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Abstract In this paper, finite-time Zhang neural networks

(ZNNs) are designed to solve time-varying quadratic pro-

gram (QP) problems and applied to robot tracking. Firstly,

finite-time criteria and upper bounds of the convergent time

are reviewed. Secondly, finite-time ZNNs with two tunable

activation functions are proposed and applied to solve the

time-varying QP problems. Finite-time convergent theo-

rems of the proposed neural networks are presented and

proved. The upper bounds of the convergent time are

estimated less conservatively. The proposed neural net-

works also have superior robustness performance against

perturbation with large implementation errors. Thirdly,

feasibility and superiority of our method are shown by

numerical simulations. At last, the proposed neural net-

works are applied to robot tracking. Simulation results also

show the effectiveness of the proposed methods.

Keywords Time-varying QP problems � Finite-time

ZNN � Tunable activation function � Upper bound of

convergent time � Robot tracking

1 Introduction

Quadratic program (QP) problems are widely applied in

science and engineering fields, such as, k-winner-take-all

problem [1–4], optimal controller design [5, 6], digital sig-

nal processing [7], robot-arm motion planning [8–12] and so

on. In some cases of their application areas, it is needed to

solve time-varying QP problems. There are many algorithms

or methods to solve the time-varying QP problems.

Numerical methods can be applied to linear-equality con-

straint, while sequential quadratic programming (SQP) is

widely used to solve nonlinear programming (NLP) prob-

lems [13–15]. In addition, neural networks also play an

important role in solving the time-varying QP problems.

They possess the characteristics of parallel-distributed nat-

ure and hardware-realization convenience and receive con-

siderable studies in many scientific and engineering fields.

For instance, Zhang neural network (ZNN) has been pro-

posed to solve the time-varying QP problems [8, 16–20]. It is

shown that the exact solutions can be achieved when time

goes to infinity. In [8], Zhang and Yang presented a special

type of ZNN model with a power-sum activation function. It

has better robustness against large implementation errors

than the one with linear function. However, the proposed

ZNN converges to the actual solution after infinitely long

time. In order to accelerate ZNN to finite-time convergence,

activation functions, signðxÞjxjr with 0\r\1 and

signðxÞðjxjrþ jxj1=rÞwith 0\r\1, are used to solve QP

problem in [21] and to solve complex time-varying Syl-

vester equation in [22], respectively. More recently, ZNN

with a tunable activation function is proposed to solve QP

problems [23]. It is shown ZNN with the tunable activation

function has a faster convergent speed and less sensitivity to

additive noise [23].
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Based on the ideas in [8, 21–26], we design ZNNs with

two tunable activation functions to solve the time-varying

QP problems. The exact solutions of these problems can be

derived in finite time. Moreover, ZNNs with these tunable

activation functions have superior robustness performance

against perturbation with large implementation errors than

the one proposed in [8]. At the same time, we can estimate

the upper bounds of the convergence time with less

conservation.

Our paper is organized as follows. In Sect. 2, we give

some preliminaries about finite-time stability and estima-

tion of the upper bounds of the convergence time. In

Sect. 3, time-varying QP problems are formulated and

solved by ZNNs with two tunable activation functions.

Sect. 4 gives robust analysis of the proposed neural net-

works and shows that the proposed neural networks have

the superior robust performance against perturbation with

large implementation errors than the model in [8]. In

Sect. 5, feasibility and superiority of our method are vali-

dated by numerical simulations. In Sect. 6, our neural

networks are applied to robot tracking. The superiority is

also shown by computer simulation. At last, Sect. 7 con-

cludes this paper.

2 Preliminaries

Consider the following system:

_xðtÞ ¼ f ðxðtÞÞ; f ð0Þ ¼ 0; x 2 Rn; xð0Þ ¼ x0; ð1Þ

where f : D ! Rn is continuous on an open neighborhood

D of the origin x ¼ 0.

Definition 1 [27] The equilibrium x ¼ 0 of (1) is finite-

time convergent if there is an open neighborhood U of the

origin and a function Tx : U n f0g ! ð0;1Þ, such that every

solution trajectory xðt; x0Þ of (1) starting from the initial point

x0 2 U n f0g is well defined and unique in forward time for

t 2 ½0; Txðx0ÞÞ and limt!Txðx0Þ xðt; x0Þ ¼ 0. Then, Txðx0Þ is

called the convergence time (of the initial state x0Þ. The

equilibrium of (1) is finite-time stable if it is Lyapunov stable

and finite-time convergent. If U ¼ D ¼ Rn, the origin is a

globally finite-time stable equilibrium.

We give the following sufficient conditions such that the

system (1) is finite-time stable.

Lemma 1 [24, 25] If there is a C1 positive definite

function VðxÞdefined on a neighborhood U � Rn of the

origin and real numbers k1; k2 [ 0 and 0\r\1, such that

_VðxÞjð1Þ � � k1VðxÞr � k2VðxÞ; 8x 2 U: ð2Þ

Then, the origin of system (1) is finite-time stable. The

convergence time T1 satisfies

T1ðx0Þ�
ln 1þ k2

k1
Vðx0Þ1�r

h i

k2ð1� rÞ ; ð3Þ

for all x0 2 U. If U ¼ Rn and VðxÞ is radially unbounded,

the origin of system (1) is globally finite-time stable.

Lemma 2 Suppose there is a positive definite function

VðxÞ 2 C1 defined on a neighborhood U � Rn of the ori-

gin, such that

_VðxÞjð1Þ � � k1VðxÞr � k2VðxÞ � k3VðxÞ
1
r ; 8x 2 U; ð4Þ

where k1, k2, k3 [ 0 and 0\ r \1. Then, the origin of

system (1) is locally finite-time stable. The convergence

time T2 satisfies

T2ðx0Þ�

r ln
k2 þ k3

k2Vðx0Þðr�1Þ=r þ k3

" #

k2ð1� rÞ þ
ln 1þ k2

k1

� �

k2ð1� rÞ ;Vðx0Þ� 1;

ln 1þ k2

k1

Vðx0Þ1�r

� �

k2ð1� rÞ ;Vðx0Þ\1;

8>>>>>>>><
>>>>>>>>:

ð5Þ

for all x0 2 U. If U ¼ Rnand VðxÞ is also radially unboun-

ded, the origin of the system (1) is globally finite-time stable.

Proof Since VðxÞ� 0, it follows from (4) that

_VðxÞjð1Þ � � k1VðxÞr � k2VðxÞ:

Then, Lemma 1 implies that the system (1) is finite-time

stable.

Now, we prove that the inequality (5) holds.

If Vðx0Þ� 1, from (4), it follows that

_VðxÞ� � k2VðxÞ � k3VðxÞ
1
r : ð6Þ

Multiplying (6) by ek2t, we have,

ek2t _VðxÞ þ ek2tk2VðxÞ� � ek2tk3VðxÞ
1
r :

Then,

dðek2tVðxÞÞ
ðek2tVðxÞÞ1=r

� � k3eð1�
1
r
Þk2tdt:

Integrating the above differential inequality from 0 to t, we

have

VðxÞ� e�k2t Vðx0Þ1�
1
r þ k3

k2

� k3

k2

eð1�
1
r
Þk2t

� � r
r�1

: ð7Þ

Let

t1 ¼
r ln k2þk3

k2Vðx0Þðr�1Þ=rþk3

h i

k2ð1� rÞ : ð8Þ
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It is easy to check that

VðxÞ� 1; t� t1: ð9Þ

When VðxÞ� 1, from (4), we have

_VðxÞ� � k1VðxÞr � k2VðxÞ: ð10Þ

By Lemma 1, we obtain t2,

t2 ¼
ln 1þ k2

k1

� �

k2ð1� rÞ ;
ð11Þ

such that xðtÞ ¼ 0, t� t2. Therefore, if Vðx0Þ[ 1, we have

xðtÞ ¼ 0, when, t [ t1 þ t2. Thus, the first inequality in (5)

holds.

If Vðx0Þ� 1. The inequality (10) also holds. By

Lemma 1, we have xðtÞ ¼ 0, t� T1ðx0Þ.

3 Problem formulation and neural network solvers

with two tunable activation functions

A time-varying QP problem with time-varying linear-

equality constraint is given as follows,

minimze :
1

2
xTðtÞPðtÞxðtÞ þ qTðtÞxðtÞ; ð12aÞ

subject to : AðtÞxðtÞ ¼ bðtÞ; ð12bÞ

where PðtÞ 2 Rn�n is a smooth time-varying, positive-

defined, symmetric Hessian matrix for any t 2 ½0;þ1Þ,
qðtÞ 2 Rn is defined as a smooth time-varying coefficient

vector, AðtÞ 2 Rm�n is a full row rank, smooth time-varying

coefficient matrix, and bðtÞ 2 Rm is defined as smooth

time-varying vector.

From [20], the problem (12) can be solved as follows:

WðtÞYðtÞ ¼ uðtÞ; ð13Þ

where WðtÞ ¼ PðtÞ ATðtÞ
AðtÞ 0

� �
, YðtÞ ¼ xðtÞ

kðtÞ

� �
,

uðtÞ ¼ �qðtÞ
bðtÞ

� �
, kðtÞ 2 Rm is assumed as the Lagrange

multiplier vector.

As in [16–20], let eðtÞ ¼ WðtÞYðtÞ � uðtÞ denote the

vector-valued error function. The time derivative _eðtÞ is

formulated as

_eðtÞ ¼ �eFðeðtÞÞ; ð14Þ

where FðxÞ is defined as the following tunable activation

functions:

FðxÞ ¼ signðxÞðk1jxjr þ k2jxj þ k3jxj
1
rÞ; ð15Þ

or

FðxÞ ¼
XN

k¼1

signðxÞðk1jxj
1
k þ k2jxj þ k3jxjkÞ; ð16Þ

where N [ 1 is an integer parameter, 0\r\1, k1 [ 0,

k2 [ 0, and k3 [ 0 are tunable parameters.

From (14), we have the following finite-time neural

network model for solving the problem (12):

WðtÞ _YðtÞ ¼ �eFðWðtÞYðtÞ � uðtÞÞ � _WðtÞYðtÞ þ _uðtÞ;
ð17Þ

where the parameter e [ 0. Then, we have

_Yi ¼ �
Xnþm

k¼1

_wikYk þ
Xnþm

k¼1

ðrik � wikÞ _Yk

�eF
Xnþm

k¼1

wikYk � ui

 !
þ _ui;

ð18Þ

where Yi, _Yi, ui, and _ui are the ith elements of YðtÞ, _YðtÞ,
uðtÞ, and _uðtÞ, respectively, i ¼ 1; 2; � � � ; nþ m, and wik,

_wik, and rik are the ith line and kth column elements of

WðtÞ, _WðtÞ, and identity matrix I, respectively.

Now, we give our main results.

Theorem 1 If the time-varying matrices PðtÞ, qðtÞ, AðtÞ,
and bðtÞ are given, starting from any initial value Yð0Þ, the

neural network (17) with (15) always converges to its

equilibrium state ½x�ðtÞ; k�ðtÞ	T in finite time, where x�ðtÞ is

the time-varying theoretical solution of (12).

Proof Let eþð0Þ ¼ max1� i� nþmfjeið0Þjg. Note that

every eiðtÞ in eðtÞ has identical dynamic _eiðtÞ ¼ FðeiðtÞÞ.
Then, we have �jeþðtÞj � eiðtÞ� jeþðtÞj, for t� 0 and

1� i� nþ m. That implies that eiðtÞ (i ¼ 1; � � � ; nþ m)

converge to zero when eþðtÞ reaches zero. Note that

_eþðtÞ ¼ �eFðeþðtÞÞ; eþð0Þ ¼ maxfjeið0Þjg:

Defining a Lyapunov function V ¼ jeþðtÞj2, then we have

the time derivative of V:

_V ¼ 2j _eþðtÞjeþðtÞ
¼ �2eFðjeþðtÞjÞeþðtÞ

¼ �2e k1jeþðtÞjrþ1 þ k2jeþðtÞj2 þ k3jeþðtÞj
1
r
þ1

� �

¼ �2e k1V
rþ1

2 þ k2V þ k3V
1þr
2r

� �
:

From the proof of Lemma 2, we can obtain that neural

network (17) with (15) converges to its equilibrium state

½x�ðtÞ; k�ðtÞ	T in finite-time interval. Then, the time-varying

theoretical solution of (12) can be obtained in finite time,

and the upper bound of convergence time Tf 1 satisfies
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Tf 1 ¼

r ln
k2 þ k3

k2V
ðr�1Þ=2r
0 þ k3

" #

ek2ð1� rÞ þ
ln 1þ k2

k1

� �

ek2ð1� rÞ ;V0� 1;

ln 1þ k2

k1

V
ð1�rÞ=2
0

� �

ek2ð1� rÞ ;V0\1;

8>>>>>>>><
>>>>>>>>:

ð19Þ

where V0 ¼ maxfje1ð0Þj2; je2ð0Þj2; � � � ; jenþmð0Þj2g. h

Theorem 2 When the time-varying matrices PðtÞ, qðtÞ,
AðtÞ, and bðtÞ are given, the neural network (17) with (16)

always converges to its equilibrium state ½x�ðtÞ; k�ðtÞ	T in

finite time for any initial value Yð0Þ, where x�ðtÞ is the

time-varying theoretical solution of (12).

Proof Choosing the Lyapunov function V ¼ jeþðtÞj2, we

have

_V ¼ 2j _eþðtÞjeþðtÞ
¼ �2eFðjeþðtÞjÞeþðtÞ

¼ �2e
XN

k¼1

k1jeþðtÞj
1
k
þ1 þ k2jeþðtÞj2 þ k3jeþðtÞjkþ1

� �

¼ �2e
XN

k¼1

k1V
kþ1
2k þ k2V þ k3V

1þk
2

� �
: ð20Þ

I. If V0 [ 1 (V0 is given in the proof of Theorem 1),

from (20), we have

_V � � 2e
XN

k¼1

k3V
kþ1

2 þ k2V
� �

¼ �2e k3

XN

k¼1

V
kþ1

2 þ k2NV

 !

� � 2eðk3NV2 þ k2NVÞ:

As in the proof of Lemma 2, we can obtain VðtÞ� 1 when

t� t1 ¼
ln

k2þk3

k2=
ffiffiffi
V0

p
þk3

h i

ek2N
. When VðtÞ� 1, from (20), it follows

that

_V � � 2e
XN

k¼1

k1V
kþ1
2k þ k2V

� �

¼ �2e k1

XN

k¼1

V
kþ1
2k þ k2NV

 !

� � 2eðk1NV
1
2 þ k2NVÞ:

Then, we have VðtÞ ¼ 0, when t [ t2 ¼ 2 lnð1þ k2=k1Þ=
ðek2NÞ.

Therefore, if V0� 1, we have VðtÞ ¼ 0 when

t� Tf 2 ¼ t1 þ t2.

II. If V0\1, by Lemma 1, we have V ¼ 0 when

t� Tf 2 ¼ lnð1þ k2V
1
2

0=k1Þ=ðek2NÞ.
In conclusion, we can obtain that neural network (17)

with (16) converges to its equilibrium state in finite time.

Therefore, the time-varying theoretical solution of (12) can

be obtained in finite-time interval and the upper bound of

convergence time Tf 2 satisfies

Tf 2 ¼

ln
k2 þ k3

k2=
ffiffiffiffiffi
V0

p
þ k3

� �

ek2N
þ

2 ln 1þ k2

k1

� �

ek2N
;V0� 1;

2 ln 1þ k2

k1

V
1
4

0

� �

ek2N
;V0\1:

8>>>>>>><
>>>>>>>:

ð21Þ

Remark 1 The neural networks proposed in [16–20],

especially in [8], converge to the exact solution of (12)

asymptotically. In other word, it requires infinitely long

time to achieve the exact solution. From Theorem 1 and 2,

we know that the neural network (17) with the activation

function (15) or (16) can converge to the desired solution

of (12) in finite time. Moreover, the upper bounds of

convergence time Tf 1 and Tf 2 can be determined by k1, k2,

k3, r, e, and N.

Remark 2 If V0\1, we can obtain
2 ln 1þk2

k1
V

1
4
0

� �

ek2N

\
ln 1þk2

k1
V

1
4
0

� �

ek2
¼
ð1�rÞ ln 1þk2

k1
V

1
4
0

� �

ek2ð1�rÞ : Moreover, let FðrÞ ¼

ln 1þ k1

k2
V
ð1�rÞ=2
0

h i
�ð1� rÞ ln 1þ k2

k1
V

1
4

0

� �
, we have

F
0 ðrÞ ¼ 1

2

ln 1
V0

k1=k2V
1�r

2

0

1þ k1=k2V
1�r

2

0

þ ln 1þ k1=k2V
1
4

0

� �
[ 0:

Note that Fð0Þ[ 0, then FðrÞ[ 0. Therefore, Tf 2\Tf 1. If

V0� 1, using the same method, we also have Tf 2\Tf 1.

4 Robustness analysis

We discuss the robustness of the neural network (17) by

adding a large model-implementation error Dx 2 Rnþm

to (14),

_eðtÞ ¼ �eFðeðtÞÞ þ Dx; ð22aÞ

_eiðtÞ ¼ �eFðeiðtÞÞ þ Dxi; ð22bÞ

where eiðtÞ and Dxi are the ith elements of eðtÞ and Dx,

respectively, i ¼ 1; 2; � � � ; nþ m.
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In the following theorem, we will show the robustness of

the proposed neural networks with a large implementation

error.

Theorem 3 Consider the perturbed neural network (22)

with the activation function (15), the steady-state error

satisfies the following inequality:

lim
t!1
keðtÞk2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ m

27k2
1k2

2k2
3

	 
 1

rþ1þ1
r

d
e

� � 6

rþ1þ1
r

vuut ;

where jDxij � d� þ1 for any t 2 ½0;þ1Þ with d
 e or

at least d� e. For the perturbed neural network (22) with

the activation function (16), the steady-state error satisfies

the following inequality:

lim
t!1
keðtÞk2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ m

432N3k
3
2

1k3
2k

3
2

3

� � 4
9þ3N

d
e

� � 8
3þN

vuuut ;

for error range lim
t!1
jeij � 1 and N [ 1.

Proof Define a Lyapunov function vi ¼ jeiðtÞj2=2 for the

perturbed neural network (22). Then, we have

_viðtÞ ¼ jeiðtÞj _eiðtÞ ¼ �ejeiðtÞjFðeiðtÞÞ þ jeiðtÞjDxi:

Note that jDxij � d. We can obtain jeijjDxij � djeij. Then,

we have

_viðtÞ� � ejeiðtÞjFðeiÞ þ djeij ¼ �jeijðeFðeiÞ � dÞ:
ð23Þ

The time evolution eiðtÞ (1� i� nþ m) has three cases: (i).

eFðeiÞ � d[ 0, (ii). eFðeiÞ � d ¼ 0, (iii). eFðeiÞ � d\0.

In the following part, we will give a detailed discussion.

(a) When the perturbed neural network (22) with t 2
½t0; t1	 is in the case (i), then _vi\0 and (23) imply that

eiðtÞ converges to zero as t evolves.

(b) If the perturbed neural network (22) with any time t

is in the case (ii), then _vi� 0 implies that ei converges

to zero or FðeiÞ ¼ d=e.
(c) For the case (iii), the worst case, (23) implies that the

situation _vi [ 0 will happen. So, jeij may not

converge to zero. For the worst case, note that

0\ _vi� � jeijðeFðeiÞ � dÞ, as eFðeiÞ � d range in

value from a positive value to 0, vi and jeij will

increase. So, there exists t2 such that

eFðeiðt2ÞÞ � d ¼ 0, which returns to the case (ii),

FðeiÞ ¼ d=e.

By the above analysis, the steady-state error is

lim
t!1
FðjeijÞ � d

e. For d
 e or at least d� e, we can obtain

lim
t!1
FðjeijÞ � d=e
 1 or at least � 1.

For the perturbed neural network (22) with (15), we

have

d2

e2
� lim

t!1
F 2ðjeiðtÞjÞ

¼ lim
t!1

k1jeiðtÞjr þ k2jeiðtÞj þ k3jeiðtÞj
1
r

� �2

� lim
t!1

k2
1jeiðtÞj2r þ k2

2jeiðtÞj2 þ k2
3jeiðtÞj

2
r

� �

� lim
t!1

3 k2
1k2

2k2
3jeiðtÞj2rþ2þ2

r

h i1
3

:

Thus,

lim
t!1
jeiðtÞj2�

1

27k2
1k2

2k2
3

� � 1

rþ1þ1
r d

e

� � 6

rþ1þ1
r

:

Then,

lim
t!1
keðtÞk2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ m

27k2
1k2

2k2
3

	 
 1

rþ1þ1
r

d
e

� � 6

rþ1þ1
r

vuut : ð24Þ

For the perturbed formula (22) with (16), we have

d2

e2
� lim

t!1
F 2ðjeiðtÞjÞ

¼ lim
t!1

XN

k¼1

ðk1jeiðtÞj
1
k þ k2jeiðtÞj þ k3jeiðtÞjkÞ

 !2

¼ lim
t!1

Nk2jeiðtÞj þ
XN

k¼1

k1jeiðtÞj
1
k þ
XN

k¼1

k3jeiðtÞjk
 !2

� lim
t!1

Nk2jeiðtÞj þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1k3

XN

k¼1
jeiðtÞj

1
k

XN

k¼1
jeiðtÞjk

r !2

¼ lim
t!1

 
N2k2

2jeiðtÞj2 þ 4k1k3

XN

k¼1

jeiðtÞj
1
k

XN

k¼1

jeiðtÞjk

þ 4Nk2jeiðtÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1k3

XN

k¼1
jeiðtÞj

1
k

XN

k¼1
jeiðtÞjk

r !

� lim
t!1

N2k2
2jeiðtÞj2 þ 4k1k3jeiðtÞj

XN

k¼1

jeiðtÞjk
 

þ4Nk2jeiðtÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1k3jeiðtÞj

XN

k¼1
jeiðtÞjk

r !

� lim
t!1

N2k2
2jeiðtÞj2 þ 4k1k3jeiðtÞjNþ1

�

þ4Nk2k
1
2

1k
1
3

1jeiðtÞj
Nþ3

2

�

� lim
t!1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16N3k

3
2

1k3
2k

3
2

3jeiðtÞj3þNþNþ3
2

3

q
:

Thus,
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lim
t!1
jeiðtÞj2�

1

432N3k
3
2

1k3
2k

3
2

3

 ! 4
9þ3N

d
e

� � 8
3þN

:

Then,

lim
t!1
keðtÞk2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ m

432N3k
3
2

1k3
2k

3
2

3

� � 4
9þ3N

d
e

� � 8
3þN

vuuut : ð25Þ

The proof is completed. h

Remark 3 In [8], the steady-state errors are
ffiffiffiffiffiffiffiffiffiffiffiffi
nþ m
p

d=e
and

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ m
p

d=ðNeÞ with the linear activation function and

power-sum activation function, respectively. Note that

6=ð1þ r þ 1=rÞ � 2 and 8=ð3þ NÞ� 2, so the steady-

state errors with (15) and (16) are smaller than the ones

with the linear activation function and with the power-sum

activation function by setting appropriate values of k1, k2,

k3 and N.

Remark 4 Note that 6=ð1þ r þ 1=rÞ[ 8=ð3þ NÞ for

any N [ 1 and 0:43� r\1, we know that the steady-state

error with (16) is smaller than the one with (15) for the

same parameters. For 0\r\0:43, we also obtain that the

steady-state error with (16) is smaller the one with (15) by

setting the values of the parameters k1, k2, k3, and N.

5 Numerical simulations

In this part, we give numerical simulations for solving the

time-varying QP by the neural network (17) with the acti-

vation function (15) and with the activation function (16),

and with the power-sum activation function in [8], respec-

tively. We will show superiority of our methods from two

aspects: finite-time convergence and robustness.

Example 1 For (12), we set

PðtÞ ¼ 8þ sin t 0:9 cos t

0:9 cos t 10� 0:5 cos t

� �
, qðtÞ ¼ �2 cos 2t

�2 sin 2t

� �
,

AðtÞ ¼ ½2 cos 3t; sin 3t	, bðtÞ ¼ sin t.

From (13), we have uðtÞ ¼
2 cos 2t

2 sin 2t

sin t

2
4

3
5, WðtÞ ¼

8þ sin t 0:9 cos t 2 cos 3t

0:9 cos t 10� 0:5 cos t sin 3t

2 cos 3t sin 3t 0

2
4

3
5.

Letting Y0 ¼ ½2; 1; 1	T, e ¼ 1, r ¼ 0:5, k1 ¼ k2 ¼ k3 ¼ 1,

N ¼ 3, we have eð0Þ ¼ Wð0ÞYð0Þ � uð0Þ ¼ ½17:8; 10:4; 4	T,

V0 ¼ 17:82 [ 1. Then, we have Tf 1 ¼ 2:0248s and Tf 2 ¼
0:6749s by calculating (19) and (21), respectively. The

convergence time Tfc is determined such that

kxðtÞ � x�ðtÞk� 10�6, t [ Tfc . It is observed form Fig. 1

and 2 that the neural networks can converge to the theoretical

solution in finite time and the convergence time Tfc1
¼ 0:82

and Tfc2
¼ 0:45, respectively, while the neural network in [8]

can not converge to the theoretical solution in finite time.

Let Dx ¼ ½102; 102; 102	T in (22) and e ¼ 1, r ¼ 0:5,

k1 ¼ k2 ¼ k3 ¼ 5, N ¼ 2, d ¼ 100
ffiffiffi
3
p

. From (24) and (25),

we obtain that the steady-state errors are given as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nþ m

ð27k2
1k2

2k2
3Þ

1

rþ1þ1
r

d
e

� � 6

rþ1þ1
r

vuut � 22:58;

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nþ m

432N3k
3
2

1k3
2k

3
2

3

� � 4
9þ3N

d
e

� � 8
3þN

vuuut � 9:9638:

However, the steady-state error
ffiffiffiffiffiffiffiffiffiffiffiffi
nþ m
p

d=ðeNÞ � 100 [8].

The steady-state errors obtained by our methods are

smaller than the one obtained by [8]. Moreover, the neural

network with the activation function (16) has the most

superior robustness performance. The simulation results
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Fig. 1 Online solutions of Example 1 by the neural network (17)

with (15) , (16), and the neural network (c ¼ 1, N = 3) in [8]
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are given in Fig. 3. It also shows that our method has a

superior robustness performance.

In conclusion, theoretical analysis and numerical simu-

lations demonstrate the effectiveness of our methods.

Example 2 We select a time-varying Toeplitz matrix

PðtÞ ¼

p1ðtÞ p2ðtÞ p3ðtÞ � � � pnðtÞ
p2ðtÞ p1ðtÞ p3ðtÞ � � � pn�1ðtÞ

p3ðtÞ p2ðtÞ p1ðtÞ . .
. ..

.

..

. ..
. . .

. . .
.

p2ðtÞ
pnðtÞ pn�1ðtÞ � � � p2ðtÞ p1ðtÞ

2
6666664

3
7777775
2 Rn�n,

where p1ðtÞ ¼ 8þ cos t, piðtÞ ¼ sin t
i�1
; i ¼ 2; 3; � � � ; n. Let

qðtÞ ¼ �2 cos 2t; 2 cos 2t þ p
2

	 

; � � � ;

�
2 cos 2t þ ðn�1Þp

2

� �
	

T 2 Rn�1, AðtÞ ¼ sin t; sin t � p
3

	 

; sin t � 2p

3

	 

; � � � ;

�

sinðt � ðn�1Þp
3
Þ	 2 R1�n, and bðtÞ ¼ 2 cos 2t þ np

2

	 

2 R

for (12).

In the simulation, let n ¼ 4, e ¼ 2, r ¼ 0:5, k1 ¼ k3 ¼ 1,

k2 ¼ 2, N ¼ 4, Y0 ¼ � 1
4
; 1

16
;� 1

4
; 1

16
; 1

4

� �T
. Then, eð0Þ ¼

Wð0ÞYð0Þ � uð0Þ ¼ 0; 1
2
; 0; 1

2
; 0

� �T
and V0 ¼ 0:52\1.

Therefore, we can obtain Tf 1 ¼ 0:4407s and Tf 2 ¼ 0:1102s

by computing (19) and (21), respectively. From Figs. 4

and 5, it is observed that the convergence time Tfc1
¼ 0:38s

and Tfc2
¼ 0:095s, respectively.

Next, we compare the robustness performance of the

neural networks proposed in this paper with the one in [8].

Let Dx ¼ ½102; 102; 102	T in (22), e ¼ 2, r ¼ 0:5,

k1 ¼ k3 ¼ 1, k2 ¼ 2, N ¼ 4, d ¼ 100
ffiffiffi
3
p

. From (24)

and (25), we obtain that the steady-state errors are given as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nþ m

ð27k2
1k2

2k2
3Þ

1

rþ1þ1
r

d
e

� � 6

rþ1þ1
r

vuut � 43:0257;

and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ m

432N3k
3
2

1k3
2k

3
2

3

� � 4
9þ3N

d
e

� � 8
3þN

vuuut � 8:8638:

However, the steady-state errors
ffiffiffiffiffiffiffiffiffiffiffiffi
nþ m
p

d=ðeNÞ � 48:4123

and
ffiffiffiffiffiffiffiffiffiffiffiffi
nþ m
p

d=e � 193:6492 [8]. Obviously, the steady-

state errors obtained by our methods are smaller than the ones

obtained by [8]. Moreover, the neural network with the

activation function (16) has the most superior robustness

performance. The simulation results are shown in Fig. 6.

6 Application to robot tracking

The neural network (17) can be applied to robot tracking

by solving a time-varying QP problem. Compared with the

neural networks proposed in [8–12, 28–31], the theoretical

solution can be achieved in finite time by our method. If

there exists a large implementation error, our neural net-

works also have a superior robustness performance.
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Fig. 2 The convergence time of online solution of Example 1 by the

neural network (17) with (15) and (16)

0 0.2 0.4 0.6 0.8 1
0

5

10

15

t (s)

e(
t)

2

Power−sum
(15)
(16)

Fig. 3 The robustness performance of online solution of Example 1

by the neural network (17) with (15), (16), and the neural network

(c ¼ 1, N = 3) in [8]
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6.1 Model

Consider the following redundant robot manipulator [8],

rðtÞ ¼ f ðhðtÞÞ; ð26Þ

where rðtÞ 2 Rm denotes the end-effector position vector in

Cartesian space, hðtÞ 2 Rn denotes the joint-space vector,

and f ð�Þ denotes a continuous nonlinear function with

known structure and parameters. The inverse kinematic

problem is to find the joint variable hðtÞ for any given rðtÞ.
By (26), the relation between _rðtÞ and _hðtÞ can be described

as

JðhðtÞÞ _hðtÞ ¼ _rðtÞ; ð27Þ

where JðhðtÞÞ ¼ of ðhÞ=oh is the Jacobian matrix.

By the previous work [8, 10], we have the following

time-varying QP problem:

minimze :
1

2
xTðtÞPðtÞxðtÞ þ qTðtÞxðtÞ; ð28aÞ

subject to : AðtÞxðtÞ ¼ bðtÞ; ð28bÞ

where P ¼ I, qðtÞ ¼ lðhðtÞ � hð0ÞÞ, AðtÞ ¼ JðtÞ, and

bðtÞ ¼ _rðtÞ. hðtÞ 2 Rn is the joint variable vector, l is a

parameter used to scale the magnitude of the manipulator

response to joint displacements, and xðtÞ ¼ _hðtÞ will be

solved online.

6.2 Simulation results

In this part, a five-link planar redundant robot manipulator

is applied to simulation. The five-link robot has three

redundant degrees (due to n ¼ 5, m ¼ 2); the desired path

of its end effector is an ellipse with the major radius being

0.6m and the minor radius being 0.3m. The initial condi-

tions are h0 ¼ ½3p=4;�p=2;�p=4; p=6; p=3	T rad and

Y0 ¼ ½0; 0; 0; 0; 0; 0; 0	T. In addition, let N ¼ 3, l ¼ 4, and

e ¼ 10. We select the activation function (16) with

k1 ¼ k2 ¼ k3 ¼ 1. Then, eð0Þ ¼ Wð0ÞYð0Þ � uð0Þ ¼
½0; 0; 0; 0; 0; 0; 0:3	T and V0 ¼ 0:32\1. Therefore, we have

Tf 2 ¼ 0:0291s by calculating (21).

Figure 7 gives the motion trajectories of the five-link

planar robot manipulator operating in two-dimensional

space. Figure 8 shows that the actual trajectory of the

robot’s end effector, and the desired elliptical path are

sufficiently match. In addition, the trajectories of _hðtÞ and

hðtÞ are shown in Figs. 9 and 10, respectively.
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b Fig. 4 Online solution of Example 2 by the neural network (17) with

(15), (16), and the neural network (c ¼ 1, N = 3) in [8]
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It is observed from Fig. 11 that our neural network can

converge to the theoretical solution in finite time compar-

ing to the one in [8], and the actual convergence time is

Tfc2
¼ 0:024s.

Let Dx ¼ ½30; 30; 30; 30; 30; 30; 30	T in (22), e ¼ 10,

k1 ¼ k2 ¼ k3 ¼ 1. Figure 12 shows that our neural network

has a superior robustness performance than the one in [8].
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b Fig. 5 The convergence time of online solution of Example 2 by the

neural network (17) with (15) and (16)
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Fig. 6 The robustness performance of online solution of Example 2

by using the linear function (c ¼ 2), the power-sum function (c ¼ 2,

N = 4), and the functions (15) and (16)
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sized by the neural network (17) with (16) (k1 ¼ k2 ¼ k3 ¼ 1;N ¼ 3)
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7 Conclusions

In this paper, finite-time recurrent neural network has been

designed to solve time-varying QP problems and applied to

robot tracking. Firstly, finite-time criteria and upper bounds

of the convergent time were reviewed. Then, finite-time

neural network with tunable activation function was pro-

posed and applied to solve the time-varying QP problems.

Finite-time convergent theorems of the proposed neural

network were presented and proved. The upper bounds of

the convergent time were estimated less conservatively.

The neural network also has a superior robustness perfor-

mance against perturbation with large implementation

errors. Thirdly, feasibility and superiority of our method

were shown by numerical simulations. At last, the proposed

neural network was applied to robot tracking. Simulation
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results also showed the effectiveness of the proposed

methods.
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