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Abstract Teaching–learning-based optimisation (TLBO)

is an emerging gradient-free optimisation algorithm

inspired by interactions between students and teacher in

classrooms. TLBO has no control parameter to be tuned by

user. This property makes it popular in research commu-

nity. It has been successfully applied to challenging opti-

misation problems in different areas. In this study, TLBO is

assisted to find optimal setting of thyristor-controlled series

compensators in electric power systems. The experiments

have been done for both N-1 and N-2 line outage contin-

gencies. The results show that TLBO performs well in

solving this problem.

Keywords Teaching–learning-based optimisation �
FACTS allocation problem � Contingency

1 Introduction

Using flexible AC transmission system (FACTS) devices is

a very efficient and effective way for upgrading prevailing

electric transmission systems [1–3]. They control the

characteristics of power system and play a very sensitive

role in power system control [4]. However, when such

expensive devices are intended to be utilised in a power

system, their optimal number/setting/location should be

determined [5, 6]. This problem is referred to as FACTS

allocation problem and is very difficult to be solved. For

solving such a difficult optimisation problem, the best way

is using heuristic algorithms. Heuristic algorithms are very

flexible, i.e. do not entail the convexity, differentiability or

continuity of objective functions [7–11]. Despite their

undeniable merits, there are two issues in application of

heuristics to FACTS allocation problems. First issue is that

they generally suffer from premature convergence, i.e. they

frequently converge into local optima rather than global

one [12, 13]. This is due to lack of enough diversity among

their search agents. The second issue is that heuristic

algorithms have some control parameters. The computa-

tional behaviour of heuristics is highly dependent on their

control parameters [14]. Control parameters should be

tuned by user, while their tuning needs expertise.

In this study, teaching–learning-based optimisation

(TLBO) is applied to FACTS allocation problem to address

the two aforementioned issues. In TLBO, there is an

appropriate diversity among search agents; therefore, its

premature convergence probability is lower in comparison

with some other heuristic algorithms. In addition, TLBO

has no control parameter to be tuned by user. Due to the

two mentioned reasons, TLBO seems to be a promising

optimisation algorithm for solving FACTS allocation

problems. It has been successfully applied to different

optimisation problems in various areas [15–23]. The

objective of this study is to utilise potential of TLBO in

solving FACTS allocation problem. Thyristor-controlled

series compensators (TCSCs) are used as FACTS devices.

The remainder of the paper is organised as follows; in

Sect. 2, an overview of TLBO is provided. In Sect. 3, the

proposed methodology is described. The results will be

presented in Sect. 4. Finally, the conclusions are provided

in Sect. 5.
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2 Overview of TLBO

This algorithm takes inspiration from teaching–learning

interaction in a classroom and is developed by Rao [24]. It

embraces a population of students in a class. In TLBO,

different decision variables are analogous to different

subjects offered to students and students’ marks are anal-

ogous to fitness values in optimisation problems. The best

student serves as the teacher, which is equivalent to swarm

leader in particle swarm optimisation. In TLBO, the stu-

dents learn in two ways: leaning from the teacher and

learning from peers that are cleverer than themselves.

Actually, TLBO embraces two phases: teaching phase

wherein students learn from the teacher and student phase

wherein students learn from their peers [24]. The main

advantage of TLBO is that it is parameter free. There is no

need to tune any control parameter in TLBO (other than

class size and stopping criterion). Below, TLBO’s two

phases are described.

3 Teaching phase

In TLBO, at each iteration, the mean of decision vectors is

computed and denoted by M, the student with the best mark

is designated as teacher, and then, position of all students is

updated via following equation [25]:

Xi;new ¼ Xi;old þ r Xteacher � TF:Mð Þ ð1Þ

TF may be either 1 or 2 with equal probability, and

Xteacher is the position of the teacher. Xi,new and Xi,old are,

respectively, the new and old positions of student i. Symbol

r denotes a random in [0, 1].

According to Eq. (1), the students are attracted towards

the teacher, so their fitness values (marks) are enhanced.

3.1 Student phase

As in a real classroom, students learn from each other by

discussions, presentations and formal communications; in

student phase, for each student i, another student j is ran-

domly picked up, and then, the student with better mark

(fitness) is attracted towards (learns from) the other student.

That is, if student j is fitter than student i, then

Xi;new ¼ Xi;old þ ri Xj � Xi;old

� �
ð2Þ

Otherwise, if student j is fitter than i, the indices i and

j in (2) are exchanged [25]. Then, if the new position has

better fitness, the old position is replaced by the new one.

In TLBO, unlike most other heuristics, the number of

fitness evaluations is computed as below.

NFE ¼ 1 þ 2NPð Þ:tmax ð3Þ

where NP represents population size and tmax is maximum

number of iterations.

Equation (3) shows that at each iteration, for each

individual, the objective values are computed for two

times, not one time. The flowchart of TLBO has been

depicted in Fig. 1.

4 Methodology

The allocation of TCSCs is formulated as a multi-objective

optimisation problem with three objectives [5]. The first

objective is to minimise overloads in transmission lines. Its

corresponding metric is calculated by Eq. (4).

OL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xi¼Nl

i¼1 ðfor pi [ pimaxÞ
ðpi � pimaxÞ2

vuut ð4Þ

where Pi and Pimax represent the power flow and power

flow limit of ith transmission line, respectively, and Nl is

total number of branches in the system.

The second objective is to minimise voltage deviations

of buses and is defined by Eqs. (5) and (6).

DEVi ¼
0 if 0:95�Vi � 1:05

1 � Við Þ2
if 0:9�Vi � :95or1:05�Vi � 1:1

Inf if Vi [ 1:1or Vi\0:9

8
<

:

ð5Þ

where Vi represents the voltage of ith bus of power system.

DEV ¼
Xi¼NB

i¼1i 62PVbuses

DEVi ð6Þ

The symbol NB represents total number of buses in the

power system.

It should be noted that in (6), voltage-controlled (PV)

buses are excluded, since their voltages cannot be con-

trolled by FACTS devices.

The third objective is to minimise losses of power

system.

All the objectives are normalised with respect to their

preoptimisation value, and their corresponding normalised

objectives are represented by J1, J2, J3, respectively.

Linear weighted sum approach is used to transform the

multi-objective problem into a single-objective problem as

(7).

J ¼ x1J1 þ x2J2 þ x3J3 ð7Þ

It should be noted that in this study, TCSC is modelled

as Fig. 2.

The simulations will be done on IEEE 14 bus power

system [26]. First, contingency ranking is done based

on overload values at different cases (case i means the
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outage of line i). Consequently, cases 1, 2, 3 and 10 are

the 4 most severe cases. Case 1 means outage of line 1,

which connects bus 1 to bus 2; case 2 means outage of

line 2, which connects bus 1 to bus 5; case 3 means

outage of line 3, which connects bus 2 to bus 3; and

case 10 means outage of line 10 which connects bus 5

to bus 6. TLBO and four other optimisation algorithms

are applied to TCSC allocation problem for N-1 line

outage contingencies (cases 1, 2, 3 and 10) and N-2 line

outage contingencies. All algorithms are run for 30

times.

The coefficients in multi-objective framework are

selected as follows:

x1 ¼ 0:5;x2 ¼ 0:3;x3 ¼ 0:2

The number of individuals for all algorithms except TLBO

is set to 300, and maximum number of iterations is 100, that is,

the number of function evaluations is 30,300. In TLBO, since

the number of function evaluations at each iteration is dif-

ferent from other heuristic algorithms, it is terminated when

the number of function evaluations reaches 30,300. In this

way, all algorithms are fairly compared with the same number

of function evaluations. The steps of employing TLBO for

finding optimal setting of TCSCs are as follows.

1. Data of power system including bus data, branch

data, power flow limits and case number are entered.

The maximum allowable active power of each

branch is computed as 1.2 times of its active power

prior to contingency.

2. All students are initialised in feasible region of

search space. Each student is a set of TCSC

reactances, where its ith dimension represents

Fig. 1 Flowchart of TLBO

Fig. 2 Model of TCSC [4]
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reactance of the TCSC unit inserted in ith branch.

The reactance of ith TCSC is bounded in

�2XLi; 2XLi½ �, where XLi represents the reactance of

ith branch

3. The mean of each decision variable is computed, and

the best student is chosen as the teacher.

4. The positions of students are updated via Eq. (1).

5. Newton–Raphson power flow is applied, and objec-

tive value (J) is computed for each student.

6. For each student, if the objective value at its new

position is lower than the objective value at current

position, its position is changed to the new position.

7. For each student i, another student j is randomly

selected and Eq. (2) is applied.

8. Newton–Raphson power flow is applied, and objec-

tive value for each student is computed

9. For each student, if the objective value at its new

position is lower than the objective value at current

position, its position is changed to the new position.

10. Steps 3–9 are iterated until termination criterion is met.

11. Optimal reactance of TCSCs and optimal values for

OL, DEV, Ploss and J are displayed.

12. End

5 Results and discussion

5.1 Results for N-1 line outage contingencies

5.1.1 Results for the most severe case (case 1)

This section validates the superior performance of TLBO

in finding optimal setting of TCSC devices. In Tables 1 and

2, the results for case 1 are presented. The best results are

bolded.

According to Table 1, TLBO lowers overall objective

by 94.89 %. In terms of mean of overall objectives, TLBO

performs better than other optimisation algorithms. The

standard deviation of objectives delivered by TLBO is

lower than standard deviations achieved by other heuristic

algorithms. This signifies high stability of TLBO in finding

quality solutions.

Table 2 shows the average of different objectives for

case 1 achieved by different algorithms. The table indi-

cates that TLBO lowers overloads by 99.17 %. It also

indicates that in terms of overload minimisation, TLBO

performs better than all other algorithms. For instance, the

overload in TLBO shows 97.86 % improvement with

respect to GSA. In terms of voltage deviations, TLBO

along with NLP functions better than other optimisation

algorithms. Actually, they remove all voltage deviations

in buses. Ultimately, in terms of minimising power losses,

TLBO delivers low values and outperform all other

algorithms. The power loss of the system by TLBO has

been lowered 76.53 % with respect to preoptimisation

state.

5.1.2 Results for the second most severe contingency

(case 2)

The results for case 2 are tabulated in Tables 3 and 4.

Table 3 implies that in terms of mean of overall objectives,

TLBO functions better than all other optimisation algo-

rithms. In addition, the standard deviation of objectives

achieved by TLBO in case 2 is lower than those achieved

by other heuristic algorithms, which approves high stability

of TLBO in finding accurate solutions.

Table 4 tabulates the mean of different objectives for

case 2 acquired by different algorithms. Table 4 signifies

that in terms of overload minimisation, TLBO outperforms

all other algorithms. For instance, the overload in TLBO

shows 98.40 % improvement with respect to GSA. In terms

of voltage deviations, TLBO along with NLP and PS return

very low values and outshines all other optimisation

algorithms. Eventually, in terms of minimising power

losses, TLBO results in the lowest value and outranks other

algorithms.

Table 1 Monte Carlo numerical results in case 1

NLP [27] PS [28] GSA [29] FSO [30] TLBO

Mean 0.6664 0.3509 0.4606 0.1185 0.0511

Std 0 0 0.1074 0.0659 0.0310

Min 0.6664 0.3509 0.3175 0.0295 0.0215

Max 0.6664 0.3509 0.5971 0.2869 0.1207

The best results are in bold

Table 2 Comparison of

different algorithms for case 1

The best results are in bold

Objective Preoptimisation NLP PS GSA FSO TLBO

OL 1.7420 1.6621 0.4963 0.6729 0.1041 0.0144

DEV 0.0086 0 0.0040 0.0046 0.0011 0

Ploss 0.4197 0.3974 0.1432 0.2233 0.1023 0.0985

J 1 0.6664 0.3509 0.4606 0.1185 0.0511
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5.1.3 Results for the third most severe case (case 3)

The results for case 3 are tabulated in Tables 5 and 6.

Table 6 shows that in terms of mean of overall objectives,

TLBO outshines all other optimisation algorithms and

improves overall objective by 95.75 % with respect to

preoptimisation state. The standard deviation of objectives

achieved by TLBO in case 3 is very lower than standard

deviations achieved by other heuristic algorithms, which

again approves high stability of TLBO.

Table 6 tabulates the mean of different objectives for

case 3 achieved by different algorithms. It indicates that in

minimisation of overload/voltage deviation/losses, TLBO

significantly outperforms all other algorithms.

5.1.4 Results for the fourth most severe contingency

(case 10)

The results for case 10 are tabulated in Tables 7 and 8.

Table 7 signifies that in terms of mean of overall objec-

tives, in case 10, TLBO behaves better than other optimi-

sation techniques.

Table 8 displays the mean of all objectives for case 10.

It indicates that in overload minimisation, TLBO outdoes

all other algorithms. For instance, the overload in TLBO

shows 18.76 % decrease with respect to GSA. In terms of

voltage deviations, TLBO along with PS deliver very low

values and outdo other algorithms. Ultimately, in terms of

minimising power losses, TLBO returns the least values

and outdoes all other algorithms.

5.2 Results for N-2 line outage contingencies

In this section, the performance of TLBO and other opti-

misation algorithms in handling N-2 contingencies is

evaluated. The problem is formulated the same as that

explained in Sect. 3. N-2 contingencies are considered as

very severe contingencies and can cause severe problems

and consequences in power systems. Three severe N-2 line

outage contingencies are selected. The results achieved by

different optimisation algorithms for different contingen-

cies have been tabulated in Tables 9, 10, 11, 12, 13, 14.

The tables obviously show that in all selected N-2 line

outage contingencies, TLBO behaves better than other used

Table 3 Monte Carlo

numerical results in case 2

The best results are in bold

NLP PS GSA FSO TLBO

Mean 0.6855 0.3083 0.4204 0.1855 0.0647

Std 0 0 0.1728 0.0720 0.0303

Min 0.6855 0.3083 0.2162 0.0418 0.0277

Max 0.6855 0.3083 0.5463 0.3281 0.1387

Table 5 Monte Carlo

numerical results in case 3

The best results are in bold

NLP PS GSA FSO TLBO

Mean 0.6823 0.6816 0.3838 0.1957 0.0425

Std 0 0 0.3025 0.1969 0.0148

Min 0.6823 0.6816 0.1045 0.0372 0.0287

Max 0.6823 0.6816 0.6455 0.6853 0.0718

Table 6 Comparison of

different algorithms for case 3

The best results are in bold

Objective Preoptimisation NLP PS GSA FSO TLBO

OL 0.8108 0.7889 0.7876 0.2630 0.1264 0

DEV 0.0122 0 0 0.0040 0.0013 0

Ploss 0.2474 0.2422 0.2424 0.1534 0.1066 0.0526

J 1 0.6823 0.6816 0.3838 0.1957 0.0425

Table 4 Comparison of

different algorithms for case 2

The best results are in bold

Objective Preoptimisation NLP PS GSA FSO TLBO

OL 0.8248 0.8069 0.3180 0.3194 0.0927 0.0051

DEV 0.0122 0 0 0.0029 0.0015 3.3615e-4

Ploss 0.2100 0.2061 0.1213 0.1631 0.0981 0.0560

J 1 0.6855 0.3083 0.4204 0.1855 0.0647
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Table 7 Monte Carlo

numerical results in case 10

The best results are in bold

NLP PS GSA FSO TLBO

Mean 0.6788 0.5918 0.5898 0.4999 0.3344

Std 0 0 0.1992 0.0878 0.0930

Min 0.6788 0.5918 0.4490 0.3272 0.2562

Max 0.6788 0.5918 0.7307 0.6060 0.5751

Table 8 Comparison of

different algorithms for case 10

The best results are in bold

Objective Preoptimisation NLP PS GSA FSO TLBO

OL 0.3360 0.2724 0.2633 0.1642 0.1885 0.1334

DEV 0.0223 0.0055 0 0.0127 0.0069 0.0018

Ploss 0.1668 0.1668 0.1668 0.1453 0.1059 0.0926

J 1 0.6788 0.5918 0.5898 0.4999 0.3344

Table 9 Monte Carlo

numerical results for outage of

lines 1 and 3

The best results are in bold

NLP PS GSA FSO TLBO

Mean 0.66172 0.4449 0.4209 0.1921 0.0670

Std 0 0 0.2055 0.1070 0.0607

Min 0.66172 0.4449 0.1949 0.0190 0.0170

Max 0.66172 0.4449 0.6034 0.3210 0.1508

Table 10 Comparison of

different algorithms for outage

of lines 1 and 3

The best results are in bold

Objective Preoptimisation NLP PS GSA FSO TLBO

OL 2.0083 1.8868 1.2248 0.3895 0.3994 0.1130

DEV 0.0082 0 0 0.0066 7.5859e-4 0

Ploss 0.5004 0.4803 0.3502 0.2087 0.1623 0.0973

J 1 0.66172 0.4449 0.4209 0.1921 0.0670

Table 11 Monte Carlo

numerical results for outage of

lines 1 and 10

The best results are in bold

NLP PS GSA FSO TLBO

Mean 0.66403 0.1656 0.6207 0.1820 0.1213

Std 0 0 0.1813 0.1070 0.0197

Min 0.66403 0.1656 0.4776 0.1037 0.0926

Max 0.66403 0.1656 0.8864 0.4044 0.1448

Table 12 Comparison of

different algorithms for outage

of lines 1 and 10

The best results are in bold

Objective Preoptimisation NLP PS GSA FSO TLBO

OL 2.0043 1.8838 0.4136 1.3854 0.2662 0.2496

DEV 0.0181 0 0 0.0071 0.0036 4.4512e-4

Ploss 0.4863 0.4719 0.1518 0.3814 0.1375 0.1257

J 1 0.66403 0.1656 0.6207 0.1820 0.1213

Table 13 Monte Carlo

numerical results for outage of

lines 2 and 3

The best results are in bold

NLP PS GSA FSO TLBO

Mean 0.6904 0.6909 0.5572 0.2065 0.0417

Std 0 0 0.2034 0.1552 0.0405

Min 0.6904 0.6909 0.3463 0.0550 0.0214

Max 0.6904 0.6909 0.7522 0.5486 0.1243
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optimisation algorithms. For instance, for outage of lines 1

and 3, TLBO leads to a low value of overload metric,

removes all voltage deviations and results in low value of

losses.

6 Conclusions

TLBO has been assisted to find optimal setting of TCSCs

in a power system during both N-1 and N-2 contingencies.

The results vividly show that TLBO is efficient in solving

this problem, since it drastically decreases overloads,

voltage deviations and power losses. TLBO offers lower

overloads, voltage deviations and power losses than four

states of the art optimisation algorithms including gravi-

tational search algorithm (GSA), nonlinear programming

(NLP), pattern search (PS) and firefly swarm optimisation

(FSO). As a direction for future research, application of

TLBO for finding optimal location and setting of other

FACTS devices such as unified power flow controller,

interline power flow controller and static synchronous

series compensator is recommended.
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