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Abstract EEG signals play an important role in both the

diagnosis of neurological diseases and understanding the

psychophysiological processes. Classification of EEG sig-

nals includes feature extraction and feature classification.

This paper uses approximate entropy and sample entropy

based on wavelet package decomposition as the feature

exaction methods and employs support vector machine and

extreme learning machine as the classifiers. Experiments

are performed in epileptic EEG data and five mental tasks,

respectively. Experimental results show that the combina-

tion strategy of sample entropy and extreme learning

machine has shown great performance, which obtains good

classification accuracy and low training time.

Keywords EEG � Wavelet packet � Classification �
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1 Introduction

The electroencephalogram (EEG) signals play an important

role in both the diagnosis of neurological diseases and under-

standing the psychophysiological processes. Although several

methods for the brain function analysis such as

magnetoencephalography (MEG), functional magnetic reso-

nance imaging (fMRI), and positron emission tomography

(PET) have been introduced, the EEG signal is still a valuable

tool for monitoring the brain activity due to its relatively low

cost and being convenient for the patient [1]. Effectively

classifying EEG is the foundation for building usable Brain–

Computer Interfaces (BCI) and improving the performance of

EEG analysis software used in clinical and research settings.

Feature extraction and classification of EEG signals is a

challenge for engineers and scientists. In recent years, there

has been an increasing interest in the application of

machine learning methods for EEG signal. Many methods

have been proposed to classify and analyze EEG signal.

Among these methods, support vector machine (SVM) and

artificial neural network [2, 3] are two widely used clas-

sification techniques. Most of EEG signal classifications

are built by time–frequency domain-based feature extrac-

tion followed by a variety of classification models. So, the

classification performance of these methods depends on the

feature extraction of the EEG signal.

Wavelet has played an important role in biomedical

signal processing for its ability to capture localized spatial-

frequency information of EEG signals [4]. In the feature

extraction phase, this paper uses approximate entropy

(ApEn) and sample entropy (SampEn) based on wavelet

packet decomposition (WPD). Obtained feature values are

employed as the inputs of a classifier, such as extreme

learning machine (ELM) and SVM. Experiments are per-

formed in four different combinations of feature extrac-

tions and classifiers. Experimental results in epileptic EEG

data and five mental tasks indicate that the combination of

sample entropy and ELM has shown great performance.

The remaining of the paper is organized as follows. In

Sect. 2, we briefly presented the literature survey that has

been performed. In Sect. 3, we described about the
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materials and methods. In Sect. 4, we compared the clas-

sification results of four different combinations in epileptic

EEG data and five mental tasks, respectively. And Sect. 5

concluded the paper.

2 Related work

In the feature extraction for EEG signals, Burke et al. [5]

extend the usual autoregressive (AR) models for EEG

feature extraction. The extension model is an AR with

exogenous input (ARX) model for combined filtering and

feature extraction. Polat and Günes [6] use fast Fourier

transform as feature extraction method. Wavelet transform

is also widely used in extracting EEG features [7, 8], in

which EEG signals are decomposed by wavelet transform

to calculate approximation and detail coefficients. ApEn is

a statistical parameter that measures the predictability of

the current amplitude values of a physiological signal

based on its previous amplitude values. ApEn is used for

the first time in the proposed system for the detection of

epilepsy using neural networks [2]. A novel feature

extraction method based on multi-wavelet transform and

ApEn is proposed by Guo et al. [9]. The proposed method

uses approximate entropy features derived from multi-

wavelet transform and combines with an artificial neural

network to classify the EEG signals. Song et al. [10, 11]

use sample entropy (SampEn) as a feature extraction

method for detecting epileptic seizures. In Ref. [10],

SampEn is selected as a feature extraction method to

classify the task of three different kinds of EEG signals and

detecting epileptic seizures. Based on Ref. [10], the authors

propose an optimized sample entropy algorithm to identify

the EEG signals in [11].

Artificial neural networks (ANNs) have been widely

applied to classify EEG signals [2, 9]. Kumar et al. [7] use

discrete wavelet transform (DWT)-based ApEn and ANN to

detect epileptic seizures. SVM is also one of the classification

methods for EEG signals [3, 4]. Zhang et al. [12] present an

improved method to calculate phase locking value (PIV)

based on Hilbert–Huang transform, and the PLVs are used as

features for a least squares support vectormachine (LS-SVM)

to recognize normal and hypoxia EEG. Bajaj et al. [13]

present a new method for classification of EEG signals using

empirical mode decomposition (EMD) method. The pro-

posedmethod for classification ofEEG signals is based on the

bandwidth features and employs LS-SVM for classifying

seizure and non-seizure EEG signals.Wu et al. [14] propose a

multiscale cross-approximate entropymethod to quantify the

complex fluctuation between R–R intervals series and pulse

transit time series. Ahangi et al. [15] use a multiple classifier

system for classification of EEG signals. The proposed

method uses DWT decomposition, and a variety of classifier

combination methods along with genetic algorithm feature

selection is evaluated.

3 Materials and methods

In this section, we give a description of proposed method

for EEG signal classification problem, present feature

extraction based on the WPD, and give a briefly review of

two classifiers, ELM and SVM.

Figure 1 shows the block diagram of the proposed

method based on WPD. In our method, we first use the

WPD to decompose EEG data into sub-band signals. Then,

ApEn values or SampEn values are calculated by approx-

imation and detail coefficients. Obtained feature vectors

are used as the inputs of classifiers, such as SVM and ELM.

Last, we evaluate the classification accuracy.

3.1 Feature extraction based on wavelet packet

decomposition

Feature extraction of EEG signals includes two phases. In

the first phase, EEG signals are decomposed by the WPD to

calculate approximation and detail coefficients. In the

second phase, approximate entropy values or sample

entropy values of the approximation and detail coefficients

are calculated, which form feature vectors. These feature

vectors are used as the inputs of a classifier.

In this subsection, we first simply analyze the charac-

teristic of the WPD, and then, give a briefly review of

approximate entropy and sample entropy.

3.1.1 Wavelet packet decomposition

Feature extraction is very important to EEG signals ana-

lysis and processing. WPD is a wavelet transform where

Initial EEG data

Pre-processing

Feature extraction
WPD+ApEn/SampEn

Training data

Constructing
ELM/SVM classifier

Testing and Evaluation

Fig. 1 Block diagram of the

proposed method
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the discrete-time signal is passed through more filters than

the DWT, which can provide a multi-level time–frequency

decomposition of signals [16]. In the DWT, each level is

calculated by passing only the previous wavelet approxi-

mation coefficients, which are decomposed to yield

approximation and detail information at a higher level.

However, in the WPD, both the detail and approximation

coefficients are decomposed to create the full binary tree.

For n levels of decomposition, the WPD produces 2n

different sets of coefficients. Figure 2 gives the three-level

WPD. In Fig. 2, the symbol ‘‘s’’ represents an original

signal. Symbols ‘‘A’’ and ‘‘D’’ are the approximation and

detail coefficients, respectively. It can be seen in Fig. 2 that

in the wavelet packet analysis, both the approximation and

details at a certain level are further decomposed into the

next level, which means the wavelet packet analysis can

provide a more precise frequency resolution than the

wavelet analysis.

There are many wavelets that can analyze the EEG

signal and extract the feature vector. The most important

wavelets families are Haar, Daubechies, Symlets, Coiflets,

and biorthogonal [16]. It is very important to select the

suitable wavelet and the number of decomposition levels in

the analysis of EEG signals. Among the various wavelet

bases, the Daubechies family of wavelets is known for its

orthogonality property and efficient filter implementation.

3.1.2 Approximate entropy and sample entropy

Approximate entropy was first proposed by Pincus [17]. It

is a formulated statistical parameter to quantify the regu-

larity of a time series data of physiological signals. EEG

signals are time series data essentially, in which raw data

values are from measurement equally spaced in time.

Let m be an integer which represents the length of a

vector, and r be a similar limit. Given a time series u(1),

u(2), …, u(N), where N is the total number of data points.

1. Use the time series u(1), u(2),…,u(N) to form a

sequence of m-length vectors x(1), x(2),…,x(N -

m ? 1), where xðiÞ ¼ ½uðiÞ; uðiþ 1Þ; . . .; uðiþ m �1Þ�,
i = 1,…, N - m ? 1.

2. Define the distance between each vector x(i) and x(j),

d½xðiÞ; xðjÞ�, as the maximum difference between their

scalar components:

d½xðiÞ; xðjÞ� ¼ max
k¼1;2;...;m

juðiþ k � 1Þ � uðjþ k � 1Þjð Þ:

ð1Þ

3. For a given x(i), count the number of j, such that the

distance between x(i) and x(j) is less than or equal to

r. Then, for each i, compute

Cm
i ðrÞ ¼

P
j f1jd½xðiÞ; xðjÞ�� rg

N � mþ 1
ð2Þ

4. Define UmðrÞ and Umþ1ðrÞ as

UmðrÞ ¼ 1

N � mþ 1

XN�mþ1

i¼1

ln Cm
i ðrÞ; ð3Þ

Umþ1ðrÞ ¼ 1

N � mþ 1

XN�mþ1

i¼1

ln Cmþ1
i ðrÞ ð4Þ

5. ApEn(m, r, N) is computed by UmðrÞ and Umþ1ðrÞ as
follows:

ApEnðm; r;NÞ ¼ UmðrÞ � Umþ1ðrÞ

¼ 1

N � mþ 1

XN�mþ1

i¼1

ln
Cm
i ðrÞ

Cmþ1
i ðrÞ

: ð5Þ

Two input parameters of approximate entropy must be

specified. Usually, parameter m is set to be 1, 2, or 3.

Parameter r is set to be some percentage of the standard

deviation of the amplitude of time series.

ApEn allows the self-matching (i = j in Eq. 2) to avoid

logarithm of zero, thus inducing the bias in estimates. Sample

entropy [18] was developed to reduce the bias caused by the

self-matching. Mathematically, the computation of SampEn

has the same steps 1–3 explained for ApEn. Note that the self

matched templates are not computed in step 3. Then, define

BmðrÞ ¼ 1

N � m

XN�m

i¼1

Cm
i ðrÞ; ð6Þ

Bmþ1ðrÞ ¼ 1

N � m

XN�m

i¼1

Cmþ1
i ðrÞ; ð7Þ

Finally, sample entropy can be defined as

SampEnðm; r;NÞ ¼ lim
N!1

� ln
Bmþ1ðrÞ
BmðrÞ

� �� �

: ð8Þ

S

DAA3 DDD3ADD3DAD3AAD3ADA3 DDA3AAA3

A1

DA2AA2 AD2 DD2

D1

Fig. 2 Processing of 3-level wavelet packet decomposition
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And it is estimated by the statistic

SampEnðm; r;NÞ ¼ � ln
Bmþ1ðrÞ
BmðrÞ

� �

: ð9Þ

The parameters m and r are critical in determining the

outcome of SampEn. Usually, SampEn is estimated using

the widely established parameter values where m is be set 1

or 2 and r is set between 0.11 and 0.25 times the standard

deviation of the original time series.

3.2 Classification methods

3.2.1 Extreme learning machine

The ELM [19, 20] is a newly proposed algorithm for

generalized single-hidden layer feedforward neural net-

works (SLFNs) with randomly chosen hidden nodes and

analytically determined output weights.

Given N distinct samples (xi, ti), where xi ¼
xi1; xi2; . . .; xin½ �T is the ith sample with n-dimensional fea-

tures and ti ¼ ti1; ti2; . . .; tim½ �T represents the actual labels

of xi. Standard SLFNs with M hidden neurons can be

defined as:

XM

j¼1

bjgðwj � xi þ bjÞ ¼ oi; i ¼ 1; 2; . . .;N; ð10Þ

where wj ¼ wj1;wj2; . . .;wjn

� �T
represents the weight vec-

tor connecting the jth hidden neuron and the input nodes, bj
is the output weight connecting the jth hidden neuron and

the output nodes, bj is the bias of the jth hidden neuron, oi
is the ith output neuron, and g(•) denotes the activation

function.

If there exist bj, wj, and bj, an SLFN with M hidden

neurons can approximate these N samples with zero error,

we have

XM

j¼1

bjg wj � xi þ bj
� 	

¼ ti; i ¼ 1; 2; . . .;N ð11Þ

Equation (11) can be rewritten in a matrix form:

Hb ¼ T; ð12Þ

where

H ¼
gðw1 � x1 þ b1Þ � � � gðwM � x1 þ bMÞ

..

.
� � � ..

.

gðw1 � xN þ b1Þ � � � gðwM � xN þ bMÞ

2

6
4

3

7
5

N�M

b ¼
bT1
..
.

bTM

2

6
4

3

7
5

M�m

; T ¼
tT1
..
.

tTM

2

6
4

3

7
5

N�m

H is called the hidden layer output matrix of the net-

work. In many real applications, the training error cannot

be made exactly zero. To obtain the smallest nonzero

training error, a simple representation of the solution of

Eq. (13) is given explicitly by Huang et al. [19] as

~b ¼ HþT; ð13Þ

where H? is the Moore–Penrose generalized inverse of

H. The general procedure of ELM is as follows:

Step 1: Assess the input weights wj and hidden layer

biases bj randomly;

Step 2: Compute the hidden layer output matrix H;

Step 3: Obtain the output weight ~b according to Eq. (13);

In addition, SVM is applied for comparison with ELM.

The following is the simple description of SVM.

3.2.2 SVM classifier

SVM developed by Vapnik [21] has received considerable

attention. Based on statistics learning theory, it has shown

promising empirical results in many fields. SVM can pre-

vent over-fitting based on the structural risk minimization

principle.

Given a training data set fðx1; y1Þ; ðx2; y2Þ; . . .; ðxl; ylÞg,
where xi � <n denotes a sample with n-dimension and yi 2
fþ1;�1g is the class of sample xi. An SVM training

algorithm constructs an optimal separating hyperplane in a

high-dimensional space to classify new samples. In order to

find the optimal hyperplane, the training samples are first

transformed into a higher dimensional feature space by a

mapping function /. Then, a possible separating hyper-

plane can be represented by [21]

w � /ðxÞ þ b ¼ 0 ð14Þ

The above classification problem can be formalized as

the following optimization problem:

min
w;b;n

1

2
wk k2þC

Xn

i¼1

ni ð15Þ

subject to

yiðw � /ðxiÞ þ bÞ þ ni � 1� 0 ni � 0; i ¼ 1; . . .; l

ð16Þ

where parameter C is a user-specified positive parameter

representing the penalty of misclassifying the training

samples. It should be noted that the larger the C, the more

the error is penalized. The parameter C can be chosen

based on the model’s performance on the validation set.

The slack variables ni [ 0 provide an estimate of the error

of the decision boundary on the training samples xi, which
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are mapped into a higher dimensional space by the function

/.
This constrained optimization problem can be solved by

constructing a Lagrangian representation and transforming

it into the dual problem. When we obtain the optimal

solution (w*, b*) of the decision boundary, the SVM

decision function can be given by

f ðxÞ ¼ sign
Xl

i¼1

yiKðx; xiÞ þ b

 !

ð17Þ

where l is the number of support vectors and Kðxi; xjÞ is the
kernel function as follows:

Kðxi; xjÞ ¼ /ðxiÞT/ðxjÞ: ð18Þ

Thus, the kernel function is the key that determines the

performance of the SVM. Normally, several suggested

kernel functions are the linear kernel ðKðxi; xjÞ ¼ xi � xjÞ, the
polynomial kernel with degree d ðKðxi; xjÞ ¼ ðxi� xj þ 1ÞdÞ,
the Gaussian kernel ðKðxi; xjÞ ¼ expð�cjjxi �xjjj2ÞÞ, and
the sigmoid kernel ðKðxi; xjÞ ¼ tan hðg � xi� xj þ hÞÞ).

4 Experimental results

This section describes the details of the experiments per-

formed in order to evaluate classification capabilities of the

proposed method. The experimental study is divided in two

sets of experiments. One is tested by the epileptic EEG

data, and the other is implemented in the data set of five

mental tasks.

In the experiments, we first use wavelet package to

decompose EEG signals and then extract features using

approximate entropy or sample entropy. ELM and SVM

are selected as classification methods. To evaluate classi-

fication capabilities, we combine feature extraction with

classification methods. The combination leads to four

cases, namely ApEn ? SVM, ApEn ? ELM, SampEn ?

SVM, and SampEn ? ELM.

Before performance evaluation, the parameters of SVM

achieved the best generalization performance are pre-esti-

mated. SVMs in this paper use Gaussian kernel and involve

the penalty parameter C as well as kernel parameter c to be

optimized. We determined the tuning parameters c and

C with standard tenfold cross validation. So, the original

data is randomly partitioned into ten equal size subsets. Of

the ten subsets, a single subset is retained as the validation

data for testing the model, and the remaining nine subsets

are used as training data. The initial search for optimal

parameters c and C was done on a 10 9 10 uniform coarse

grid in the (c, C) space, namely c = [2-10, 2-8,…,26, 28],

C = [2-10, 2-8,…,26, 28]. We used LIBSVM [22] in our

experiments.

4.1 Epileptic EEG data

4.1.1 Data description

The epileptic EEG data from the Clinique of Epileptology

of Bonn University [23] are used as the experimental data

for our proposed method. The epileptic EEG data include

five data sets denoted by A–E, respectively. Each data set

contains 100 single-channel EEG segments at a sampling

rate of 173.61 Hz for 23.6 s, and each segment contains

4,096 samples. These EEG data are obtained from three

kinds of different people, namely healthy people, epileptic

patients during seizure-free interval, and epileptic patients

during seizure interval.

Data sets A and B are attained from five healthy vol-

unteers in an awaken state with eyes open and eyes closed,

respectively. Data sets C and D are obtained from five

epileptic patients during seizure-free intervals (interictal).

Data set E is obtained from five epileptic patients during

seizure activity (ictal).

All EEG signals were recorded with the same

128-channel amplifier system, using an average common

reference. After 12-bit analog-to-digital conversion, the data

were written continuously onto the disk of a data acquisition

computer system at a sampling rate of 173.61 Hz [23].

4.1.2 Experiment analysis

We first consider a two-classification problem, where the

seizure activity (E) is labeled as positive class, while the

other data (A, B, C, and D) form negative class. Our

experiments are implemented in four different combina-

tions, namely ApEn ? SVM, ApEn ? ELM, SampEn ?

SVM, and SampEn ? ELM. In our experiments, data sets

randomly divide into two sets, 80 % of data from positive

class and negative class, respectively, are used to train

classifiers, and the rest for testing the model. The r value is

changed from 0.11 to 0.25, while m value is equal to 1, 2, or

3. The performances of each combination are evaluated by

overall accuracy defined in the following equation

Overall accuracy %ð Þ

¼ The total number of correctly detected patterns

The total number of applied patterns
� 100

ð19Þ

In order to select suitable Daubechies wavelet function

and the level of decomposition, we take epileptic EEG data

as experimental data set and give the experimental results

as shown in Fig. 3. The left of Fig. 3 shows the classifi-

cation accuracy and the right shows the time of feature

extraction.

From Fig. 3, we can see that the experiment obtains the

best accuracy in the case of Daubechies ‘‘db2’’ wavelet
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function with 5-level decomposition, while the time of

feature extraction is the shortest. So, in this experiment, we

select the Daubechies ‘‘db2’’ wavelet function with 5-level

decomposition to analyze the signal by wavelet package

transform.

Experiments are repeated ten times, and we compute

their average. Figure 4 shows the overall accuracies of four

different combination strategies in the case of different

parameters m and r.

Based on the experimental results in Fig. 4,

ApEn ? SVM strategy achieves higher accuracy values, in

comparison with other strategies. Especially, the overall

accuracy of ApEn ? SVM strategy achieves 100 % in the

case of m = 2, r = 0.15 and m = 3, r = 0.23. On the other

hand, SampEn ? ELM strategy shows very good result

which achieved 99.6 % overall accuracy in the case of

m = 2 and r = 0.17. ApEn ? ELM strategy achieves

99.4 % overall accuracy in the case of m = 1 and

r = 0.19, while SampEn ? SVM strategy only obtains

96.3 % overall accuracy in the case of m = 2 and

r = 0.19. Generally, the overall accuracy using ApEn is

higher than the overall accuracy using SampEn, when the

experiment adopts the same classification method, SVM or

ELM.

In order to further analyze the proposed methods, we

employ four different classification problems presented by

Tzallas et al. [24] in our experiments. The first and second

problems are binary-classification problems, while the third

and fourth are three-classification problems. The first

problem includes normal (A) and seizure (E). The second

problem includes non-seizure (A, B, and C) and seizure

(E). We select out normal (A), seizure-free (C) and seizure

(E) in the third problems. In the fourth problem, EEG data

are classified into three categories including normal (A and

B), seizure-free (C and D), and seizure (E). The above

classification problems are described in Table 1.

Due to SampEn is superior to ApEn in the training time,

we select out two combination strategies to experimental

comparison, namely SampEn ? SVM and Sam-

pEn ? ELM. Referring to the experimental results in

Fig. 4, we set m = 2 and r = 0.19 for the combination of

SampEn and SVM, and set m = 2 and r = 0.17 for the
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combination of SampEn and ELM. Table 2 shows the

classification accuracy for four classification problems by

SampEn ? SVM and SampEn ? ELM approaches in this

paper. Based on the results in Table 2, SampEn ? ELM

achieved higher accuracy values for classification problems

1, 3, and 4, in comparison with SampEn ? SVM, while

they achieved the similar accuracy in the second classifi-

cation problem.

4.2 Five mental tasks

4.2.1 Data description

In this paper, we used EEG data from Colorado State

University recorded by Keirn and Anderson [25] as the

experimental data set. The EEG data collected signals from

seven participants for five different mental tasks, each of

which is 7 rows by 2,500 columns. The 7 rows represent the

corresponding seven channels, namely c3, c4, p3, p4, o1,

o2, and EOG. Each task is trialed no \5 times, each of

which is 10 s. The acquired signal is sampled at a frequency

of 250 Hz. Recording of these EEG data was performed

with a bank of Grass 7P511 amplifiers whose bandpass

analog filters were set at 0.1–100 Hz. Information of five

mental tasks in the experiment is shown as Table 3 [26].

Before feature extraction, EEG signals are first nor-

malized with zero mean and variance one and then divided

into 0.5-s segments with an overlap of 0.25-s segments

between adjacent segments. Thus, 39 segments are

produced.

4.2.2 Experiment analysis

In this study, we make a comparison for each subject in

different combinations of mental tasks. From the view of

overall accuracy and training time, we select the combi-

nation of SampEn and ELM to perform this experiment.

The experiment selects the Daubechies ‘‘db2’’ wavelet

function with 5-level decomposition and sets parameters

m = 2 and r = 0.17. Tables 4, 5, 6, and 7 show the clas-

sification accuracy of 2, 3, 4, and 5 metal tasks, respec-

tively, for each subject.

Tables 4 and 5 show the classification results with

the better accuracies of the employed strategy, in the

case of the combinations of two and three mental

tasks, respectively. However, for the combinations of

four mental tasks shown in Table 6, subject 3

achieves the lowest accuracy value 66.05 % in the

case of B, C, M, and R mental tasks, and subject 6

also achieves the lowest accuracy value 70.59 % in

the case of B, L, M, and R mental tasks. The other

Table 1 Description of different classification problems

Problems Classes Number of

EEG segments

1 Normal (A) 100

Seizure (E) 100

2 Non-seizure (A, B, C) 300

Seizure (E) 100

3 Normal (A) 100

Seizure-free (C) 100

Seizure (E) 100

4 Normal (A and B) 200

Seizure-free (C and D) 200

Seizure (E) 100

Table 2 Comparison of classification accuracy for four classification problems

1 2 3 4

A E ABC E A C E AB CD E

SampEn ? SVM 76.66 77.33 100.00 96.67 80.00 97.67 97.00 34.08 98.58 97.33

SampEn ? ELM 100.00 100.00 99.87 100.00 97.50 100.00 100.00 97.75 100.00 100.00

Table 3 Description of five mental tasks

Serial

number

Task Description

1 Baseline (B) The participants relaxed their mind and

did not perform any mental tasks

2 Multiplication

(M)

The participant was asked to perform a

multiplication mentally without

vocalizing

3 Letter

composition

(L)

The participants were asked to mentally

compose a simple letter in mind

4 Rotation (R) The participant was given a short time to

observe a complex object and was

instructed to visualize the object being

rotated about an axis after the object

was removed

5 Counting (C) The participants performed mentally

counting number from 1 to 9 repeatedly

by visualizing the number on a

blackboard in their mind
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subjects remain better classification accuracy for the

combinations of four mental tasks. From Table 7, we

can see that subject 3 and subject 6 achieve less than

80 % accuracy, while the other subjects perform with

over 90 % accuracy. Especially, subject 1 obtains

96.74 % accuracy.

Figure 5 gives an intuitional description of average

classification accuracy in different tasks for each subject.

Table 4 The classification

accuracy of two mental tasks for

each subject (%)

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7

B&C 99.21 97.92 96.32 99.00 97.76 98.05 97.40

B&L 99.00 97.60 97.16 98.42 99.20 97.89 97.50

B&M 98.89 98.33 97.00 98.74 99.02 97.58 98.54

B&R 99.05 98.02 97.89 99.00 98.88 97.37 98.65

C&L 98.47 97.92 97.68 97.32 98.43 97.26 98.44

C&M 98.58 97.81 98.26 98.26 98.29 96.00 98.33

C&R 98.74 96.87 98.21 98.63 98.64 96.84 98.54

L&M 97.53 97.92 98.63 99.05 98.92 96.58 98.54

L&R 98.53 97.71 98.95 98.53 98.99 96.89 98.23

M&R 98.68 97.71 99.26 98.37 98.81 98.68 98.65

Table 5 The classification

accuracy of three mental tasks

for each subject (%)

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7

B&C&L 97.72 96.94 91.58 96.35 92.51 94.82 96.49

B&C&M 97.96 97.57 91.51 96.56 92.69 93.86 98.07

B&C&R 98.39 97.71 91.26 97.33 93.22 93.60 97.89

B&L&M 98.81 96.39 96.42 97.02 97.25 91.67 98.60

B&L&R 98.67 96.25 96.70 96.21 98.01 93.16 97.72

B&M&R 98.91 96.88 66.74 97.75 97.66 82.63 98.77

C&L&M 97.58 96.04 96.63 94.39 98.01 91.49 97.19

C&L&R 98.42 95.97 96.67 95.40 97.49 92.02 95.96

C&M&R 97.86 96.04 79.05 97.23 97.31 82.63 96.14

L&M&R 98.81 96.32 93.16 97.23 97.78 85.35 97.19

Table 6 The classification

accuracy of four mental tasks

for each subject (%)

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7

B&C&L&M 97.57 93.68 91.78 94.80 92.15 93.22 96.45

B&C&L&R 97.24 94.34 92.37 92.83 93.42 92.57 95.13

B&C&M&R 97.96 96.84 66.05 95.13 92.68 73.88 95.79

B&L&M&R 97.96 91.32 73.09 94.61 95.61 70.59 95.79

C&L&M&R 96.78 89.87 73.09 94.01 96.49 71.38 95.00

Table 7 The classification

accuracy of five mental tasks for

each subject (%)

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7

B&C&L&M&R 96.74 90.63 70.32 92.58 92.14 79.42 95.58
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5 Conclusions

Wavelet has played an important role in biomedical signal

processing for its ability to capture localized spatial-fre-

quency information of EEG signals. In this paper, we have

evaluated the performance of two classifiers, namely SVM

and ELM on two EEG signals. The proposed scheme uses

approximate entropy and sample entropy based on WPD to

calculate the feature values, which are acted as the inputs

of two classifiers. The combination of SampEn and ELM

has shown great performance in classification accuracy and

training time.
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