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Abstract In the present paper, we propose a prediction

model for concrete compressive strength using artificial

neural networks. In experimental part of the research, 75

concrete samples with various w/c ratios were exposed to

freezing and thawing, after which their compressive

strength was determined at different age, viz. 7, 20 and

32 days. In computational phase of the research, different

prediction models for concrete compressive strength were

developed using artificial neural networks with w/c ratio,

age and number of freeze/thaw cycles as three input nodes.

We examined three-layer feed-forward back-propagation

neural networks with 2, 6 and 9 hidden nodes using four

different learning algorithms. The most accurate prediction

models, with the highest coefficient of determination

(R2[ 0.87), and with all of the predicted data falling

within the 95 % prediction interval, were obtained with six

hidden nodes using Levenberg–Marquardt, scaled conju-

gate gradient and one-step secant algorithms, and with nine

hidden nodes using Broyden–Fletcher–Goldfarb–Shannon

algorithm. Further analysis showed that relative error

between the predicted and experimental data increases up

to acceptable &15 %, which confirms that proposed ANN

models are robust to the consistency of training and

validation output data. Accuracy of the proposed models

was further verified by low values of standard statistical

errors. In the final phase of the research, individual effect

of each input parameter was examined using the global

sensitivity analysis, whose results indicated that w/c ratio

has the strongest impact on concrete compressive strength.

Keywords Concrete � Compressive strength � Artificial
neural network � Robustness � Global sensitivity analysis

1 Introduction

Rapid development of new technologies, as well as the

increase in production of synthetic ingredients, enables the

constructors to create and use different types of concrete,

depending on the type of object, possible external static and

dynamic forces and surrounding environment. Increasing

demands for higher and stronger buildings, together with

more complicated architectural designs, seek concrete mix-

tures of higher quality, which are typically obtained by

including a certain amount of the appropriate additive.

Depending on the property which is to be improved, concrete

is usually mixed with different plasticizers and superplasti-

cizers, ground granulated blast furnace slag, pozzolanic ash,

as well as fly ash or silica fume. Hence, as it could be seen,

there is a variety of factors that could affect the ultimate

characteristic of the concrete. Nevertheless, its physical and

mechanical properties are still predetermined by the three

main ingredients: water, cement, and aggregates, which are

typically represented by the w/c ratio, physical, mechanical

and chemical properties of cement and by the aggregate

granulometric structure. It is this basic concrete mixture,

without additives, that is examined in present paper, in order

to obtain a reliable model for prediction of concrete
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compressive strength. Prediction models are very useful in

laboratory testing, since they optimize experimental process

by providing an optimal minimum number of probes for

analyzing a specific property of concrete mixture. Several

different prediction models have been developed, which are

frequently used for estimating the compressive strength, as

the most important engineering property of the concrete. First

of them is based on linear and nonlinear regression analysis,

commonly using the maturity concept [1–4], as well as the

combination of input variables, water, cement and aggregates

[5, 6]. Second approach uses the adaptive network-based

fuzzy inference system [7, 8], while third approach relies on

fuzzy logic techniques [9–12].

Apart from the aforementioned models, in recent years,

artificial neural networks (ANN) have been used for esti-

mating different concrete properties, such as drying

shrinkage [13], concrete durability [14], ready mixed

concrete delivery [15], compressive strength of normal and

high-performance concrete [16–23], workability of con-

crete with metakaolin and fly ash [24], mechanical

behavior of concrete at high temperatures [25] and long-

term effect of fly ash and silica fume on concrete com-

pressive strength [26]. The main advantage of ANN

approach over the other computational methods lies in the

fact that ANN automatically manages to detect the multi-

variable interrelationships. From an engineering point of

view, this modeling method results in a concrete mix

proportion with the lesser number of trials, cost and time.

In the present paper, we develop ANN models for pre-

diction of concrete compressive strength based on the results

of a series of experiments. The obtained model would be able

to reproduce the experimental results and to approximate the

results in other experiments through its generalization capa-

bility. The present research is focused on compressive

strength of basic concrete mixture, depending on three main

factors: w/c ratio, age and exposure to freezing and thawing.

The paper is organized as follows. Material properties

and testing procedure are described in Sect. 2, while

experimental results are provided in Sect. 3. The obtained

results of ANN modeling are presented and compared with

experimental data in Sect. 4, while their performance is

further evaluated in Sect. 5. Results of global sensitivity

analysis are presented and discussed in Sect. 6. A brief

review on the obtained results is given in the final section,

together with suggestions for further research.

2 Laboratory testing

2.1 Properties of cement

The examined concrete specimens were made of CEM I

normal Portland cement (PC 42.5 N/mm2), manufactured

by Lafarge BFC (Serbia), with specific gravity q = 3.10 g/

cm3, and with the initial and final setting times of 2 h and

30 min and 3 h and 30 min, respectively. Blaine specific

surface area of cement was 3,450 cm2/g. Physical and

mechanical properties of cement and its chemical compo-

sition were determined by Institute for testing of materi-

als—IMS Serbia (Tables 1, 2).

2.2 Properties of aggregate

Concrete mixture included natural river aggregate. Maxi-

mum nominal size of gravel was 16 mm with 5 % of the

oversized particles (Table 3). The water absorption was

1.5 %, and its relative density at saturated surface dry

condition (SSD) was 2.72 g/cm3. The water absorption

value of sand was 2.0 %, and its relative density at SSD

condition was 2.69 g/cm3.

2.3 Preparation of concrete specimens

Concrete was made in a laboratory counter-current con-

crete mixer of ‘‘‘Eiric’’ type. Cubic concrete samples

(100 9 100 mm) were made and examined according to

the national standard SRPS [27, 28]. Mixing period was

3 min for all mixtures. Casting was performed at a

vibrating table until a complete consolidation was

achieved. Consistency of the fresh concrete was measured

by applying the slump test [29], Vebe test [30] and flow test

[31] (Table 4).

2.4 Test procedure

After the concrete was casted in metal moulds, samples were

left at room temperature (20 ± 2 �C) with relative humidity

of 90–95 %. Concrete samples were demoulded after 24 h

and soaked in water at the same temperature (20 �C) for the
next 6 days. At the seventh day, four out of eight series of the

concrete samples were exposed to freezing and thawing.

Compressive strength was determined after 50 and 100

Table 1 Physical and mechanical properties of cement

Property Value

Specific gravity (g/cm3) 3.10

Specific surface (cm2/g) 3,450

Setting time initial (min) 150

Setting time final (min) 210

Volume expansion (mm) 0.50

Compressive strength (MPa) 2 days 28 days

15.1 49.5

Flexural strength (MPa) 2 days 28 days

3.5 8.7
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cycles (one cycle lasted for 4 h in environmental chamber at

-20 ± 2 �C and 4 h soaked in water at 20 ± 2 �C) after 7,
20 and 32 days. Measured strength was compared with the

strength of the control group of specimens, continuously

cured in water at 20 ± 2 �C, which were not exposed to

freezing and thawing, also after 7, 20 and 32 days [32]. These

ages were chosen so as to fall on a working day. Moreover, it

is a common practice to observe a development of concrete

strength after 1, 3, 5, 7, 14, 21 and 28 days, in order to

capture the relative gain of strength in time [33]. Differences

between the observed strength after 20 and 21 days, or after

28 and 32 days, are not higher than few percentages [33].

The compressive strength and bulk density of the hardened

concrete were tested according to the national SRPS standard

[34]. Compressive strength measurements were carried out

using ‘‘Amsler’’ hydraulic press with capacity of 2,000 kN

and with loading rate of 0.4 MPa/s.

3 Experimental results

Results of the performed testing of 75 concrete samples are

given in Table 5. For each composition of concrete mix-

ture, compressive strength of specimens was determined

after three probes, in order to reduce the measurement

error. Testing results imply that the maximum difference

between the largest and smallest value of compressive

strength for samples of the same composition (and exposed

to the equal number of freezing/thawing cycles) is in the

range of 10 %, except for the following group of speci-

mens: A5-4 ? A5-6, A3-7 ? A3-9, A1-10 ? A1-12,

A2-10 ? A2-12, A1-13 ? A1-15, A2-13 ? A2-15, A5-

13 ? A5-15, where the difference between the measured

strengths increases even up to [20 %. However, despite

such relatively high contrasts, all the experimental results

were used for ANN modeling, in order to examine the

robustness of the prediction models to the consistency of

training and validation output data.

Regarding the impact of particular concrete ingredients,

the obtained results clearly indicate the strong influence of

w/c ratio on concrete compressive strength. Samples of

concrete with lower w/c ratio show higher compressive

strength, determined by the aggregate grading and amount

of cement in the mixture. On the other hand, exposure to

freeze and thawing decreases the concrete strength, espe-

cially at higher w/c ratios.

4 Development of prediction model

Prediction model for concrete compressive strength was

developed using three-layer back-propagation feed-forward

artificial neural networks, with w/c ratio, age and the

number of freeze/thaw cycles as input parameters, whereas

compressive strength was considered as a single output unit

(Table 6). Similar approach was already used in [6, 35–37].

Following the suggestion of Rumelhart et al. [38],

Lippmann [39] and Sonmez et al. [40], we chose ANN

Table 2 Chemical composition of cement

Oxide SiO2 Al2O3 Fe2O3 CaO MgO SO3 CaO Na2O K2O

Cement 20.58 6.04 2.54 58.79 2.66 3.08 2.16 0.29 0.76

Table 3 Grading of the mixed aggregate

Sieve size (mm) 0.09 0.13 0.25 0.5 1 2 4 8 11.2 16 22.4

0/4 (% passed) 1 4 21 67 76 84 94 100 100 100 100

4/8 (% passed) 0 0 0 0 0 1 12 97 100 100 100

8/16 (% passed) 0 0 0 0 0 0 0 19 67 95 100

Table 4 Concrete mixture proportions and consistency

Sample no. C (kg) A (kg) W/C Slump (cm) Vebe (s) Flow (cm)

A1 350 1,930 0.45 0.5 8 23

A2 350 1,930 0.40 0 11 28

A3 350 1,930 0.50 4.5 4 35

A4 350 1,930 0.55 15.5 2 54

A5 350 1,930 0.35 0 27 35
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model with one hidden layer, while the number of hidden

nodes was determined using heuristics summarized by

Sonmez et al. [40]. As it is clear from Table 7, the number

of nodes that may be used in hidden layer varies between 1

and 9. In the present study, we examined ANN models with

2, 6 and 9 hidden neurons in order to establish the most

effective ANN architecture.

In all the examined cases, the total data set has been

divided as following: 60 % for training (45 recordings),

15 % for validation (11 recordings) and 25 % for testing

(19 recordings), which corresponds well with the sug-

gestion of Looney [41], who proposed 25 % for testing,

and with recommendation made by Nelson and Illing-

worth [42] who supported the idea of 20–30 % of data

Table 5 Compressive strength of concrete—experimental results

Sample W/C t (days) F/T rp (MPa) Sample W/C t (days) F/T rp (MPa)

A1-1 0.45 32 100 55.00 A3-9 0.50 32 0 40.00

A1-2 0.45 32 100 54.00 A4-7 0.55 32 0 38.00

A1-3 0.45 32 100 51.00 A4-8 0.55 32 0 37.60

A2-1 0.40 32 100 45.60 A4-9 0.55 32 0 37.60

A2-2 0.40 32 100 49.25 A5-7 0.35 32 0 49.00

A2-3 0.40 32 100 48.00 A5-8 0.35 32 0 48.80

A3-1 0.50 32 100 47.60 A5-9 0.35 32 0 50.50

A3-2 0.50 32 100 46.00 A1-10 0.45 20 0 49.60

A3-3 0.50 32 100 46.20 A1-11 0.45 20 0 44.55

A4-1 0.55 32 100 37.40 A1-12 0.45 20 0 44.80

A4-2 0.55 32 100 36.30 A2-10 0.40 20 0 47.50

A4-3 0.55 32 100 38.40 A2-11 0.40 20 0 38.50

A5-1 0.35 32 100 50.40 A2-12 0.40 20 0 44.00

A5-2 0.35 32 100 53.50 A3-10 0.50 20 0 41.00

A5-3 0.35 32 100 49.00 A3-11 0.50 20 0 41.00

A1-4 0.45 20 50 49.00 A3-12 0.50 20 0 41.00

A1-5 0.45 20 50 48.60 A4-10 0.55 20 0 32.00

A1-6 0.45 20 50 45.20 A4-11 0.55 20 0 32.60

A2-4 0.40 20 50 50.80 A4-12 0.55 20 0 29.70

A2-5 0.40 20 50 50.90 A5-10 0.35 20 0 50.20

A2-6 0.40 20 50 51.10 A5-11 0.35 20 0 49.60

A3-4 0.50 20 50 38.00 A5-12 0.35 20 0 49.20

A3-5 0.50 20 50 39.10 A1-13 0.45 7 0 35.00

A3-6 0.50 20 50 40.20 A1-14 0.45 7 0 28.00

A4-4 0.55 20 50 30.80 A1-15 0.45 7 0 35.50

A4-5 0.55 20 50 30.80 A2-13 0.40 7 0 36.40

A4-6 0.55 20 50 29.70 A2-14 0.40 7 0 41.00

A5-4 0.35 20 50 50.40 A2-15 0.40 7 0 41.50

A5-5 0.35 20 50 43.80 A3-13 0.50 7 0 31.20

A5-6 0.35 20 50 50.40 A3-14 0.50 7 0 32.40

A1-7 0.45 32 0 52.50 A3-15 0.50 7 0 34.00

A1-8 0.45 32 0 50.50 A4-13 0.55 7 0 21.60

A1-9 0.45 32 0 49.80 A4-14 0.55 7 0 21.40

A2-7 0.40 32 0 48.90 A4-15 0.55 7 0 22.50

A2-8 0.40 32 0 45.60 A5-13 0.35 7 0 40.00

A2-9 0.40 32 0 48.80 A5-14 0.35 7 0 37.10

A3-7 0.50 32 0 36.70 A5-15 0.35 7 0 42.20

A3-8 0.50 32 0 33.30

t denotes the age of concrete, F/T number of freeze/thaw cycles, rp compressive strength of concrete
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for testing. ANN training was performed using the

Matlab Neural Network toolbox [43], with four different

learning algorithms: Levenberg–Marquardt, scaled con-

jugate gradient, one-step-secant back-propagation and

Broyden–Fletcher–Goldfarb–Shannon (BFGS) quasi-

Newton back-propagation. Results were obtained for

random initial conditions and sampling.

The proposed ANN architectures were trained using

combinations of the number of hidden nodes defined

above. Since input parameters have different units of

measure, scaling of their values was necessary, using the

following relation:

scaled value ¼ ðmax:value� unscaled valueÞ=ðmax:value

�min:valueÞ ð1Þ

In this way, values of all the input and output units were

scaled in the range [0, 1].

4.1 Levenberg–Marquardt (LM) learning algorithm

LM learning algorithm is commonly considered as the

fastest method for training moderate-sized feed-forward

neural networks [44, 45], and it is the first choice for

solving the problems of supervised learning, which is the

case in the present analysis. As an activation function, we

use sigmoid function which has been typically imple-

mented in previous studies [39].

In order to create a prediction model with most

accurate response, we developed three artificial neural

networks with 2, 6 and 9 hidden neurons. The possi-

bility of overfitting was excluded by confirming that any

increase in accuracy over the training data set yields rise

in accuracy over a validation data set. In the present

study, mean-squared error (MSE) saturates with the

increase of epochs for training and validation data for

all three examined cases with different number of hid-

den neurons (Fig. 1).

Comparison of prediction results with experimental

data for training, validation and testing sets, using

ANNs with 2, 6 and 9 hidden nodes, is given in Fig. 2.

It is clear that the ANN model with six hidden nodes

has the highest coefficient of determination

(R2 & 0.941) for testing set, approximately the same

value of R2 for training and validation sets and with

statistically small value of standard error, SE = 2.260,

meaning that the average distance of the data points

from the fitted line is 2.26 MPa. In other words, this

means that all of predicted data fall within the 95 %

prediction interval, which confirms the precision of the

proposed model. A review of the experimental and

predicted values of concrete compressive strength,

including the absolute and relative prediction errors for

ANN with six hidden nodes, is given in Table 8. Ana-

lysis of the error distribution for testing set shows that

relative prediction errors are within the acceptable range

of measurement results, up to &15 %.

4.2 Scaled conjugate gradient (SCG) learning

algorithm

SCG learning algorithm belongs to the class of conjugate

gradient optimization methods which are well suited to

handle the large-scale problems in an effective way [46].

This method represents one of the four most commonly

used algorithms of this group, besides Fletcher–Reeves

Update, Polak–Ribiére Update and Powell–Beale Restarts

algorithm. Each of these conjugate gradient algorithms

requires a line search at every iteration step, which is

computationally expensive, since the network response to

all training inputs has to be computed several times for

each search. The SCG algorithm was designed to avoid this

time-consuming procedure, by combining the model-trust

region approach (used in LM algorithm) with the conjugate

gradient algorithm [47].

As in the previous case of LM algorithm, change of

MSE with the increase of number of epochs was examined

for training, validation and testing sets, using different

Table 6 Input–output parameters for the ANN training and their

range

Type of data Parameter Range

Inputs w/c ratio (%) 0.35–0.55

Age (days) 7–32

Number of freeze/thaw cycles 0–100

Output Compressive strength (MPa) 21.4–55

Table 7 Different heuristics used for the number of nodes in hidden

layer (Ni number of input nodes, N0 number of output nodes)

Heuristic Calculated number of nodes

for this study

� 2� Ni þ 1 B7

3� Ni 9

Ni þ N0ð Þ=2 2

2þN0�Niþ0:5N0� N2
0
þNið Þ�3

NiþN0

1

2Ni=3 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ni þ N0ð Þ
p

2

2Ni 6

Summary of the heuristics is given in [40]
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number of hidden nodes (Fig. 3). The analysis showed that

training set errors and validation set errors have similar

properties, confirming the absence of overfitting.

Comparison of prediction results with experimental data

for training, validation and testing sets, using ANNs with 2,

6 and 9 hidden nodes, is given in Fig. 4. ANN model with

six hidden nodes has the highest coefficient of determina-

tion (R2 & 0.877) for testing set, approximately the same

value of R2 for validation set and with statistically small

value of standard error, SE = 2.495, meaning that all of the

predicted data fall within the 95 % prediction interval,

which confirms the precision of the proposed model. A

slight decrease of R2 between the training and validation

sets does not affect the obtained results significantly, since

standard error indicates that predicted data fall within the

95 % prediction interval in both cases (SE = 2.062 and

2.756, respectively). Analysis of the error distribution for

training set (for ANN with six hidden nodes) shows that

relative prediction errors are in the range up to &15 %

(Table 9).

4.3 Broyden–Fletcher–Goldfarb–Shannon (BFGS)

quasi-Newton back-propagation learning

algorithm

BFGS algorithm is considered as one of the best quasi-

Newton’s techniques that uses a local quadratic approxi-

mation of the error function and employs an approximation

of the inverse of the Hessian matrix to update the weights,

Fig. 1 MSE versus the number of epochs for training, validation and testing sets, using artificial neural networks with: a 2, b 6 and c 9 hidden

nodes. MSE saturates with the increase of training epochs for both training and validation sets, excluding the possibility of overfitting

1010 Neural Comput & Applic (2015) 26:1005–1024

123



thus getting the lowest computational cost. This algorithm

is error tolerant, yields good solutions and converges in a

small number of iterations [48]. The computational

advantage of BFGS especially holds for small- to moder-

ate-sized problems, which is the case in the present ana-

lysis. The ANN model with BFGS learning algorithm and

different number of hidden nodes is developed for the step

length in the range [10-6, 102], while change in step size

takes values from the realm [0.1, 0.5]. Initial step size in

interval location step is set to 0.01, while scale factor that

determines sufficiently large step size is assumed to be 0.1.

Parameter to avoid small reductions in performance is set

to 0.1.

As in the previous two models, decrease of MSE with

the increase of epochs for training, validation and testing

data using different number of hidden nodes excludes the

possibility of overfitting (Fig. 5).

Comparison of prediction results with experimental data

for training, validation and testing sets, using ANNs with 2,

6, and 9 hidden nodes, is given in Fig. 6. ANN model with

nine hidden nodes has the highest coefficient of determina-

tion (R2 & 0.951) for testing set, approximately the same

Fig. 2 Comparison of predicted and experimental values of concrete

compressive strength (MPa) for training, validation and testing sets,

including: a 2, b 6 and c 9 hidden nodes. Training of ANN model was

performed using Levenberg–Marquardt learning algorithm. It is clear

that ANN with six hidden nodes gives the most accurate predictions

that fall within the 95 % prediction interval
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Table 8 Comparison of experimental values of concrete compressive strength and predicted data using ANN with Levenberg–Marquardt

learning algorithm and six hidden nodes

Sample Exp. rp
(MPa)

Pred. rp
(MPa)

Abs. error

(MPa)

Rel. error

(%)

Sample Exp. rp
(MPa)

Pred. rp
(MPa)

Abs. error

(MPa)

Rel. error

(%)

Training set Validation set

A1-1 55 53.00 2 3.64 A1-2 54 55.00 1 1.85

A1-3 51 49.00 2 3.92 A4-2 36.3 35.20 1.1 3.03

A2-1 45.6 43.58 2.02 4.43 A1-5 48.6 48.20 0.4 0.82

A2-2 49.25 50.88 1.63 3.31 A1-6 45.2 41.40 3.8 8.41

A2-3 48 48.38 0.38 0.79 A2-4 50.8 50.50 0.3 0.59

A3-3 46.2 46.20 0 0.00 A4-6 29.7 28.60 1.1 3.70

A4-1 37.4 37.40 0 0.00 A4-8 37.6 37.40 0.2 0.53

A5-2 53.5 51.25 2.25 4.21 A2-11 38.5 31.25 7.25 18.83

A5-3 49 46.75 2.25 4.59 A5-12 49.2 48.20 1 2.03

A1-4 49 49.00 0 0.00 A1-13 35 38.25 3.25 9.29

A2-6 51.1 51.10 0 0.00 A3-13 31.2 28.40 2.8 8.97

A3-4 38 36.90 1.1 2.89 Testing set

A3-5 39.1 39.10 0 0.00 A3-1 47.6 49.00 1.4 2.94

A3-6 40.2 41.30 1.1 2.74 A3-2 46 45.80 0.2 0.43

A4-5 30.8 30.80 0 0.00 A4-3 38.4 39.40 1 2.60

A5-5 43.8 40.50 3.3 7.53 A5-1 50.4 49.55 0.85 1.69

A5-6 50.4 53.70 3.3 6.55 A2-5 50.9 50.70 0.2 0.39

A1-7 52.5 53.85 1.35 2.57 A4-4 30.8 30.80 0 0.00

A1-9 49.8 48.45 1.35 2.71 A5-4 50.4 53.70 3.3 6.55

A2-7 48.9 50.03 1.13 2.31 A1-8 50.5 49.85 0.65 1.29

A2-8 45.6 43.43 2.17 4.76 A5-8 48.8 47.85 0.95 1.95

A2-9 48.8 49.83 1.03 2.11 A3-10 41 38.63 2.37 5.78

A3-7 36.7 36.73 0.03 0.08 A3-11 41 38.63 2.37 5.78

A3-8 33.3 29.93 3.37 10.12 A3-12 41 38.63 2.37 5.78

A3-9 40 43.33 3.33 8.33 A4-12 29.7 27.10 2.6 8.75

A4-7 38 38.20 0.2 0.53 A5-11 49.6 49.00 0.6 1.21

A4-9 37.6 37.40 0.2 0.53 A2-14 41 45.60 4.6 11.22

A5-7 49 48.25 0.75 1.53 A2-15 41.5 46.60 5.1 12.29

A5-9 50.5 51.25 0.75 1.49 A3-14 32.4 30.80 1.6 4.94

A1-10 49.6 52.88 3.28 6.61 A4-14 21.4 20.75 0.65 3.04

A1-11 44.55 42.78 1.77 3.97 A5-13 40 40.35 0.35 0.88

A1-12 44.8 43.28 1.52 3.39

A2-10 47.5 49.25 1.75 3.68

A2-12 44 42.25 1.75 3.98

A4-10 32 31.70 0.3 0.94

A4-11 32.6 32.90 0.3 0.92

A5-10 50.2 50.20 0 0.00

A1-14 28 24.25 3.75 13.39

A1-15 35.5 39.25 3.75 10.56

A2-13 36.4 36.40 0 0.00

A3-15 34 34.00 0 0.00

A4-13 21.6 21.15 0.45 2.08

A4-15 22.5 22.95 0.45 2.00

A5-14 37.1 34.55 2.55 6.87
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value of R2 for training and validation sets and with statis-

tically small value of standard error, SE = 2.028, meaning

that all of the predicted data fall within the 95 % prediction

interval, which confirms the precision of the proposed

model. Analysis of the error distribution for training, vali-

dation and testing sets (for ANN with nine hidden nodes)

shows that all of the predicted values for testing set have

relative errors smaller than 10 % (Table 10).

Table 8 continued

Sample Exp. rp
(MPa)

Pred. rp
(MPa)

Abs. error

(MPa)

Rel. error

(%)

Sample Exp. rp
(MPa)

Pred. rp
(MPa)

Abs. error

(MPa)

Rel. error

(%)

A5-15 42.2 44.75 2.55 6.04

Exp. rp stands for experimental values of compressive strength, Pred. rp for predicted values of compressive strength, Abs. error for absolute

error and Rel. error for relative error

Fig. 3 MSE versus the number of epochs for training, validation and testing data, using different number of hidden nodes: a 2, b 6 and c 9. MSE

saturates with the increase of training epochs for both training and validation sets, excluding the possibility of overfitting
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4.4 One-step-secant (OSS) back-propagation learning

algorithm

OSS learning algorithm represents an attempt to bridge the

gap between the conjugate gradient and the quasi-Newton

secant algorithms. The OSS method does not require the

choice of critical parameters, is guaranteed to converge to a

point with zero gradient, and has been shown to accelerate

the learning phase by many orders of magnitude with

respect to standard back-propagation algorithms if high

precision in the output values is desired [49]. In the present

study, parameters for OSS learning algorithm are the same

as for the previous BFGS method.

MSE versus the number of epochs for training, valida-

tion and testing data, using different number of hidden

nodes, is shown in Fig. 7. The results of all three models

are reasonable, since the training set errors and the vali-

dation set errors have similar properties. Consequently, it

does not appear that any significant overfitting has

occurred.

Fig. 4 Comparison of predicted and experimental values of concrete

compressive strength (MPa) for training, validation and testing sets,

including: a 2, b 6 and c 9 hidden nodes. Training of ANN model was

performed using scaled conjugate gradient learning algorithm. It is

clear that ANN with six hidden nodes gives the most accurate

predictions that fall within the 95 % prediction interval
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Table 9 Comparison of experimental values of concrete compressive strength and predicted data using ANN with scaled conjugate gradient

learning algorithm and six hidden nodes

Sample Exp. rp
(MPa)

Pred. rp
(MPa)

Abs. error

(MPa)

Rel. error

(%)

Sample Exp. rp
(MPa)

Pred. rp
(MPa)

Abs. error

(MPa)

Rel. error

(%)

Training set Validation set

A1-2 54 52.93 1.07 1.97 A4-1 37.4 37.09 0.31 0.82

A2-3 48 49.39 1.39 2.89 A4-4 30.8 30.01 0.79 2.57

A3-1 47.6 47.01 0.59 1.25 A5-6 50.4 47.48 2.92 5.80

A3-3 46.2 47.01 0.81 1.75 A1-8 50.5 47.41 3.09 6.12

A4-2 36.3 37.09 0.79 2.18 A3-8 33.3 38.97 5.67 17.00

A4-3 38.4 37.09 1.31 3.41 A5-9 50.5 49.70 0.80 1.59

A5-1 50.4 50.29 0.11 0.22 A2-11 38.5 44.85 6.35 16.49

A5-2 53.5 50.29 3.21 6.01 A3-11 41 42.03 1.03 2.51

A5-3 49 50.29 1.29 2.63 A3-12 41 42.03 1.03 2.51

A1-5 48.6 48.14 0.46 0.95 A5-10 50.2 49.10 1.10 2.20

A1-6 45.2 48.14 2.94 6.50 A3-13 31.2 31.02 0.18 0.58

A2-6 51.1 48.16 2.94 5.76 Testing set

A3-6 40.2 41.24 1.04 2.59 A1-1 55 52.93 2.07 3.75

A4-5 30.8 30.01 0.79 2.57 A1-3 51 52.93 1.93 3.79

A5-4 50.4 47.48 2.92 5.80 A2-1 45.6 49.39 3.79 8.31

A5-5 43.8 47.48 3.68 8.39 A2-2 49.25 49.39 0.14 0.28

A1-7 52.5 47.41 5.09 9.70 A3-2 46 47.01 1.01 2.19

A2-7 48.9 49.53 0.63 1.29 A1-4 49 48.14 0.86 1.76

A2-8 45.6 49.53 3.93 8.62 A2-4 50.8 48.16 2.64 5.21

A3-7 36.7 38.97 2.27 6.18 A2-5 50.9 48.16 2.74 5.39

A3-9 40 38.97 1.03 2.58 A3-4 38 41.24 3.24 8.53

A4-7 38 36.90 1.10 2.90 A3-5 39.1 41.24 2.14 5.47

A4-8 37.6 36.90 0.70 1.87 A4-6 29.7 30.01 0.31 1.04

A5-7 49 49.70 0.70 1.43 A1-9 49.8 47.41 2.39 4.80

A5-8 48.8 49.70 0.90 1.84 A2-9 48.8 49.53 0.73 1.50

A1-12 44.8 44.27 0.53 1.19 A4-9 37.6 36.90 0.70 1.87

A2-10 47.5 44.85 2.65 5.58 A1-10 49.6 44.27 5.33 10.75

A2-12 44 44.85 0.85 1.93 A1-11 44.55 44.27 0.28 0.63

A3-10 41 42.03 1.03 2.51 A4-11 32.6 31.24 1.36 4.16

A4-10 32 31.24 0.76 2.36 A1-13 35 33.32 1.68 4.80

A4-12 29.7 31.24 1.54 5.20 A5-14 37.1 42.20 5.10 12.09

A5-11 49.6 49.10 0.50 1.02

A5-12 49.2 49.10 0.10 0.21

A1-14 28 33.32 5.32 19.00

A1-15 35.5 33.32 2.18 6.14

A2-13 36.4 38.47 2.07 5.68

A2-14 41 38.47 2.53 6.17

A2-15 41.5 38.47 3.03 7.30

A3-14 32.4 31.02 1.38 4.26

A3-15 34 31.02 2.98 8.76

A4-13 21.6 22.03 0.43 1.99

A4-14 21.4 22.03 0.63 2.94

A4-15 22.5 22.03 0.47 2.09

A5-13 40 42.20 2.20 5.51

A5-15 42.2 42.20 0.00 0.01

Exp. rp stands for experimental values of compressive strength, Pred. rp for predicted values of compressive strength, Abs. error for absolute error and

Rel. error for relative error
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Comparison of prediction results with experimental data

for training, validation and testing sets, using ANNs with 2,

6, and 9 hidden nodes, is given in Fig. 8. ANN model with

six hidden nodes has the highest coefficient of determina-

tion (R2 & 0.951) for testing set, approximately the same

value of R2 for training set and with statistically small

value of standard error, SE = 2.028, meaning that all of the

predicted data fall within the 95 % prediction interval,

which confirms the precision of the proposed model.

Slightly lower value of R2 for validation set does not affect

the obtained results significantly, since standard error

indicates that predicted data fall within the 95 % prediction

interval (SE = 3.193). Analysis of the error distribution for

training, validation and testing sets (for ANN with six

hidden nodes) shows that relative prediction errors are up

to &10 % (Table 11).

5 Performance evaluation of the proposed models

Performances of the developed prediction models could be

further evaluated using different standard statistical criteria

given in Table 12 [50].

Calculated statistical errors are shown in Table 13. ANN

model with OSS learning algorithm and six hidden nodes

has the lowest values of MAPE (Mean Absolute Percentage

Error) and VARE (Variance Absolute Relative Error),

while model with LM learning algorithm and six hidden

Fig. 5 MSE versus the number of epochs for training, validation and testing data, using different number of hidden nodes: a 2, b 6 and c 9. MSE

saturates with the increase of training epochs for both training and validation set, excluding the possibility of overfitting
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nodes has the lowest value of and MEDAE (MEDian

Absolute Error), in comparison with other proposed ANN

models.

6 Sensitivity analysis

Sensitivity analysis represents a method which enables us

to determine the relative strength of effect (RSE) for each

input unit on the concrete compressive strength [51]. In this

case, it was carried out by the hierarchical analysis [52],

where the RSE parameter is determined in the following

way:

RSEki ¼ C
X

jn

X

jn�1

� � �
X

j1

WjnkG ekð ÞWjn�1jnG ejn
� �

�Wjn�2jn�1
G ejn�1

� �

Wjn�3jn�2
G ejn�2

� �

� � �Wij1G ej1
� �

;

ð2Þ

Fig. 6 Comparison of predicted and experimental values of concrete

compressive strength (MPa) for training, validation and testing sets,

including: a 2, b 6 and c 9 hidden nodes. Training of ANN model was

performed using BFGS learning algorithm. It is clear that ANN with

six hidden nodes gives the most accurate predictions that fall within

the 95 % prediction interval
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Table 10 Comparison of

experimental values of concrete

compressive strength and

predicted data using ANN with

BFGS learning algorithm and

nine hidden nodes

Exp. rp stands for experimental

values of compressive strength,

Pred. rp for predicted values of

compressive strength, Abs. error

for absolute error and Rel. error

for relative error

Sample Exp. rp
(MPa)

Pred. rp
(MPa)

Abs.

error

(MPa)

Rel.

error

(%)

Sample Exp. rp
(MPa)

Pred. rp
(MPa)

Abs.

error

(MPa)

Rel.

error

(%)

Training set Validation set

A1-2 54 52.47 1.53 2.83 A1-1 55 52.47 2.53 4.59

A1-3 51 52.47 1.47 2.89 A3-1 47.6 46.20 1.40 2.93

A2-1 45.6 46.78 1.18 2.59 A3-2 46 46.20 0.20 0.44

A2-3 48 46.78 1.22 2.54 A2-6 51.1 50.83 0.27 0.54

A3-3 46.2 46.20 0.00 0.01 A4-4 30.8 30.80 0.00 0.01

A4-1 37.4 37.36 0.04 0.10 A1-7 52.5 49.86 2.64 5.03

A4-2 36.3 37.36 1.06 2.93 A3-8 33.3 39.96 6.66 19.99

A4-3 38.4 37.36 1.04 2.70 A3-12 41 41.00 0.00 0.01

A5-1 50.4 50.96 0.56 1.12 A5-11 49.6 49.71 0.11 0.22

A5-2 53.5 50.96 2.54 4.74 A1-14 28 34.91 6.91 24.68

A5-3 49 50.96 1.96 4.01 A1-15 35.5 34.91 0.59 1.66

A1-5 48.6 48.59 0.01 0.01 Testing set

A2-4 50.8 50.83 0.03 0.05 A2-2 49.25 46.78 2.47 5.01

A2-5 50.9 50.83 0.07 0.15 A1-4 49 48.59 0.41 0.83

A3-4 38 38.57 0.57 1.49 A1-6 45.2 48.59 3.39 7.51

A3-5 39.1 38.57 0.53 1.36 A3-6 40.2 38.57 1.63 4.06

A4-5 30.8 30.80 0.00 0.01 A4-6 29.7 30.80 1.10 3.72

A5-4 50.4 48.19 2.21 4.38 A1-8 50.5 49.86 0.64 1.27

A5-5 43.8 48.19 4.39 10.03 A3-7 36.7 39.96 3.26 8.88

A5-6 50.4 48.19 2.21 4.38 A5-7 49 48.80 0.20 0.40

A1-9 49.8 49.86 0.06 0.11 A5-9 50.5 48.80 1.70 3.36

A2-7 48.9 47.79 1.11 2.26 A1-10 49.6 44.78 4.82 9.71

A2-8 45.6 47.79 2.19 4.81 A1-12 44.8 44.78 0.02 0.04

A2-9 48.8 47.79 1.01 2.06 A4-11 32.6 32.01 0.59 1.80

A3-9 40 39.96 0.04 0.10 A4-12 29.7 32.01 2.31 7.79

A4-7 38 37.74 0.26 0.67 A2-15 41.5 38.72 2.78 6.71

A4-8 37.6 37.74 0.14 0.38 A3-13 31.2 32.47 1.27 4.07

A4-9 37.6 37.74 0.14 0.38 A3-15 34 32.47 1.53 4.50

A5-8 48.8 48.80 0.00 0.00 A4-13 21.6 22.52 0.92 4.28

A1-11 44.55 44.78 0.23 0.52 A4-14 21.4 22.52 1.12 5.25

A2-10 47.5 43.25 4.25 8.94 A5-15 42.2 38.54 3.66 8.67

A2-11 38.5 43.25 4.75 12.34

A2-12 44 43.25 0.75 1.70

A3-10 41 41.00 0.00 0.01

A3-11 41 41.00 0.00 0.01

A4-10 32 32.01 0.01 0.04

A5-10 50.2 49.71 0.49 0.98

A5-12 49.2 49.71 0.51 1.03

A1-13 35 34.91 0.09 0.26

A2-13 36.4 38.72 2.32 6.36

A2-14 41 38.72 2.28 5.57

A3-14 32.4 32.47 0.07 0.22

A4-15 22.5 22.52 0.02 0.10

A5-13 40 38.54 1.46 3.64

A5-14 37.1 38.54 1.44 3.89
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where C is normalized constant which controls the maxi-

mum absolute values of RSEki, W is a connected weight

and G ekð Þ ¼ expð�ekÞ=ð1þ expð�ekÞÞ2 denotes the hid-

den units in the n, n - 1, n - 2,…,1 hidden layers [52].

Global sensitivity analysis, which was carried out for

all the input parameters and for all the ANN models

with different learning algorithms and different number

of hidden nodes, indicated that the w/c ratio has the

strongest impact on the compressive strength of con-

crete (Fig. 9).

7 Conclusion

In the present study, we develop four ANN models with

different learning algorithms for prediction of concrete

compressive strength. For this purpose, 75 specimens of

basic concrete mixture were exposed to different cycles

of freezing and thawing, after which their compressive

strength was measured at different ages (7, 20 and

32 days). Afterward, these results were used for ANN

modeling with different number of hidden nodes in

order to exclude the possibility of overfitting. In all the

examined cases, a three-layer feed-forward back-prop-

agation artificial neural network was used. The obtained

results showed that ANN models with six hidden nodes

(using LM, SCG and OSS learning algorithms) and nine

hidden nodes (using BFGS learning algorithm) have the

best predictive power comparable to the experimental

results. Moreover, in all the examined cases, analysis of

standard error indicated that each predicted value falls

within the 95 % prediction interval. As for the error

distribution, further inquiry implied that relative

Fig. 7 MSE versus the number of epochs for training, validation and testing data, using different number of hidden nodes: a 2, b 6 and c 9. MSE

saturates with the increase of training epochs for both training and validation sets, excluding the possibility of overfitting
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Fig. 8 Comparison of predicted and experimental values of concrete

compressive strength (MPa) for training, validation and testing sets,

including: a 2, b 6 and c 9 hidden nodes. Training of ANN model was

performed using OSS learning algorithm. It is clear that ANN with six

hidden nodes gives the most accurate predictions that fall within the

95 % prediction interval

Table 11 Comparison of experimental values of concrete compressive strength and predicted data using ANN with OSS learning algorithm and

six hidden nodes

Sample Exp. rp
(MPa)

Pred. rp
(MPa)

Abs. error

(MPa)

Rel. error

(%)

Sample Exp. rp
(MPa)

Pred. rp
(MPa)

Abs. error

(MPa)

Rel. error

(%)

Training set Validation set

A1-1 55 54.45 0.55 1.01 A5-2 53.5 49.06 4.44 8.30

A1-2 54 54.45 0.45 0.82 A3-6 40.2 38.04 2.16 5.37

A2-2 49.25 48.55 0.70 1.42 A3-8 33.3 38.31 5.01 15.04

A2-3 48 48.55 0.55 1.15 A5-9 50.5 49.77 0.73 1.45

A3-1 47.6 46.57 1.03 2.16 A1-10 49.6 44.69 4.91 9.89
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Table 11 continued

Sample Exp. rp
(MPa)

Pred. rp
(MPa)

Abs. error

(MPa)

Rel. error

(%)

Sample Exp. rp
(MPa)

Pred. rp
(MPa)

Abs. error

(MPa)

Rel. error

(%)

A3-2 46 46.57 0.57 1.24 A2-12 44 43.10 0.90 2.05

A3-3 46.2 46.57 0.37 0.81 A4-10 32 29.91 2.09 6.53

A4-2 36.3 37.41 1.11 3.06 A4-11 32.6 29.91 2.69 8.25

A4-3 38.4 37.41 0.99 2.58 A5-12 49.2 50.08 0.88 1.79

A5-3 49 49.06 0.06 0.12 A1-14 28 35.08 7.08 25.28

A1-5 48.6 46.88 1.72 3.53 A1-15 35.5 35.08 0.42 1.18

A1-6 45.2 46.88 1.68 3.73 Testing set

A2-4 50.8 50.91 0.11 0.21 A1-3 51 54.45 3.45 6.76

A2-5 50.9 50.91 0.01 0.01 A2-1 45.6 48.55 2.95 6.48

A2-6 51.1 50.91 0.19 0.38 A4-1 37.4 37.41 0.01 0.03

A3-4 38 38.04 0.04 0.11 A5-1 50.4 49.06 1.34 2.66

A4-4 30.8 30.78 0.02 0.06 A1-4 49 46.88 2.12 4.32

A5-4 50.4 48.19 2.21 4.39 A3-5 39.1 38.04 1.06 2.70

A5-5 43.8 48.19 4.39 10.01 A4-5 30.8 30.78 0.02 0.06

A5-6 50.4 48.19 2.21 4.39 A4-6 29.7 30.78 1.08 3.65

A1-7 52.5 49.76 2.74 5.22 A1-8 50.5 49.76 0.74 1.46

A2-9 48.8 49.77 0.97 1.99 A1-9 49.8 49.76 0.04 0.08

A3-7 36.7 38.31 1.61 4.38 A2-7 48.9 49.77 0.87 1.78

A3-9 40 38.31 1.69 4.23 A2-8 45.6 49.77 4.17 9.14

A4-9 37.6 37.88 0.28 0.74 A4-7 38 37.88 0.12 0.32

A5-7 49 49.77 0.77 1.56 A4-8 37.6 37.88 0.28 0.74

A5-8 48.8 49.77 0.97 1.98 A5-11 49.6 50.08 0.48 0.97

A1-11 44.55 44.69 0.14 0.32 A2-14 41 39.09 1.91 4.67

A1-12 44.8 44.69 0.11 0.24 A3-15 34 31.75 2.25 6.63

A2-10 47.5 43.10 4.40 9.27 A4-15 22.5 21.53 0.97 4.29

A2-11 38.5 43.10 4.60 11.94 A5-14 37.1 41.11 4.01 10.82

A3-10 41 41.15 0.15 0.36

A3-11 41 41.15 0.15 0.36

A3-12 41 41.15 0.15 0.36

A4-12 29.7 29.91 0.21 0.71

A5-10 50.2 50.08 0.12 0.23

A1-13 35 35.08 0.08 0.23

A2-13 36.4 39.09 2.69 7.38

A2-15 41.5 39.09 2.41 5.81

A3-13 31.2 31.75 0.55 1.75

A3-14 32.4 31.75 0.65 2.02

A4-13 21.6 21.53 0.07 0.31

A4-14 21.4 21.53 0.13 0.63

A5-13 40 41.11 1.11 2.78

A5-15 42.2 41.11 1.09 2.58

Exp. rp stands for experimental values of compressive strength, Pred. rp for predicted values of compressive strength, Abs. error for absolute

error and Rel. error for relative error
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prediction error increases up to the acceptable value of

&15 %, which suggests that the proposed ANN models

are robust to the consistency of the training and vali-

dation data. Additional analysis indicated that ANN

model with OSS learning algorithm and six hidden

nodes has the lowest values of MAPE and VARE, while

the model with LM algorithm and six nodes has the

lowest value of MEDAE.

Regarding the separate impact of each input unit on the

final value of concrete compressive strength, the sensitivity

analysis indicated that w/c ratio has the strongest influence

on the experimental results in all the examined cases with

various learning algorithms and different number of hidden

nodes.

It should be noted that one of the main outcome of the

performed analysis lies in the fact that the results of ANN

modeling seem to be almost independent on the choice of

learning algorithm and number of hidden nodes (as long as

this number is in the acceptable range determined by the

widely used heuristics). This claim follows the results of

ANN training in all the examined cases, with high coeffi-

cient of determination for every training, validation and

testing sets (R2[ 0.81). This fact is further supported by

the low values of SE and favorable change of MSE with the

number of training epochs.

However, despite the high predictive power of the pro-

posed ANN models, one of the main limitations of the

analysis is certainly simple composition of the concrete

Table 12 Statistical error parameters used for models’ evaluation

Statistical

parameter

Equation

Mean absolute

percentage

error (MAPE)

MAPE ¼ 1
n
�

P

n

i¼1

ti�xi
ti

�

�

�

�

�

�

� �

� 100

Variance

absolute

relative error

(VARE)

VARE ¼ 1
n
�

P

n

i¼1

ti�xi
ti

�

�

�

�

�

�
�mean ti�xi

ti

�

�

�

�

�

�

2
� 	� �

� 100

Median absolute

error

(MEDAE)

MEDAE ¼ median ti � xið Þ

ti represents measured value of compressive strength, while xi denotes

predicted value of compressive strength

Table 13 Statistical errors of different models for predicting PPV

ANN model Statistical errors

Learning algorithm No. of hidden

nodes

MAPE VARE MEDAE

Levenberg–Marquardt 6 4.079 4.064 1.000

Scaled gradient descent 6 4.630 4.612 1.930

BFGS 9 4.622 4.606 1.530

One-step secant 6 3.555 3.544 1.060

Fig. 9 Relative strength of effect (RSE) of each input parameter on

the recorded value of concrete compressive strength, as a result of

global sensitivity analysis, for ANN model with LM learning

algorithm and six hidden nodes, SCG learning algorithm and six

hidden nodes, BFGS learning algorithm and nine hidden nodes and

OSS learning algorithm and six hidden nodes
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specimens. Future analyzes should include concrete sam-

ples with different additives (superplasticizer, fly ash,

zeolite, etc.), in order to expand the proposed models and

make them more usable in daily practice.
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