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Abstract Parameter optimization and feature selection

influence the classification accuracy of support vector

machine (SVM) significantly. In order to improve classi-

fication accuracy of SVM, this paper hybridizes chaotic

search and gravitational search algorithm (GSA) with SVM

and presents a new chaos embedded GSA-SVM (CGSA-

SVM) hybrid system. In this system, input feature subsets

and the SVM parameters are optimized simultaneously,

while GSA is used to optimize the parameters of SVM and

chaotic search is embedded in the searching iterations of

GSA to optimize the feature subsets. Fourteen UCI datasets

are employed to calculate the classification accuracy rate in

order to evaluate the developed CGSA-SVM approach.

The developed approach is compared with grid search and

some other hybrid systems such as GA-SVM, PSO-SVM

and GSA-SVM. The results show that the proposed

approach achieves high classification accuracy and effi-

ciency compared with well-known similar classifier

systems.

Keywords Support vector machine � Gravitational search

algorithm � Chaotic search � Parameter optimization �
Feature selection

1 Introduction

Support vector machines (SVMs) first proposed by Vapnik

[1] have recently been used in a range of problems

including pattern recognition, bioinformatics, text catego-

rization and fault diagnosis [2–6]. SVM classifies data with

different class labels by determining a set of support vec-

tors that are members of the set of training inputs and

outline a hyperplane in the feature space [7].

Two major problems exist when using SVM for classi-

fication: how to set the optimal parameters for SVM and

how to choose the optimal feature subset of the target

dataset. How to set the parameters has a direct effect on the

classification accuracy. Parameters that need be optimized

include the penalty parameter C and the kernel function

parameters such as the gamma (c) for the radial basis

functions (RBF) kernel [8, 9]. For parameter determination,

grid search is often used. The search process consists of

varying parameters by a fixed step size through a wide

range of values and then evaluating the performance of

each combination. Because of its computational complex-

ity, grid search is only suitable for the optimization when

there are very few parameters [10]. With the development

of heuristic optimization methods, certain optimization

techniques such as the genetic algorithm (GA) [7], particle

swarm optimization (PSO) [9], simulated annealing (SA)

[11] and CMA-ES [10] have been adopted in parameter

optimization for SVM.

Classification problems generally involve a number of

features. However, not all of these features are equally

important. Some features may be redundant or even irrel-

evant, and if not eliminated from classification could result

in increased computational time complexity or decreased

classification accuracy. In order to achieve better perfor-

mance, feature selection or feature reduction is necessary
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for complex dataset in classification. As predicted by [12],

the feature selection problem is an NP-hard combinatorial

problem and requires efficient solution algorithms. Efforts

have been made to develop feature selection methods,

including stochastic gradient descent algorithm [12], tabu

search [13] and discrete particle swarm optimization [14].

Real-value PSO was used for feature selection in kernel

clustering to optimize the subsets of classes [15].

Facing the challenges of parameter optimization and

feature selection in SVM classification, some researchers

have tried to solve them synchronously. Huang and Wang

proposed a feature selection and parameter optimization

approach based on GA [7]. Huang employed a PSO-SVM

model to combine the discrete PSO with the continuous-

valued PSO to simultaneously optimize the input feature

subsets selection and the SVM kernel parameter setting [9].

In [16], a PSO-SVM model with multi-class SVM was

constructed, while PSO was employed to optimize the

kernel parameters and input feature subsets together. In

[16], the labels of input features and kernel parameters of

SVM were represented by particles in real value in opti-

mization process. If the value of a label was less than or

equal to 0.5, then its corresponding feature was not chosen.

Compared with PSO and GA, the GSA is a swarm-based

meta-heuristic search algorithm based on the law of

Newtonian gravity [17]. Recently, GSA has been proved to

be an excellent optimization method in different kinds of

applications, including parameter identification [18, 19],

fuzzy model identification [20, 21], wind turbine control

[22], capacitor placement optimization in radial distribu-

tion system [23], economic emission load dispatch [24],

synthesis gas production [25] and so on; especially, GSA

has also shown potential in handing problems of feature

subset selection [26] and parameter optimization of SVM

[27]. Based on the discussion, it is interesting to solve the

problem of SVM in classification by using GSA.

Sarafrazi and Nezamabadi-pour have promoted the

research of applying GSA to solve the mentioned problems

of SVM, while GSA has been used to handle the feature

selection and SVM parameter optimization problems toge-

ther [28]. In their work, a GSA-SVM hybrid system was

proposed, in which real-valued GSA was used to optimize

parameters and discrete GSA was used to optimize feature

subsets simultaneously. Although the discrete GSA is a good

method for feature subset selection, many other methods

have also been reported to be effective in handling this

problem. Among them, chaotic search is an attractive choice.

The superiority of chaotic sequence and chaotic search

has been reported widely [29–31]. Recently, chaos

embedded methods have been developed and applied in

parameter optimization of SVMs. In [32], an optimal

selection approach for SVM parameters was put forward

based on mutative scale optimization algorithm (MSCOA).

Wu proposed a new PSO method that uses chaotic map-

pings for parameter adaptation of wavelet v-support vector

machine (Wv-SVM) [33]. In [34], a new chaotic differential

evolution optimization approach based on Ikeda map was

proposed to optimize kernel function parameters of SVM.

Besides, chaotic sequence has also been used in feature

selection problems. In [35], two kinds of chaotic maps, the

logistic maps and tent maps, were embedded in PSO to

handle feature selection problems. Since chaotic sequences

have been successfully applied in various optimization

problems, it is reasonable that chaotic sequences have good

potential for optimization of input feature subsets.

Although SVM classification performance has been

improved significantly, there is still motivation to push this

work further. This study tries a new system, a hybrid chaos

embedded GSA-SVM (CGSA-SVM) by combining GSA

and chaotic search. In this hybrid system, the GSA is used

to optimize parameters of SVM, while the chaotic search is

employed to optimize the input feature subsets. Compared

with [28], we introduce chaotic search to replace the dis-

crete GSA for feature selection. Benefiting from the

properties of ergodicity and stochasticity, chaos is efficient

in real-value optimization and discrete value optimization.

The remainder of this paper is organized as follows.

Section 2 reviews pertinent literature on SVM and GSA.

Section 3 presents in detail the developed CGSA-SVM

approach for determining the parameter values for SVM

and selecting feature subsets. Next, Sect. 4 compares the

experimental results with those of existing approaches.

Conclusions are finally drawn in Sect. 5.

2 Literature review

2.1 Support vector machine

The SVM technique was first proposed by Vapnik [1]. The

principles of SVM stem from statistical learning theory. In

this section, the technique is briefly introduced as follows.

Let (xi, yi), i = 1,…,l, denote a set of training data,

where xi 2 Rd is the input data with d dimensions and

yi 2 { -1, 1}is the corresponding bipolar label. A linear

decision surface can be defined by the equation

f(x) = hw, xi ? b = 0, where w is a weight vector

orthogonal to the decision surface, b is an offset term and

h� , �i is the inner product operator. The original formula-

tion of SVM algorithm seeks a linear decision surface that

separates the two opposite classes with a maximal margin

1/kwk by solving the following optimization problem:

min
w;b

1

2
wk k2 ð1Þ

Subject to yiðhw; xii þ bÞ� 1; i ¼ 1; . . .; l.
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This optimization problem can be transformed into its

corresponding dual problem:

WðaÞ ¼
Xl

i¼1

ai �
1

2

Xl

i;j6¼1

aiajyiyj xi; xj

� �
ð2Þ

With constraints: ai, aj C 0, i = 1, …, l,
P

i=1
l yiai = 0.

The Lagrange multipliers ai can be obtained by optimizing

W(a).

Considering w =
P

i=1
l aiyixi, the decision function is

expressed as follows:

f ðxÞ ¼ sgn
Xl

i¼1

aiyi xi; xj

� �
þ b

 !
ð3Þ

In order to relax the margin constraints for the nonlin-

early separable data, the slack variables are introduced into

the optimization problem. The following two forms of soft

margin SVMs have generally been discussed and applied:

min
w;n

1

2
wk k2þC

Xl

i¼1

ni ð4Þ

Subject tyiðhw; xii þ bÞ� 1� ni; i ¼ 1; . . .; l; ni� 0

where ni, i = 1,…,l, are slack variables and C is the pen-

alty parameter of error.

In practice, most of the problems are linearly insepara-

ble, even with soft margin SVM. Thus, the input data are

mapped into a high dimensional feature space, in which the

data are sparse and possibly more separable. Suppose the

mapping function is u( � ), then the inner product hxi, xji
can be replaced by hu(xi), u(xj)i. Given a symmetric and

positive kernel function K(x, y) which satisfies Mercer’s

theorem, the inner product in feature space could be

expressed by K(xi, xj) = hu(xi), u(xj)i. Consequently, the

decision function becomes:

f ðxÞ ¼ sgn
Xl

i¼1

aiyiKðxi; xjÞ þ b

 !
ð5Þ

The radial basis function is a common kernel function

given as:

Kðxi; xjÞ ¼ exp �c xi � xj

�� ��2
� �

ð6Þ

where c is the parameter of the kernel function.

The performance of an SVM can be controlled through

the penalty parameter C and the kernel parameter c. These

parameters influence the number of support vectors and the

maximization margin of the SVM.

2.2 Gravitational search algorithm (GSA)

GSA was first proposed by Rashedi [17]. Assumed there

are N agents (masses), the position of the ith agent is

Li = (li
1,…li

d,…, li
n), i [ {1,…,N}. The mass of each agent

is calculated according to the fitness function value of the

agent. It is easy to visualize that a good agent possesses a

strong gravitational field and moves slowly, as it has a

larger inertial mass.

Based on fitness function value, the mass of the ith agent

in the kth iteration is defined:

MiðkÞ ¼
fitiðkÞ � worstðkÞ

PN
j¼1 ðfitjðkÞ � worstðkÞÞ

ð7Þ

where fiti(k) is the fitness function value of the ith agent.

For an optimization problem about seeking minimal value,

worst(k) = maxj2[1,…,N] fitj(k).

According to Newton gravitation theory, the dth

dimension of the force acting on the ith mass from the jth

mass in the kth iteration is defined as:

Fd
ijðkÞ ¼ GðkÞ MiðkÞ �MjðkÞ

jjLiðkÞ;LjðkÞjj2
ðldj ðkÞ � ld

i ðkÞÞ ð8Þ

where Mi and Mj are masses of agents, Li is the position

vector of agent, li
d is the dth element in Li and G(k) is the

gravitational constant in the kth iteration.

It must be pointed out that the gravitational constant

G(k) is important in determining the performance of GSA,

and G(k) is defined as a function of iteration number k:

GðkÞ ¼ G0 � exp �b � k

max iter

� �
ð9Þ

where G0 is the initial value, b is a constant, k is the

iteration number, max_iter is the maximum number of

iterations.

For the ith agent, the randomly weighted sum of the

forces exerted from other agents can be calculated by:

Fd
i ðkÞ ¼

X

j 6¼i

randjF
d
ijðkÞ ð10Þ

Based on the law of motion, the acceleration of the ith

agent can be calculated by:

ad
i ðkÞ ¼

Fd
i ðkÞ

MiðkÞ
ð11Þ

where Mi is the inertial mass of the ith agent.

Thus, the searching strategy for this concept can be

described by following equations, which describe velocity

and location, respectively:

vd
i ðk þ 1Þ ¼ randi � vd

i ðkÞ þ ad
i ðkÞ ð12Þ

ld
i ðk þ 1Þ ¼ ldi ðkÞ þ vd

i ðk þ 1Þ ð13Þ

In above equations, li
d represents the position of ith agent

in the dth dimension, vi
d is the velocity, ai

d is the acceler-

ation and randi is a random number among [0, 1].
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3 The hybrid CGSA-SVM classifier

Parameter optimization and feature selection are of great

importance for improving classification ability of SVM. As

reported in literature, PSO, GA, GSA and other optimiza-

tion methods have been used to improve SVM. This study

develops a hybrid approach based on chaotic search and

GSA, termed CGSA-SVM, for parameter determination

and feature selection in SVM. The scheme of the proposed

CGSA-SVM can be illustrated by Fig. 1. In this scheme,

GSA is adopted to optimize the key parameter pair (C, c) of

SVM, while chaotic search is implemented for the feature

subset optimization. For the parameter optimization pro-

cess, GSA is suitable for the coding and searching of the

real-valued parameter. For the feature selection process, if

the needed features must be selected from a total of n fea-

tures, each feature would be assigned a variable valued

between 0 and 1. If the value of a variable is less than or

equal to 0.5, then its corresponding feature is not chosen.

Conversely, if the value of a variable is [0.5, then its

corresponding feature is chosen. Chaotic sequence is used

to make variance and represents different selection of

feature subsets. The solution representation is shown in

Fig. 2.

3.1 Feature selection based on chaotic search

Chaos is a bounded unstable dynamic behavior that

exhibits sensitive dependence on initial conditions and

includes infinite unstable periodic motions in nonlinear

systems. Benefiting from the properties of ergodicity and

stochasticity, chaos has been employed in numerous opti-

mization problems. Considering that the feature selection

problem is an optimization problem with searching range

of [0, 1], chaos is well suited to handle this problem.

A chaotic map with n dimension is a discrete-time

dynamical system that can be expressed as:

cx
ðkþ1Þ
i ¼ f ðcx

ðkÞ
i Þ; i ¼ 1; . . .; n ð14Þ

By defining the initial state of cxi
(0), a chaotic sequence

can be obtained through running the system function. A

chaotic sequence is usually denoted by {cxi
(k), k = 0,1,2,…}.

As a well-known chaotic map, the logistic map was

introduced by Robert May in 1976 [36]. It is often used to

explain how complex behavior can arise from a simple

deterministic dynamic system without any stochastic dis-

turbance. This map is defined as:

cxðkþ1Þ ¼ a � cxðkÞð1� cxðkÞÞ for 0\a� 4;
cxðkÞ 2 ð0; 1Þ ð15Þ

where cx(k) is the kth chaotic number, and a is the control

parameter that determine the chaotic behavior of the

dynamic system. Typically, a = 4.

In this paper, logistical map is adopted to represent the

selection of features as follows:

Fi ¼
1 cx

ðkÞ
i [ 0:5

0 cx
ðkÞ
i � 0:5

(
ð16Þ

where Fi = 1 means the ith feature is selected; Fi = 0

means the ith feature is not selected.

3.2 Objective function

Classification accuracy and the number of selected features

are the two criteria used to design an objective function for

classification [28]. In this paper, an objective function is

proposed, which combines the two goals into one by setting

weights for the goals. The weight accuracy can be adjusted

to a high value (such as 100 %) if accuracy is the most

important.

obj ¼ w � SVM accþ ð1� wÞ 1�
Pnf

i¼1 Fi

nf

� �
ð17Þ

where SVM_acc is the SVM classification accuracy, nf is

the number of features, w is the weight of SVM

Initialization

(C, ) optimized 
by GSA 

Feature selection 
by chaos

Train SVM with defined 
(C, ) and selected 

features

Fitness function calculation

stop

Optimized (C, ) and 
feature subset

CGSA

Fig. 1 The scheme of the proposed CGSA-SVM

Fig. 2 Solution representation
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classification accuracy and Fi [ {0, 1}, where ‘‘1’’ repre-

sents that feature i is selected and ‘‘0’’ represents that

feature i is not selected.

The weight w is used to control the significance of

classification accuracy and number of features. For any

SVM-based classifier, the first objective is always

improving classification accuracy; thus, w is usually set to

be near one. We set w = 0.9 in the following experiments.

3.3 The proposed CGSA-SVM

Based on the above description, the proposed CGSA-SVM

algorithm can be illustrated as shown in Fig. 3. In this

algorithm, some further explanation is needed for the

number of iteration where chaotic search is used. We set

the number of iterations of chaotic search to be one half of

the maximum number of iterations in GSA. In the first

batch of iterations, chaotic search is adopted to search

feature subsets by using its ergodicity and stochasticity. At

this stage, feature selection by chaotic search and SVM

parameter search by GSA take place simultaneously. In

each iteration, feature subset represented by chaotic

sequence is used to reduce the original dataset. And then,

SVM parameter optimization is conducted on reduced

dataset. In the second batch of iterations, the optimal fea-

ture subset of the first batch is used to reduce dataset, and

SVM parameter optimization is going on with the reduced

dataset. This design will help to maintain the stability of

GSA in searching optimal parameters.

4 Experiments

In order to verify the performance of the proposed CGSA-

SVM, classification experiments were designed. The

datasets used in the experimentation were all obtained from

the well-known machine learning data repository of UCI

Machine Learning Repository, Center for Machine Learn-

ing and Intelligent Systems, University of California [37].

The number of features, number of instances and actual

number of classes in the datasets are shown in Table 1.

The k-fold method [38] presented by Salzberg was

employed in the experiments. In this study, the value of k

was set to 10. Thus, a dataset was split into 10 parts, with

nine data parts used as training data and the last one used as

testing data in SVM classification experiments. For each

UCI dataset, the experiments were repeated 10 times, so

that each of ten parts would be used as testing data to verify

the performance of the hybrid SVM system. The ten

Fig. 3 The pseudo-code of the

CGSA-SVM hybrid system

Table 1 Dataset from the UCI repository

No. Dataset ID Number

of

features

Number

of

instances

Number

of

classes

1 Australian AUS 15 653 2

2 Breast cancer BRE 10 683 2

3 German GER 30 1,000 2

4 Ionosphere IO 34 351 2

5 Iris IR 4 150 3

6 Pima PM 8 768 2

7 Vehicle VEH 18 846 4

8 Vowel VW 10 528 11

9 Wine WN 13 175 3

10 Mammographic MAM 5 829

11 Teaching assistant

evaluation

TAE 5 151 3

12 Hayes-Roth HR 5 160 3

13 Mushroom MR 22 8,124 2

14 Spambase SB 57 4,601 2
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classification accuracy results for a dataset were recorded,

and the mean accuracy was used to compare with the

classification accuracy of other methods in literature.

In the first group of experiments, the classification

results of CGSA-SVM were compared with existing results

of similar methods in literature. In this part of experiments,

parameters of CGSA-SVM were set as: the size of popu-

lation N = 10, the maximum number of iterations

max_it = 50, G0 = 100, b = 20. Therefore, for the pro-

posed CGSA-SVM, the number of objective function cal-

culations is equal to 500. In comparative algorithms GSA-

SVM, PSO-SVM and GA-SVM as reported in [7, 8, 28],

the number of objective function calculations was 100,

2,000 and 5,000, respectively. The number of objective

function calculations by CGSA-SVM was much low than

PSO-SVM and GA-SVM, but higher than GSA-SVM. This

number was chosen to make the comparison as reliable as

possible and to examine the classification capability of the

proposed approach more thoroughly.

Table 2 presents the accuracy results of CGSA-SVM

(mean, standard deviation, optimized c, optimized C and

number of selected features) applied to the UCI datasets

over 10 runs. The results obtained by CGSA-SVM were

compared with grid search-based SVM (Grid-SVM) [7],

GA-SVM [7], PSO-SVM [8] and GSA-SVM [28] in

Table 3, while the results of latter methods were cited from

literature. The results in Table 3 show that the proposed

approach is more accurate than the other methods for all

datasets except for ‘‘Ionosphere.’’ In some dataset, PSO-

SVM performs the same as CGSA-SVM. However, the

number of objective function calculations used in CGSA-

SVM was much lower than PSO-SVM: The former was

500, compared with the latter’s 2,000. The comparison

between GA-SVM and PSO-SVM shows that the proposed

algorithm is more efficient and accurate in classification.

By comparing CGSA-SVM with GSA-SVM [28] in

Table 3, it can be seen that the proposed chaos embedded

hybrid system is more accurate in classification. However,

it also has a higher number of objective function

calculations. In next group of experiments, the number of

objective function calculations was set to 100, for a better

comparison with GSA-SVM.

In order to further verify the performance of CGSA-

SVM, we compared PSO-SVM with CGSA-SVM by run-

ning them in the same circumstance. In this part of

experiments, parameters of CGSA-SVM were set as: the

size of population N = 5, the maximum iteration

max_it = 20, G0 = 100, b = 20. Therefore, for the pro-

posed CGSA-SVM, the number of objective function cal-

culations was equal to 100. For PSO-SVM, both the

cognition learning factor c1 and the social learning factor c2

were set to 2, and the number of particles and generations

was set to be 8 and 200, respectively. Thus, the number of

objective function calculations was 1,600. These two

approaches were applied for all the 14 UCI datasets, and

the k-fold method was used in experiments with k = 10.

Table 4 shows the comparison between CGSA-SVM

and PSO-SVM in classification accuracy and number of

selected features. The results of Table 4 were calculated

based on 10 repeated experiments for each dataset, with the

mean and standard deviation analyzed. In order to examine

Table 2 Experimental results

and accuracy statistics of

CGSA-SVM in the UCI datasets

Dataset Accuracy (%) Optimized C Optimized c No. of features

AUS 100 ± 0 453.44 ± 242.13 13.92 ± 8.24 5.20 ± 1.98

BRE 100 ± 0 648.99 ± 312.39 10.99 ± 9.34 4.20 ± 1.22

GER 95.50 ± 5.79 566.53 ± 211.06 10.51 ± 7.84 6.40 ± 1.89

IO 84.41 ± 11.35 407.83 ± 310.28 8.48 ± 6.84 13.80 ± 4.02

IR 100 ± 0 596.47 ± 271.77 9.35 ± 8.13 3.10 ± 0.87

PM 100 ± 0 545.47 ± 258.49 7.93 ± 8.84 4.70 ± 2.00

VEH 99.63 ± 0.82 423.08 ± 274.44 9.98 ± 8.41 7.90 ± 2.18

VW 100 ± 0 629.29 ± 227.30 4.78 ± 3.93 5.50 ± 2.06

WN 100 ± 0 527.97 ± 277.90 7.66 ± 4.85 5.40 ± 1.89

Table 3 Classification accuracy comparison between different

methods

Dataset Grid-

SVM [7]

GA-

SVM [7]

PSO-

SVM [8]

GSA-

SVM [28]

CGSA-

SVM

AUS 84.84 88.10 91.03 95.71 100

BRE 96.64 96.19 99.18 95.57 100

GER 75.30 85.60 81.62 94.51 95.5

IO 93.08 98.56 99.01 96.01 84.41

IR 96.00 100 99.20 – 100

PM 76.69 81.50 82.68 94.09 100

VEH 84.28 84.06 89.83 – 99.63

VW 98.91 99.30 100 – 100

WN 96.60 – 100 – 100

Average 89.15 91.66 93.62 95.18 97.73

– Approach did not use the dataset for test
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the effectiveness of experimental results, pair t test was

used for analysis. Table 4 shows that the proposed

approach performs better than PSO-SVM on most datasets,

with the exception of ‘‘Ionosphere’’ and ‘‘Wine.’’ On most

datasets, CGSA-SVM performed significantly better than

PSO-SVM. Results of pair t tests show that there is sig-

nificant difference between the results of these two

approaches, which proves the effectiveness of the results.

In this part of experiments, the results of PSO-SVM are

slightly different from those in [8]. The average accuracy

of the first nine datasets in [8] is 93.62 %, compared with

90.59 % which we got on the same datasets. The reason

would be that the number of evaluations of fitness function

in [8] was 2000, while this number had been decreased to

1,600 in our experiments. It also shows that this type of

heuristic search algorithm-based system is sensitive to the

number of fitness evaluations.

Figure 4 exhibits the average iteration processes of

PSO-SVM and CGSA-SVM, where the maximum numbers

of iterations are 200 and 20, respectively. The iteration

processes are based on results of executing these two

approaches 10 times on all 14 UCI datasets. From Fig. 4, it

is manifest that CGSA-SVM could find the best fitness

value more efficiently and effectively.

Comparing the results of CGSA-SVM in these experi-

ments with those of GSA-SVM in literature, it can be seen

that CGSA-SVM is more accurate when the number of

fitness evaluations for these two approaches was both set as

100. The average accuracy of CGSA-SVM is 97.53 % in

Table 4, which is greater than the 95.18 % of GSA-SVM in

Table 3.

Experiments of classification on UCI datasets show the

superiority of the proposed approach over the existing

similar methods. Compared with PSO and GA, the GSA

has many advantages [28]. Among other advantages, the

GSA is memoryless, which makes it robust to escape from

local optima, and the direction of any agent is adjusted

based on the position of all agents, which makes it more

capable of exploring the search space. The chaos embedded

GSA-SVM has inherited the advantage of GSA in search-

ing SVM parameters, so it is acceptable that CGSA-SVM

performed better than PSO-SVM and GA-SVM.

The difference between CGSA-SVM and GSA-SVM is

the implement of feature selection method. CGSA-SVM

employs chaotic sequence to search for the optimal feature

subset, while GSA-SVM uses binary GSA for this task.

The chaotic sequence possesses the advantages of ergo-

dicity and stochasticity, thus allowing CGSA-SVM to

search in the feature space more efficiently.

Table 4 Comparison of

CGSA-SVM and PSO-SVM

and results of pair t tests

Confidence level a = 0.05

Dataset PSO-SVM CGSA-SVM p value of pair t test Significance

AUS 88.67 ± 3.92 99.85 ± 0.46 \0.001 Extremely significant

BRE 98.80 ± 1.17 99.25 ± 0.78 \0.001 Extremely significant

GER 78.5 ± 3.77 91.3 ± 6.48 \0.001 Extremely significant

IO 95 ± 7.21 82.64 ± 14.23 0.0248 Very significant

IR 99.33 ± 2.10 100 ± 0 0.3305 Not quite significant

PM 79.47 ± 2.07 100 ± 0 \0.001 Extremely significant

VEH 82.07 ± 4.84 99.02 ± 0.96 \0.001 Extremely significant

VW 93.40 ± 14.62 98.40 ± 5.03 0.3202 Not quite significant

WN 100 ± 0 97.5 ± 4.37 0.0871 Not quite significant

MAM 86.34 ± 3.43 100 ± 0 \0.001 Extremely significant

TAE 67.85 ± 13.14 99.28 ± 2.25 \0.001 Extremely significant

HR 76.15 ± 11.14 100 ± 0 \0.001 Extremely significant

MR 81.32 ± 13.65 98.67 ± 3.71 \0.001 Extremely significant

SB 93.37 ± 2.09 99.43 ± 0.81 \0.001 Extremely significant
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Fig. 4 Average iteration process of classification on 14 UCI dataset
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5 Conclusions

In order to solve the problems of SVM facing in classifi-

cation, this study presents a hybrid SVM system based on

chaotic search and gravitational search algorithm. The

proposed CGSA-SVM is capable of searching for the opti-

mal SVM parameters and the optimal feature subset

simultaneously. Fourteen UCI datasets were employed in

experiments to test the performance of the proposed CGSA-

SVM system. Comparison of the obtained results with those

of other approaches demonstrates that the developed CGSA-

SVM approach has a better classification accuracy than

others tested. With 500 evaluations of fitness function, the

CGSA-SVM obtains much higher classification accuracy

than GSA-SVM, PSO-SVM and GA-SVM, although eval-

uations of fitness function of latter approaches are 2,000 and

5,000. With the same evaluations of fitness function, CGSA-

SVM performs better than GSA-SVM. The experimental

results make it convincible that the proposed approach in

this paper is an efficient and effective classification method.
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