
ORIGINAL ARTICLE

An Extended Self-Organizing Map based on 2-opt algorithm
for solving symmetrical Traveling Salesperson Problem

Rashid Ahmad • DoHyeun Kim

Received: 6 September 2012 / Accepted: 30 November 2014 / Published online: 17 December 2014

� The Natural Computing Applications Forum 2014

Abstract Self-organizing map (SOM) is a powerful var-

iant of neural network for solving optimization problems.

Many researchers have reported SOM for Traveling

Salesperson Problem; however, problems still exist due to

the trapping of the optimization techniques at the local

optimal position. In this work, we propose an Extended

Self-Organizing Map based on 2-opt algorithm with one-

dimensional neighborhood to approach the Symmetrical

Traveling Salesperson Problem (STSP). We elaborate our

approach for STSP where weights of neurons represent

nodes that are placed in the polygonal domain. The

selection of winner neuron of SOM has been extended to

overcome the problem of trapping of SOM at local optima.

The results of SOM are improved through 2-opt local

optimization algorithm. We briefly discuss self-organiza-

tion in neural networks, 2-opt algorithm, and extension

applied to SOM. Finally, the algorithm is compared with

Kohonen Self-Organizing Map and Evolutionary Algo-

rithm. The results show that our approach performs better

as compared to other techniques.

Keywords Artificial neural network � Self-Organizing
Maps � Symmetrical Traveling Salesperson Problem � 2-opt
Algorithm

1 Introduction

The traveling salesperson problem (TSP) is being studied

from the last few decades. Given the list and pair-wise

distance of cities, the task is to find the shortest tour that

passes through each city exactly once. The problem seems

to be very simple, but it has been reported as an NP-hard

problem [1]. As a typical NP-hard problem, the classical

TSP has attracted extensive research efforts in artificial

intelligences methods [2]. This is because of its vast real-

life applications, such as printed circuit-boards manufac-

turing [3, 4], data transmission in computer networks [5],

power-distribution networks [6], image processing and

pattern recognition [7], robot navigation [8], data parti-

tioning [9], hole punching [10], vehicle routing [11], doc-

ument locating, and so forth. Nowadays, the increasing

diversity of applications requires increasingly large-scale

TSP problems to be solved with precisions. The TSP can be

stated as a search for a round trip of minimal total length

visiting each node exactly once. Since there are (N - 1)!/2

possible round trips for an N-city TSP, it is impractical to

apply brute-force approach to the problem for a large N

[12]. Many heuristic methods have been developed in order

to achieve a near to optimal solution of the problem. The

heuristics such as simulated annealing (SA) [13], genetic

algorithm (GA) [14, 15], tabu search [16], neural networks

[16] have demonstrated various degrees of strength and

success to the TSP, among which neural networks are

considered as a promising approach for large-scale TSP

problems [16]. Due to the huge search space of a TSP (n!),

it is not feasible to check all the solutions for city sets with

many thousands of cities. Some engineering problems like

VLSI designing need 1.2 million cities [17] with a limited

time interval. A fast and effective heuristic method is thus

needed to find the shortest route.

R. Ahmad � D. Kim (&)

Department of Computer Engineering, Jeju National University,

Jeju-si, Jeju-do, Republic of Korea

e-mail: kimdh@jejunu.ac.kr

R. Ahmad

e-mail: Rashid141@gmail.com

123

Neural Comput & Applic (2015) 26:987–994

DOI 10.1007/s00521-014-1773-z

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-014-1773-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-014-1773-z&domain=pdf

In this paper, we present an Extended SOM, a neural

network-based algorithm improved with a 2-opt local

optimization algorithm for solving symmetrical TSP. In our

approach, the nodes of TSP are placed in a polygon domain

and represented by weights of neuron in SOM Network. It

is observed that the SOM could not reach to global optima

and trapped at the local optima. To overcome this problem,

we use 2-opt local optimization algorithm. The 2-opt

algorithm locally optimizes the TSP tour, which leads to a

global optima by the SOM. We called this approach as

Extended SOM (ESOM).

The rest of the paper is organized as follows: In Sect. 2,

the basic SOM is discussed. In Sect. 3, the extended SOM

is discussed in detail for symmetrical TSP. Section 4

explains the experimentation and results. In Sect. 5, we

describe the conclusion and future direction of the paper.

2 Related work

2.1 Basics of Self-Organizing Map

Teuvo Kohonen introduced a new type of neural network

in 1975 that uses competitive, cooperative, and adaptive

unsupervised learning [18]. The approach is based on

winner takes most (WTM) and winner takes all (WTA)

algorithms. WTA is a competitive learning algorithm. The

distance to each neuron’s synaptic weights is calculated

when input vector is presented. The winner neuron is

considered the one whose weights are most correlated with

current input vector. The scalar product of input vector and

considered synaptic weights are equal to correlation. The

winning neurons then modify their synaptic weights with

respect to the current input vector. However, the synaptic

weights of other neurons remain the same. The learning

process can be described by the following equation:

Wi ¼ Wi þ gðx�WiÞ ð1Þ

where i 2 ½0; 1; . . .n�, n represents the number of neurons,

Wi is the synaptic weights of the winning neuron, g is

learning rate and x stands for current input vector. This

algorithm seems very simple and could be extended. The

most common extension is giving more chance of winning

to neurons that are rarely activated. Compared with WTA,

the WTM strategy has better convergence. The main dif-

ference between WTA and WTM is that many neurons in

WTM strategy adapt their synaptic weights in single

learning iteration. Therefore, the winner neurons as well as

the neighborhood neurons adapt their synaptic weights.

The modification applied to the weights of neurons

depends upon the distance of the neighborhood neurons

from the winning neuron; the smaller the distance, the

greater change will be applied to the weights of neigh-

borhood neurons. This adaptation process can be described

as:

Wi ¼ Wi þ gNði; xÞðw;WiÞ ð2Þ

for all neurons i that belong to winner’s neighborhood. Wi

stands for synaptic weights of neuron i and x is current

input vector. g stands for learning rate and N(i, x) is a

function that defines neighborhood. The SOM can be cre-

ated when function N(i, x) is defined as:

Nði; xÞ ¼
1 for dði;wÞ� k;

0 for others :

�
ð3Þ

where dði;wÞ is Euclidean distance between the ith and

winning neuron and k is neighborhood radius. For SOM

training, the Euclidean distance between input vector and

all neural weights has to be calculated. The distances of all

neurons are compared, and the neuron that has the shortest

distance to input vector is considered as a winner neuron.

The weights of winner neuron are slightly modified to the

direction represented by input vector. The weights of

neighboring neurons are modified in the same direction

based on their distance from the winner neuron. During

each learning iteration, the k and g are multiplied with dk
and dg respectively. These parameters are always [0 and

\1. The k and g will be updated during learning process

and will become smaller during subsequent iterations. The

SOM tries to organize itself globally during the beginning,

and during the subsequent iterations, it performs local

organization due to the smaller values of learning rate and

neighborhood.

Figure 1 shows the classical Kohonen SOM. It maps

input vectors of high dimension onto the map with one,

Fig. 1 Two-dimensional neighborhood SOM with input vector

(x1. . .xn)

988 Neural Comput & Applic (2015) 26:987–994

123

two, or more dimensions. The input patterns, which have

the smaller Euclidean distance from one another in the

input space, are put close to one another in the map. The

input vector is passed through each neuron, and a matrix of

output neurons is formed called SOM.

In one-dimensional neighborhood of matrix representa-

tion, every neuron has two neighbors, i.e., left and right as

shown in Fig. 2.

In two-dimensional neighborhood of matrix representa-

tion, each neuron has four neighbors (left, right, top, and

bottom). The classical two-dimensional neighborhood

SOM with four neighbors is shown in Fig. 3. The neigh-

borhood can be extended. Figure 4 shows the 8 neighbors

scenario. The dimensions could be increased to as many as

needed 1D, 2D, 3D, or more. However, 2D neighborhood

is the most common.

Algorithm 1 shows the basic SOM proposed in [1]

3 Extended SOM-based STSP solver

One-dimensional network must be created to solve TSP

problem. The number of neurons and cities is equal. The

weights of a neuron represent the coordinates of the city. In

other words, a neuron and a city are assigned to each other

and there exist a 1–1 mapping between the set of cities and

set of neurons. All the neurons are organized in a vector.

This vector represents sequence of cities that must be

visited. However, some modifications need to be done

before the SOM is able to fully solve this problem. This is

because the real-valued neural weights may never equal

exactly the coordinates of the cities. To solve this problem,

we use the algorithm proposed in [16] that will modify

classical SOM solution and will map the neuron weights to

the coordinates of the nodes/cities. Positions of cities and

positions of neurons may not equal. However, adequate

neural weights and city coordinates are very close to each

other. An algorithm that modifies neural weights so they

equal to city coordinates has also been applied. These

weights need to be modified in such a way to restore the

1–1 mapping, assumed on the beginning. If a neuron a is

assigned to city ’A,’ it means that weights of neuron a are

equal to coordinates of city ’A’.

Improvement in the learning of SOM network has been

proposed in previous research in various ways [19, 20]. In

this paper, we used a Gaussian-type neighborhood adap-

tation function hðt; rÞ, as used in [21].

hðt; rÞ ¼ a 1� r�fð Þ
1þ t

cdenom

� �2h i ð4Þ

This function decreases in both spatial and time domains.

In the spatial domain, its value is the largest when node i is

the winner node and it gradually decreases with increasing

distance from i. Parameter a determines the initial value of

jhj while the parameter f ð0\f\1=rÞ determines the rate

of decrease of jhj in the spatial domain. In the time domain,

t controls the value of jhj, whereas the parameter cdenom

determines the rate of its decay.

Figure 5 shows the flow diagram of the SOM learning.

The learning process continues for number of iterationsFig. 2 One-dimensional neighborhood SOM

Fig. 3 Two-dimensional neighborhood SOM with four neighbors

Fig. 4 Two-dimensional neighborhood SOM with eight neighbors

Neural Comput & Applic (2015) 26:987–994 989

123

provided as input. The number of iterations can be set

empirically to find the better results.

The algorithm 2 is used for mapping the real coordinates

and neuron weights, which produce a good and fast

solution; however, it is not locally optimal. We applied

2-opt algorithm, which is a well-known local optimization

algorithm for producing locally as well as globally opti-

mized solution. The solution obtained from SOM is good

enough; therefore, the 2-opt will work fast even for large

amount of cities. The 2-opt algorithm is based on one

simple rule, and that is ‘‘remove the local loop and opti-

mize locally’’. The algorithm works as follows:

• select part of tour

• reverse the tour

• insert back in the cycle

• test the results

• if the new cycle \ the old tour

• replace the cycle else discard the new cycle

• Stop when no improvement can be done.

Suppose we have a cycle (A, B, C, D, E, F, A), we want to

improve this cycle with 2-opt algorithm. Suppose we select

path (B, C, D) and reverse it, the new cycle is (A, D, C, B,

E, F, A). As shown in fig 6, after 2-opt optimization, the

solution is locally optimal.

Figure 7 shows flow diagram of our proposed hybrid

approach for solving STSP. Our approach is based on two

approaches SOM & 2-opt as discussed above. The SOM is

used for solving STSP; however, to overcome the shortcoming

of SOM, we used 2-opt algorithm for better solution. The 2-opt

reads the solution of SOM and finds the local optimal solution.

The process continues until all the tours are visited.

4 Experimentation and results

We have carried out two types of experiments:

• Standard data set for TSP, i.e.,TSP Library (TSPLIB)

[22].

Fig. 5 Flow diagram of Self-Organizing Map learning

Fig. 6 Local optimization with 2-opt algorithm

990 Neural Comput & Applic (2015) 26:987–994

123

• Random cities.

TSPLIB data sets contain a number of local optimal values,

which lead to trap the SOM-based system in the local

optimal value; however, our two-layer hybrid approach

does not trap in the local optimal value and finds the global

optimal. The 2-opt local optimization algorithm helps to

optimize the local tour, which could not be solved by SOM.

Testing using randomly chosen cities is more objective. It

is based on the Held-Karp Traveling Salesman bound [23].

An empirical relation for expected tour length is used:

L ¼ k
ffiffiffiffiffiffiffiffiffi
n � R

p
ð5Þ

where L is expected tour length, n is a number of cities, R is

an area of square box on which cities are placed and k is an

empirical constant. For n� 100 it is:

k ¼ 0:70805þ 0:52229ffiffiffi
n

p þ 0:1:31572

n
� 0:3:07474

n
ffiffiffi
n

p ð6Þ

The selection of training parameter plays an important

role during SOM learning. Optimal parameters should be

selected adequately to a number of cities to achieve best

results. We found the following best parameter values

empirically during our experimentation.

• for 100 cities:

g ¼ 0:7

Dg ¼ 0:987

Dk ¼ 0:999s

• for 500 cities:

g ¼ 0:8

Dg ¼ 0:9985

Dk ¼ 0:994

• for 1000 cities:

g ¼ 0:9

Dg ¼ 0:9992

Dk ¼ 0:996

Fig. 7 Flow diagram of the proposed system

Fig. 8 SOM solution without 2-opt optimization. There are two local

loops on the left

Fig. 9 SOM solution with 2-opt optimization. Loops on the left have

been erased

Neural Comput & Applic (2015) 26:987–994 991

123

Fig. 10 Comparison of results

a comparison of ESOM with

SOM and EA on TSPLIB,

b comparison of ESOM with

SOM and EA on TSPLIB,

c comparison of ESOM with EA

on random data sets

992 Neural Comput & Applic (2015) 26:987–994

123

The numbers of iterations were set to 20,000 for all the

cases.

All computations were performed on AMD Athlon

(tm)64-bit X2 Dual Core 6000? 3.10 GHz processor with

4GB Physical Memory.

Six different size data sets were selected for testing our

proposed approach, i.e., EIL51, EIL101, TSP225, PCB442,

PR1002, and PR2392. The SOM solution for a 200 random

cities problem without 2-opt optimization which resulted in

two loops in the resulted solution as shown in Fig. 8. The

2-opt local optimization identify and replace the loops in

the SOM resulted solution with optimal results as shown in

Fig. 9. Figure 10a shows the comparison of EA, SOM, and

ESOM on data sets EIL51, EIL101, and TSP225. It is clear

from the figure that the tour size is almost the same in small

size data set; however, when the number of cities grows,

the tour size and difference of tour size increase. Fig-

ure 10b shows the comparison of EA, SOM, and ESOM on

data sets PCB442, PR1002, and PR2392. It is very clear

from Fig. 10b that the ESOM performs better than and near

optimal than the other two counterparts.

Experiments were also carried out on different size

random data sets 50, 100, 150, 200, 250, 300, and 500

cities, respectively. Rectangular box edge length was set to

500. The ESOM was run for 50 times on each city set, and

the statistics were generated. It has been observed that

SOM takes relatively shorter time to generate an optimal

tour. During our experimentation, the 1000 city set is

solved in less than 2.5 s. ESOM approach generates solu-

tions that are almost 10 % better than the other evolu-

tionary techniques and classical SOM. However, in most of

the cases, the difference is very small, i.e., just a few

percent. EA used enhanced edge recombination (EER)

operator [24, 25], survival of the fittest (where always the

worst solution is replaced), and tournament parent selection

with tournament size depending on number of cities and

population size. Mixed along with self-adapting mutation

rate has been used. The mutation rate is different for every

genotype, and the modification is similar to that of evolu-

tion strategies. Due to this adaptable strategy for mutation

rate, it is not needed to check manually which parameters

are optimal for each city set. The convergence of

population is the stopping criteria. Population size was set

to 1000 (as in [25]). With smaller populations, EA did not

work that well. When EA stopped, its best solution was

optimized by 2-opt algorithm. The ESOM is run for 10

times for each city set, and the statistics were calculated.

For data sets, EIL51, EIL101, and the EA run for 10 times.

For other experimental sets, the EA was run only once. The

optimum solutions of city sets are taken from TSPLIB.

Experimental results show that EA and SOM perform

better in small city sets. Both the average and best results

of EA are near ESOM’s results. For city sets with 50 or less

cities, EA finds optimum in almost every execution.

Results for above 100 cities are comparable for both

algorithms. As shown in Table 1, the ESOM performs

better than EA and SOM for TSPLIB data sets. The dif-

ference between the two algorithms increases as the num-

ber of instances increases in a set. With more cities, search

space increases significantly and EA needs bigger popu-

lation size, while SOM stuck in local optimal value. The

EA needs larger population size and larger generation size

for more instances, which lead to poor performance both in

the form of time and optimality. The EA algorithm is much

slower, while SOM produces the results faster than ESOM.

5 Conclusion

It seems that SOM 2-opt hybrid is a powerful algorithm for

the TSP. It outperforms both EA and SOM algorithms. Its

speed might not be impressive as compared to SOM, but it

is more effective in terms of optimality.

In order to improve the efficiencyofESOM, there are couple

of things that can be optimized. Here are some of them:

• An optimal network parameter settings should be found

ðg;Dg;Dk; number of iterationsÞ
• Experiments with other self-organizing networks

should be performed; Gaussian neighborhood and

conscience mechanism may be applied. Conscience

mechanism can improve TSP solutions generated by

neural networks, as reported in [26].

• 2-opt algorithm is not very sophisticated. Some other

optimization method may improve the results.

Table 1 ESOM comparison

with SOM[16] and evolutionary

algorithm

Instances Optimum SOM EA ESOM

Ave. result Best result Ave. result Best result Ave. result Best result

EIL51 426 431 427 434 429 429.2 426.2

EIL101 629 662 646 667.3 649 638.3 635

TSP225 3,916 5,364 4,967 5,936 5,201 4,432 4,125

PCB442 50,778 69,526 65,784 73,213 69,479 66,932 57,369

PR1002 259,045 354,896 310,258 390,245 350,417 299,685 271,456

PR2392 378,037 587,023 501,741 612,302 580,256 450,216 410,362

Neural Comput & Applic (2015) 26:987–994 993

123

There are many algorithms that solve permutation prob-

lems. Evolutionary algorithms have many different opera-

tors that work with permutations. EER is one of the best

operators for the TSP [25]. However, it was proved that

other permutation operators, which are worse for the TSP

than EER, are actually better for other permutation prob-

lems (like warehouse/shipping scheduling) [25]. Therefore,

it might be possible that SOM 2-opt hybrid might work

better for other permutation problems than for the TSP.

Acknowledgments This work was supported by the Industrial

Strategic Technology Development Program (No. 10043907, Devel-

opment of high performance IoT device and Open Platform with

Intelligent Software), and this research was supported by the MSIP

(Ministry of Science, ICT and Future Planning), Korea, under the

ITRC (Information Technology Research Center) support program

(NIPA-2014-H0301-14-1048) supervised by the NIPA (National IT

Industry Promotion Agency).

References

1. Garey Michael R, Johnson David S (1979) Computers and

intractability: a guide to the theory of NP-completeness. W. H.

Freeman & Co., New York

2. Lawler EL, Lenstra JK (1985) The Traveling Salesman Problem-

guided tour of combinatorial optimization. Wiley, New York

3. Fujimura K, Obu-Cann K, Tokutaka H (1999) Optimization of

surface component mounting on the printed circuit board using

SOM TSP method. In: Proceedings of the 6th ICONIP, vol 1,

pp 131–136

4. Fujimura K, Fujiwaki S, Kwaw OC, toktaka H (2001) Optimi-

zation of electronic chip-mounting machine using SOM TSP

method with 5 dimensional data. Proc ICII 4:26–31

5. Ali MM, Kamoun F (1993) Neural networks for shortest path

computation and routing in computer networks. IEEE Trans

Neural Netw 4(6):941–954

6. Onoyama T, Maekawa T, Kubota S, Taniguchi Y, Tsuruta S

(2002) Intelligent evolutional algorithm for distribution network

optimization. In: Proceedings of international conference control

applications, pp 802-807

7. Banasza KD, Dale GA, Watkins AN, Jordan JD (1999) An optical

technique for detecting fatigue cracks in aerospace structures. In:

Proceedings of the 18th ICIASF, pp 1–27

8. Barrel D, Perrin JP, Dombre E, Liengeois A (1999) An evolu-

tionary simulated annealing algorithm for optimizing robotic task

ordering. In: Proceedings of IEEE ISATP, pp 157–162

9. Cheng CH, Lee WK, Wong KF (2002) A genetic algorithm-based

clustering approach for database partitioning. IEEE Trans Syst

Man Cybern C Appl Rev 32(3):215–230

10. Ascheuer N, unger MJ, Reinelt G (2000) A branch and cut

algorithm for the asymmetric Traveling Salesman Problem with

precedence constraints. Comput Optim Appl 17(1):61–84

11. Laporte G (1992) The vehicle routing problem: an overview of

exact and approximate algorithms. Eur J Oper Res 59:345–358

12. WangWei Artificial (1995) Neural network theory applications.

Beijing University of Aeronautic and Astronautic Science and

Technology Press, Beijing

13. Kirk SG, Jr Patrick, Gelatt CD, Vecchi MP (1983) Optimization

by simulated annealing. Science 220:671–680

14. Goldberg DE (1989) Genetic algorithms in search, optimization

and machine learning. Addison-Wesley, Reading

15. Yan XS, Liu HM, Yan et al (2007) A fast evolutionary algorithm

for traveling salesman problem. In: Proceedings of the third

international conference on natural computation, vol 4, pp 85–90

16. Brocki L, Korinek D (2007) Kohonen self-organizing map for the

Traveling Salesperson Problem. In: Recent advances in mecha-

tronics. Springer, Heidelberg, pp 116–119. doi:10.1007/978-3-

540-73956-2_24

17. Korte B (1989) Applications of combinatorial optimization. In:

Mathematical programming, Volume 6 of Math. Appl. (Japanese

Ser.). SCIPRESS, Tokyo, pp 1–55

18. Kohonen T (2001) Self-organizing maps, Springer series in

information sciences, vol 30, 3rd edn. Springer, Berlin

19. Xu X, Tsai WT (1991) Effective neural algorithms for the

Traveling Salesman Problem. Int J Neural Netw 4(2):193–205

20. Lin S, Kernighan BW (1973) An effective heuristic algorithm for

the Traveling-Salesman Problem. Oper Res 21:498–516

21. Mitra S, Pal SK (1994) Self-organizing neural network as a fuzzy

classifier. Syst IEEE Trans Man Cybern 24(3):385–399

22. Reinelt G (1995) TSPLIB 95 documentation. University of Hei-

delberg, Heidelberg, Germany. http://www.iwr.uni-heidelberg.de/

groups/comopt/software/TSPLIB95/

23. Johnson DS, McGeoch ALA, Rothberg TAEE (1996) Asymptotic

experimental analysis for the Held-Karp traveling salesman

bound. In: Proceedings of the seventh annual ACM-SIAM sym-

posium on discrete algorithms, Atlanta, Georgia, USA,

pp 341–350

24. Michalewicz Z (1996) Genetic algorithms data structures evolu-

tion programs. Springer, Berlin

25. Starkweather T, McDaniel S, Mathias K, Whitley D, Whitley C

(1991) A comparison of genetic sequencing operators. In: Pro-

ceedings of the 4th international conference on genetic algo-

rithms, San Mateo

26. Burke Laura I (1994) Neural methods for the Traveling Salesman

Problem: insights from operations research. Int J Neural Netw

7(4):681–690

994 Neural Comput & Applic (2015) 26:987–994

123

http://dx.doi.org/10.1007/978-3-540-73956-2_24
http://dx.doi.org/10.1007/978-3-540-73956-2_24
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

	An Extended Self-Organizing Map based on 2-opt algorithm for solving symmetrical Traveling Salesperson Problem
	Abstract
	Introduction
	Related work
	Basics of Self-Organizing Map

	Extended SOM-based STSP solver
	Experimentation and results
	Conclusion
	Acknowledgments
	References

