and inductance, xr the motor

angular speed, Jm the moment of inertia, TL the load
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Fig. 1 Block diagram of overall system
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torque, f the friction coefficient, and Maf the mutual

inductance between the armature and field.

2.2 Photovoltaic modeling

The PV cell model is composed of photovoltaic current

source that has directly proportional with the sunlight

intensity parallel with a diode and a small series contact

resistance as shown in Fig. 2. The output current and

voltage from the cell is dependent on the load operating

point. The solar cell mathematical modeling is given by the

following equations [6, 7].

Ic ¼ Iph � Io e
qo
AKT

VcþIcRsð Þ½ � � 1
n o

ð3Þ

Vc ¼
AKT

qo
ln

Iph þ Io � Ic

Io

� �
� IcRs ð4Þ

I ¼ Iph � Io e
qo

nsAKT
VþnsIRsð Þ½ � � 1

n o
ð5Þ

V ¼ nsAKT

qo
ln

Iph þ Io � I

Io

� �
� nsIRs ð6Þ

where

Iph ¼
G

1000
Isc þ ki T � Trð Þ½ � ð7Þ

Io ¼ Ior
T

Tr

� �3

e
qoEg
AK

1
Tr
�1

Tð Þ½ � ð8Þ

The module output power can be determined simply

from the following equation.

P ¼ V � I ð9Þ

where I and V module output current and voltage, Ic and Vc

cell output current and voltage, Iph and Vph the light gen-

eration current and voltage, Is cell reverse saturation cur-

rent, Isc the short circuit current, Io the reverse saturation

current, Rs the module series resistance, T cell temperature,

K Boltzmann’s constant, qo electronic charge, KT

(0.0017 A/�C) short circuit current temperature coefficient,

G solar illumination in W/m2, Eg band gap energy for

silicon, A ideality factor, Tr reference temperature, Ior cell

rating saturation current at Tr, ns series connected solar

cells, and ki cell temperature coefficient.

Thus, if the module parameters such as module series

resistance (Rs), reverse saturation current (Io), and ideality

factor (A) are known, the I–V characteristics of the PV

module can be simulated by using (5) and (6).

2.3 DC–DC converter

In this paper, a hybrid (buck and boost) DC/DC converter

is used [41]. The equations for this converter type in con-

tinuous conduction mode are:

VB ¼ �k

1� k
Vph ð10Þ

IB ¼ k � 1

k
Iph ð11Þ

where k is the duty cycle of the pulse width modulation

(PWM). VB and IB are the output converter voltage and

current, respectively.

3 Objective function

A performance index can be defined by the integral of time

multiply square error (ITSE) [45, 46]. Accordingly, the

objective function J is set to be:

J ¼
Z1

0

te2dt ð12Þ

where e ¼ wreference � wactual

Based on this objective function J, optimization problem

can be stated as: minimize J subjected to:

Kmin
p �KP �Kmax

p ; Kmin
I �KI �Kmax

I ð13Þ

Typical ranges of the optimized parameters are

[0.001–10] for KP and KI. Conventional setting of PI

controller using ZN can be seen in ‘‘Appendix.’’

4 Overview of firefly algorithm

FA is a metaheuristic algorithm which has been presented

by Yang [30–32]. This algorithm is inspired by the mating

or flashing behavior of fireflies. These fireflies belong to a

family of insects that are capable to produce natural light to

attract a mate or prey. This light appears to be in a unique

pattern and produce an amazing sight in the tropical areas

during summer. The intensity (L) of light decreases as the

distance (r) increases, and thus, most fireflies can com-

municate only up to several hundred meters. In the

implementation of the algorithm, the flashing light is for-

mulated in such a way that it gets associated with the

objective function to be optimized.
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Fig. 2 Solar cell equivalent circuit
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FA is simple, flexible, and versatile, which is very

efficient in solving a wide range of diverse real-world

problems [47]. Moreover, it can divide its population into

subgroups, due to the fact that local attraction is stronger

than long distance attraction. Hence, FA can deal with

highly nonlinear, multi-modal optimization problems nat-

urally and efficiently. Also, it does not use past individual

best, and there is no explicit global best either. This avoids

any potential drawbacks of premature convergence as those

reported in PSO. In addition, it has an ability to control its

modality and adapt to problem landscape by controlling its

scaling parameter. Thus, FA has been used to solve many

optimization problems [48, 49]. Recent research shows that

FA is a very efficient and could outperform other algo-

rithms. The superiority of FA over other algorithms has

also been reported in the literature [50–52].

For simplicity, some rules are used to extend the

structure of FA.

1. A firefly will be attracted by other fireflies regardless of

their sex.

2. Attractiveness is proportional to their brightness and

decreases as the distance among them increases.

3. The value of the objective function determines the

brightness of a firefly [32–34].

FA depends on two important factors: the variation of

the light intensity and the formulation of the attractiveness.

• Light intensity and attractiveness

The attractiveness b of a firefly is given by its light

intensity L, which is proportional to the value of

objective function. As the light intensity decreases with

the distance from its source, the attractiveness changes

with the distance rij between firefly i and firefly j. Light

is also absorbed by the media. When the medium is

known, the light intensity of one firefly can be specified

by the following equation.

LðrÞ ¼ L0e
�cr2 ð14Þ

where c is the absorption coefficient, and L0 is its initial

brightness, namely its brightness at r = 0.

Define Objective function 

Start 

Population initialization, set parameters m, 
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Reach the maximum
iteration?

Update the position of fireflies Rank the 
fireflies and find the current best 

Calculate the relative brightness and attraction 
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End

Yes 

No 

Output the global best solution 

Fig. 3 Flow chart of FA

Table 1 Comparison between

various controllers
KP KI

FA 0.0879 2.1134

GA 0.0849 2.0928

ZN 0.0765 1.5736

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3
x 10

4

FA

GA

Generations 

C
ha

ng
e 

of
 o

bj
ec

tiv
e 

fu
nc

tio
ns

 

Fig. 4 Change of objective function for both algorithms

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

20

Time in second 

C
ha

ng
e 

of
 lo

ad
 to

rq
ue

 (N
.m

) 

Fig. 5 Step change of load torque

1324 Neural Comput & Applic (2015) 26:1321–1332

123



The attractiveness of a firefly is determined by (15)

where b0 is the attractiveness at r = 0.

b ¼ b0e
�crm ; ðm� 1Þ ð15Þ

• Distance

The distance between any two fireflies i and j at xi and

xj, respectively, the Cartesian distance is determined by

(16) where xi,k is the kth component of the spatial

coordinate xi of the ith firefly and d is the number of

dimensions.

rij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xd
k¼1

xi;k � xj;k
� �2

vuut ð16Þ

• Position update

Position update when firefly i is attracted to another
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more attractive firefly j, which is determined by the

following equation.

xi ¼ xi þ b0e
�cr2ijðxj � xiÞ þ a 2 ð17Þ

where the second term is due to the attraction, while the

third term is randomization with a being the randomi-

zation parameter and 2 being the vector of random

numbers drawn from a Gaussian distribution. The

parameter c characterizes the contrast of the attrac-

tiveness, and its value varies from 0.1 to 10 determining

the convergence speed of the FA. It is worth pointing

out that FA achieves the global optimization by fire-

flies’ continuous updating position based on the

brightness and attraction.

• Convergence of algorithm

For any large number of fireflies (n), if n � m, where

m is the number of local optima of an optimization

problem, the convergence of the algorithm can be

reached. Here, the initial location of n fireflies is dis-

tributed uniformly in the entire search space, and as

the iterations of the algorithm continue fireflies con-

verge into all the local optimum. By comparing the

best solutions among all these optima, the global

optima are reached. The flow chart of FA is shown in

Fig. 3. The parameters of FA are shown in

‘‘Appendix.’’

5 Results and discussion

In this section, different comparative cases are examined to

show the effectiveness of the proposed FA controller

compared with GA [53–55] and ZN under change of load

torque, ambient temperature, and radiation variations. The

designed parameters of PI controller with the proposed FA,

conventional approach and GA are given in Table 1. Also,

Fig. 4 shows the minimum fitness functions evaluating

process using the FA method. Moreover, FA converges at a

faster rate (45 generations) compared to that for GA (61

generations). Moreover, computational time (CPU) of both

algorithms is compared based on the average CPU time

taken to converge the solution. The average CPU for FA is

39.8 s, while it is 50.3 s for GA. The proposed FA meth-

odology and GA are programed in MATLAB 7.1 and run

on an Intel(R) Core(TM) I5 CPU 2.53 GHz and 4.00 GB of
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RAM. The mentioned CPU time is the average of 10

executions of the computer code.

5.1 Response under step change of temperature

Figures 5 and 6 show the step change of load torque, the

current, voltage, and power of PV system for one cell. The

speed response under variation of the load torque is shown

in Fig. 7, respectively. The actual speed tracks the refer-

ence speed with minimum overshoot and settling time. The

settling time is approximately 0.03 s. Moreover, the speed

response is faster with the proposed controller than GA and

ZN for the step variation of load torque. In additional, the

designed controller is robust in its operation and gives a

superb performance compared with conventional PI con-

troller and GA tuning PI controller.

5.2 Response under step change of radiation

In this case, the system responses under variation of radi-

ation are obtained. Figures 8 and 9 show the change of

radiation as an input disturbance and the current, voltage,

and power of PV cell system, respectively. Moreover, the

system response based on different algorithms is shown in
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Fig. 10. It is clear from these figures that the proposed FA-

based controller improves the speed control of DC series

motor effectively. Moreover, the proposed method out-

performs and outlasts GA in designing speed controller and

reducing settling time. Hence, PI-based FA greatly

enhances the performance characteristics of DC series

motor compared with those based GA and conventional

technique.

5.3 Response under step change of load torque,

radiation, and temperature

The effect of applying step change of load torque, radia-

tion, and temperature of PV system is shown in this case.

Figures 11 and 12 illustrate the variation of load torque,

radiation, temperature, and the output of PV cell. A com-

parison between the actual and reference speed is shown in
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Fig. 13. From these figures, the steady-state and dynamic

operation of DC series motor in terms of over shoot and

settling time has been enhanced. Also, the proposed con-

troller using time domain objective functions achieves

good robust performance and provides superior speed

controller in comparison with the conventional technique

and GA.

5.4 Response under change of load torque, radiation,

and temperature

In this case, the system response under large change of load

torque, radiation, and temperature is obtained. Figures 14

and 15 show the change of load torque and parameters of

PV cell, respectively. Moreover, the effect of the proposed
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FA controller on speed response is illustrated in Fig. 16. It

is clear from this Fig that the proposed FA controller is

robust in tracking reference speed. Also, the proposed

controller has a small settling time, and system response is

quickly driven with the reference speed. Hence, the

potential and superiority of the proposed algorithm over the

classical approach and GA are demonstrated.

5.5 Robustness and performance indices

To demonstrate the robustness of the proposed controller,

some performance indices: The Integral of Absolute value

of the Error (IAE), the Integral of the Time multiplied

Absolute value of the Error (ITAE), the Integral of Square

Error (ISE), and the Integral of the Time multiplied of

Square Error (ITSE) are being used as:

IAE ¼
Ztsim

0

ej jð Þdt ð18Þ

ITAE ¼
Ztsim

0

t ej jð Þdt ð19Þ

ISE ¼
Ztsim

0

e2dt ð20Þ

ITSE ¼
Ztsim

0

te2dt ð21Þ

where tsim is the time of simulation and equals to 35 s. It is

noteworthy that the lower the value of these indices, the

better the system response in terms of time domain char-

acteristics [56]. Numerical results of performance robust-

ness for all controllers are listed in Table 2 under large

change of load torque, and parameters of PV system. It can

be seen that the values of these system performance with

the FA are smaller compared with those of GA and ZN.

This demonstrates that the overshoot, settling time, and

speed deviations of all units are greatly decreased by

applying the proposed FA-based tuned PI. Eventually,

values of these indices are smaller than those obtained by

BF in [29].

6 Conclusions

In this paper, a novel method for speed control of DC series

motor is proposed via FA. The design problem of the

proposed controller is formulated as an optimization

problem, and FA is employed to search for optimal
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Fig. 16 Change in speed with

different controllers

Table 2 Values of performance indices

Performance indices

IAE ITAE ISE ITSE

FA 50.2122 758.8619 948.8979 10,617

GA 54.2865 820.4309 1,110.5 12,524

ZN 71.4856 1075.8 1582.9 18,452

BF 53.7316 811.8726 1,075.4 12,120
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parameters of PI controller. By minimizing the time

domain objective function, in which the difference between

the reference and actual speed are involved, speed control

of DC series motor is enhanced. Simulation results

emphasize that the designed FA tuning PI controller is

robust in its operation and gives a superb performance for

the change in load torque, radiation, and temperature

compared with GA and conventional technique. Moreover,

the system performance characteristics in terms of various

performance indices reveals that the proposed controller

confirms its effectiveness than GA, BF, and conventional

one. The implementation of this work is the future work of

this research.

Appendix

The system data are as shown below:

(a) DC series motor parameters are shown below in

Table 3.

(b) Ziegler–Nichols tuning method

ZN tuning rule was the first such effort to provide a

practical approach to tune a PID controller. According to

the rule, a PID controller is tuned by firstly setting it to the

P-only mode but adjusting the gain to make the control

system in continuous oscillation. The corresponding gain is

referred to as the ultimate gain Ku, and the oscillation

period is termed as the ultimate period Pu. The key step of

the ZN tuning approach is to determine the ultimate gain

and period. Then, the PID controller parameters are

determined from Ku and Pu using the ZN tuning rules as

shown in Table 4 [46].

(c) The parameters of FA: c = 1.0; b0 = 0.1; a = 0.1;

maximum number of generations = 100; number of

fireflies = 50.

(d) The parameters of GA are as follows: max gener-

ation = 100; population size = 50; crossover prob-

abilities = 0.75; mutation probabilities = 0.1.
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