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Abstract In this work, we introduce a method for data

analysis in nonstationary environments: time-adaptive

support vector regression (TA-SVR). The proposed

approach extends a previous development that was limited

to classification problems. Focusing our study on time

series applications, we show that TA-SVR can improve the

accuracy of several aspects of nonstationary data analysis,

namely the tasks of modelling and prediction, input rele-

vance estimation, and reconstruction of a hidden forcing

profile.

Keywords Regression � Support vector machine �
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1 Introduction

Nonstationary problems are those in which the data-gen-

erating distribution changes (or drifts) over time. Recent

years have shown an increasing interest in nonstationary

data analysis [1, 13], which is probably related to its many

challenging and technologically critical applications such

as spam detection [23], user’s preference modelling [20],

face detection in nonstationary environments [31] and

mechanical systems monitoring [5].

In this work we focus on nonstationary regression

problems. A concrete example of such a system, described

by Bartlett et al. [3], is a steel rolling mill, where the

efficiency of its operation depends on how accurately the

behaviour of the rolling surfaces can be predicted. As in

many industrial systems, an accurate physical model of the

process (relating some measured input variables to the

desired quantity) exists, but several unknown parameters

may change over time. The change may be slow (as the

rollers wear), or occasionally fast (as in a failure). In this

paper, we limit our analysis to the case of slowly changing

scenarios.

Time series applications probably represent the most

studied type of problem in this area, because most real-

world time series have some degree of nonstationarity. This

is generally due to external perturbations of the observed

system, but in some cases natural dynamics are complex

enough to comprise multiple time scales, so that for short

observational periods the largest scales act simply as

external perturbations to the fastest modes [35]. Applica-

tions in this area range from monitoring mechanical signals

[8] to ecosystem modelling [14] or financial time series

prediction [22, 24]. The method described in this work is

general in nature and can be applied to any kind of non-

stationary regression problem—not only time series mod-

elling. However, taking into account the prevalence of the

latter kind of problem in the literature and the fact that

chaotic time series represent one of the most difficult type

of regression problems, in this paper, we focus on several

nonstationary chaotic time series cases.

Specific methods have been developed for nonstationary

time series analysis [9], including the proper characterisation
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of nonstationarity [26], caused either by slow continuous

perturbations (usually called driving forces) [35] or by

abrupt discrete changes in the dynamics [9]. Several methods

have been introduced for the modelling and prediction of

nonstationary time series, in particular for the case of sys-

tems that change slowly with time. Stark et al. [29] explicitly

incorporated the time variable t into the description of the

system in order to encompass time-dependent dynamics.

Casdagli [9] proposed the use of an extra input parameter, a,

to account for nonstationary effects and assumed that aðtÞ
was known. In a more recent work, Verdes et al. [34] pro-

posed an improved algorithm to estimate aðtÞ, the driving

force of the nonstationary system, simultaneously with the

modelling of the time series using a particular neural network

model, yielding a remarkable improvement in modelling

performance in comparison to other strategies.

The extension of the support vector machine (SVM)

[11] to regression problems, usually called support vector

regression (SVR) [12], is a powerful modelling method

with a strong theoretical basis and great potential in prac-

tical regression applications. Many introductions to this

method have been published (see for example [28]). New

applications appear on a daily basis, including for example

travel time prediction, which is a critical step in advanced

traveller information systems [37], automatic prediction of

image quality [21] and financial forecasting [6]. However,

only a reduced set of works have considered the use of

SVR in nonstationary scenarios. In a series of papers, Tay

and Cao analysed the application of SVR to nonstationary

financial time series [7, 33]. To cope with nonstationarity,

they employed the simple and well-known strategy of

assigning an increasingly lower statistical weight to distant

past samples, as done for example by Koychev [19] in the

context of classification. Chang et al. [10] analysed the

related problem of a dynamical system switching between

a discrete number of modes.

In this work, we propose a new SVR-based strategy for

slowly varying regression problems. We extend the

recently introduced Time-Adaptive Support Vector

Machine (TA-SVM) [15, 16, 27] to a regression frame-

work, here called time-adaptive support vector regression

(TA-SVR). The new method recourses to a series of cou-

pled SVRs in order to learn in slowly changing environ-

ments. It is based on individual, flexible models that are

fitted on short segments of the available data and are

learned simultaneously (in a global manner) using a cou-

pling term that forces neighbouring models to be similar to

each other.

We evaluate TA-SVR on several nonstationary artificial

chaotic time series examples and find that the proposed

method is helpful on several aspects of nonstationary

regression analysis. In particular, we show that TA-SVR is

useful for: (1) modelling and prediction of nonstationary

time series, (2) relevance estimation through time of dif-

ferent model input variables and (3) profile reconstruction

of a hidden driving force acting on the system. In all cases,

we compare the performance of the new method against

competitive strategies selected from the recent literature.

The rest of the paper is organised as follows. In Sect. 2,

we introduce TA-SVR. In Sect. 3, we evaluate the pro-

posed approach on the three tasks enumerated in the pre-

ceding paragraph. Finally, in Sect. 4, we draw some

conclusions.

2 TA-SVR

In this section, we extend the TA-SVM method to the

regression domain by combining it with the original �-SVR

strategy, which casts a regression problem as a classifica-

tion one by means of an �-insensitive tube. To this end, we

will closely follow the procedure presented in Grinblat

et al. [15].

We begin by assuming that we are given a time-ordered

data set fðxi; yiÞ; i ¼ 1; . . .ng, where xi is a multivariate

input, yi 2 R, and the relationship between x and y slowly

changes in time, which is here parameterised by i. We

divide the dataset into m consecutive, disjoint time win-

dows twmðm ¼ 1; . . .m;m� nÞ and fit a sequence of m

(static) regression models, one for each time window. If the

ðx; yÞ mapping changes slowly over time, the sequence of

individual regressions should inherit this property. We

therefore seek for a succession of models with first-

neighbour similarity. The optimal solution to this problem

will be given by a trade-off between individual model

optimality and neighbouring models similarity. Assuming

that d is a distance measure in model space, the core idea of

our method is to minimise a two-term cost function:

1

m

Xm

l¼1

Errl þ
c

m� 1

Xm�1

l¼1

dðfl; flþ1Þ; ð1Þ

where the first term represents the average prediction error

of the fitted regressions, while the second one measures the

mean distance d between neighbouring models. The free

hyperparameter c controls the compromise between both

terms, as is customarily done in regularised model fitting.

The proposed approach can be implemented with any

model family over which an appropriate distance measure

can be defined. In this work, we use SVRs.1 Therefore, we

look for a sequence of m pairs ðw; bÞ, each one defining a

linear regression function fl such that flðxÞ ¼ wlxþ bl.

1 Here we employ linear SVRs but, as usual, kernels can be used to

produce nonlinear predictors if needed. In fact, in all of our examples

we use a Gaussian kernel.
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Following the same strategy as in TA-SVM, we use a

simple quadratic distance to measure similarity between

these models:

dðfl; fmÞ ¼ jjwl � wmjj2 þ ðbl � bmÞ2:

Applying this measure to (1), we can rewrite the cost

function for the full sequence of SVRs as:

1

m

Xm

l¼1

jjwljj2 þ C
Xn

i¼1

ðni þ n�i Þ þ
c

m� 1

Xm�1

l¼1

dðfl; flþ1Þ;

ð2Þ

which is to be minimised subject to

ni; n
�
i � 0;

yi � wlðiÞxi � blðiÞ þ eþ ni� 0;

wlðiÞxi þ blðiÞ � yi þ eþ n�i � 0;

where i ¼ 1; . . .n, and lðiÞ indicates the data window that

includes point xi. The first term in (2) corresponds to the

well-known margin term in SVM [11]. The second term is

also typical, corresponding to the particular error penali-

sation term for SVR [28]. Note that these terms evaluate a

complete set of models, each one trained on a different

time window. So far, the solution of this two-term problem

is the same set of SVRs that can be obtained by fitting each

model independently, if we used the same C for all SVRs.

The last term in (2) adds the new diversity penalisation,

which couples the sequence by relating each model to its

first neighbours. Small c values will tend to decouple the

sequence of regressions, allowing for increased flexibility.

Large c values, on the other hand, will yield a chain of

similar SVRs.

Along the same lines of the TA-SVM derivation [15,

Appendix A], it is easy to see that the problem in (2) can be

reformulated in terms of its corresponding dual as:

max
a;a�
½� 1

2
ða� a�ÞT Rða� a�Þ � e

X

i

ðai þ a�i Þ þ
X

i

yiðai þ a�i Þ�;

ð3Þ

subject to

0� ai; a
�
i �C and

X
ðai � a�i Þ ¼ 0;

where ai; a�i are Lagrange multipliers (with aia�i ¼ 0) and R

is a matrix with Kernel properties. The solution to this

maximisation problem is a coupled set of SVRs that vary in

time, which we call time-adaptive support vector regres-

sion machine (TA-SVR).

Most of the discussion and properties of TA-SVM also

hold for TA-SVR. The computational burden of TA-SVR is

of the same order as plain SVM. Problem (3) is a conven-

tional SVM optimisation problem, which can be solved with

typical methods, e.g. sequential minimum optimisation

(SMO) [25]. In the present formulation, we only considered

the case of data items arriving at regular time intervals. The

more general case of irregularly sampled data can be

addressed with simple extensions, as discussed in Grinblat

et al. [15]. Finally, note that the method is valid even for

degenerate time windows of only one point ðm ¼ nÞ,
because the coupling introduced by the penalisation term

breaks the degeneracy of trying to fit a hyperplane to a

single data point. However, for regularisation purposes, it is

advisable to use m\n.

3 Applications

3.1 Nonstationary modelling of chaotic time series

As a first application of TA-SVR, we analyse the problem

of modelling nonstationary time series. We say that a

signal measured from a dynamical system is stationary if

all transition probabilities from one state of the system to

another are independent of time within the observation

period, i.e. when estimated from the data. This requires the

constancy of the system’s internal parameters but also that

events belonging to the dynamics are contained in the time

series sufficiently frequently, so that transition probabilities

can be inferred properly. In this work we will focus on the

first case, formalising nonstationarity as time-varying sys-

tem parameters. We do not consider the notion of weak

stationarity, which can be found in the literature on linear

time series analysis and only requires statistical quantities

up to second order to be constant, because it is inadequate

in a nonlinear setting.

In order to assess the performance of TA-SVR, we

follow the discussion in Verdes et al. [34] and benchmark

against three other nonstationary modelling approaches. As

a base method we use the simple strategy of fitting SVRs to

local subsets of the original record, which are assumed to

be stationary. This method is usually known as the Sliding

Window (SW) approach. In the second method, following

Stark et al. [29], we explicitly incorporate t (the current

time) as an extra input variable to the model, thereby

allowing it to learn directly the time-dependent dynamics.

We call this method ‘‘SVR ? t’’. The last method we

implement is, to our knowledge, the best strategy in the

literature and consists of estimating the driving force acting

on the system while using it as an input variable to the

regression [32]. Here, we do not estimate a simultaneously

with the modelling as in Verdes et al. [34]. Instead, we

begin by estimating a with a different method [35]

described in Sect. 3.2—more precisely, we used TA-SVR

as reported in the same section—and then use it as an extra

input variable to a global SVR. We call this third method

‘‘SVR ? a’’.
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In the following, we describe the experimental settings.

For benchmarking purposes, we consider nonstationary

chaotic time series because they constitute one of the most

challenging types of forecasting problems. Chaotic systems

exhibit a sensitive dependence on initial conditions,

meaning that nearby trajectories separate exponentially

over time, thereby making medium to long term prediction

difficult [2, 4, 36]. The sensitivity of a system to initial

conditions can be measured with the Lyapunov exponent,

which we now define. Two close starting trajectories in

phase space, with initial separation dZ0, will diverge at a

rate given by ektjdZ0j, where t is time and k the Lyapunov

exponent. Since the separation rate depends on the orien-

tation of the initial separation vector dZ0, there is actually a

spectrum of Lyapunov exponents. The number of Lyapu-

nov exponents is equal to the number of dimensions of the

phase space. However, it is common to only refer to the

largest one, the maximum Lyapunov exponent (MLE),

because it determines the overall predictability of the

system. A positive MLE is usually taken as an indication

that the system is chaotic. The systems considered in this

work are not only chaotic but also nonstationary, as we

describe below.

To compare the four modelling methods, we worked on

the same time series employed by Verdes et al. [35]. They

are all well-known, single-species discrete chaotic eco-

system models, whose dynamics under external forcing has

been already discussed by Summers et al. [30]. The models

are the logistic map xtþ1 ¼ lxtð1� xtÞ, the Moran-Ricker

map, xtþ1 ¼ xtexp½rð1� xt=KÞ�, and the Hassell map

xtþ1 ¼ kxt=ð1þ xtÞb. To make the maps nonstationary, we

slowly changed one of the parameters in the previous

definitions. In particular, we considered four cases: we

drove the parameter l for the logistic map, K for the

Moran-Ricker map, and k and b for the Hassell map (one at

a time). For the remaining parameter values, we used the

same base settings as in Verdes et al. [35]. We forced the

dynamics using a piecewise constant profile, splitting the

full time record into s ¼ 10 equally sized segments, and

inside each one used a constant value at given by

at ¼ Cacosð2pt=TÞexpð�t=TÞ þ Ba: ð4Þ

for a time t corresponding to the middle point of each

segment. We took T ¼ n=2 so that the driving force profile

is the same independently of the record length considered.

In Fig. 1 we depict this profile.

For the four nonstationary modelling strategies com-

pared in this Section, we used SVRs with a Gaussian kernel

(defined as hx; yi ¼ expð�kx� yk2=rÞ) as a base model.

The general procedure was the following. After generating

n = 1,000 points for each map, we added Gaussian noise in

the required proportions. We separated a test set with 20 %

of randomly chosen datapoints, uniformly distributed over

the different segments of the dataset, and used the

remaining 80 % for model fitting and selection. Using

cross-validation in the training set, we optimised the dif-

ferent model parameters (C, � and r for each SVR, c and m

for TA-SVR, and the optimal window length for SW) over

a grid of values in a two-step procedure, starting with a

coarse grid followed by a finer one centred at the optimal

value obtained from the first step. Once the optimal models

were determined for each interval, we predicted the test set.

The full procedure was repeated 30 times in order to collect

statistics.

In order to evaluate the performance of the considered

modelling strategies, we computed the test set mean

squared error MSE ¼ ð1=nTÞ
PnT

i¼1ðyi � ŷiÞ2, where y is

the target value, ŷ the predicted one, and nT the test set size.

In Tables 1, 2 and 3, we show the obtained results for the

three different noise levels considered. We investigated

whether the obtained differences are statistically significant

by performing a set of paired t tests whereby each meth-

odology is in turn compared against TA-SVR. We use a

symbol y in Tables 1, 2 and 3 to indicate that a given

t [arbitrary unit]

α
 [a

rb
itr

ar
y 

un
it]

Continuous drift
Picewise−constant drift

Fig. 1 Profile of the parameter drift applied to the different maps,

both in continuous and piecewise constant versions

Table 1 Mean prediction error for the studied datasets, on randomly

chosen test sets, for all methods tested in this work in the noise-free

case

Dataset SW

ðMSE� 10�5Þ
TA-SVR SVR ? t

(units relative

to SW)

SVRþ a

Logistic 13.47 (0.75)� 0.87 (0.05) 0.83 (0.03) 0.86 (0.03)

Hassel ðkÞ 58.15 (5.60)� 0.22 (0.01) 0.90 (0.14)� 0.67 (0.12)�

Hassel ðbÞ 67.37 (6.93)� 0.28 (0.05) 0.90 (0.13)� 0.71 (0.12)�

Mrn-Rckr 42.28 (5.41) 0.81 (0.08) 1.18 (0.15)� 0.97 (0.13)

The MSE results for SW (base method) are expressed in 10�5 units.

Performance for the remaining methods is expressed as a ratio to the

corresponding SW result. Between brackets we report the standard error of

MSE. Statistically significant underperformance with respect to TA-SVR

is indicated with a symbol �(p \ 0.05). For each row, the minimum

number is highlighted in bold
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modelling approach is found to underperform TA-SVR in a

statistically significant manner (p \ 0.05). From Tables 1,

2 and 3, we conclude that TA-SVR is superior to the other

methods included in this comparison, giving the best result

in 8 out of the 12 cases under analysis.

As a final simulation experiment, we consider the case

of a test set which is not randomly chosen but a block

located at the end of the available data. For the sliding

window approach (SW), the procedure in this setting is

clear: the test set is predicted with the most recent available

model. However, in order to apply the other considered

forecasting methods to predict the continuation of a time

series, some specific choices need to be made, namely:

• TA-SVR: Which SVR model (training set window)

should be employed to predict the test set?

• SVR ? t: Should the time variable t be extrapolated

linearly into the test set, pushing it outside of its

modelling domain?

• SVR ? a: How should the driving force profile a be

extrapolated into the future?

In the case of TA-SVR, we decided to use the most recent

SVR model to predict the test set. For SVR ? t, we ini-

tially chose to linearly extrapolate time t, but this produced

very poor results. Close inspection revealed that this was

due to poor performance of SVR when test input data lies

outside of the training set domain or support. We therefore

adopted the view of fixing the value of t for the complete

test set to the last time value seen on the training set. The

extrapolation of the driving force profile for the SVR ? a
method would involve a study of optimal methodological

approaches, the discussion of which is beyond the scope of

this work. We therefore chose to leave SVR ? a out of this

forecasting exercise. Finally, for this study, we reverted to

the continuous (smooth) driving force profile, shown in

Fig. 1, because a jump in a from the last training to the test

intervals would not only represent an unlikely (and

unlucky) coincidence for the practitioner but would also

dominate the prediction error figures thereby hindering the

comparison of their intrinsic performance.

The prediction protocol followed similar lines to the

previous one, namely: (1) we generated 1,000 points for

each map and added Gaussian noise in the required pro-

portions (0, 0.1, and 1 %, respectively); (2) we separated a

test set with the last 100 data points, and used the remaining

90 % for model fitting and selection; (3) we determined the

different model parameters as above, but this time using a

(block) validation set consisting of the last 100 data points

of the training set; (4) once the optimal model parameters

were determined for each interval, we built models using

the full training set and predicted the test set. The complete

procedure was repeated 30 times in order to collect statis-

tics. The obtained results are reported in Tables 4, 5 and 6.

As we can see, TA-SVR performs very well, doing better

than SW and SVRþ t in almost all considered instances.

For the Moran-Ricker map, we find that the performance of

TA-SVR and SVRþ t is equally good.

Table 2 Same as Table 1 with 0.1 % added noise

Dataset SW TA-SVR SVR ? t SVR ? a
½MSE� 10�4� (units relative to SW)

Logistic 1.31 (0.07) 1.08 (0.03) 0.80 (0.04) 0.78 (0.03)

Hassel ðkÞ 13.37 (0.81)� 0.70 (0.02) 0.94 (0.06)� 0.82 (0.04)�

Hassel ðbÞ 14.77 (0.96)� 0.73 (0.02) 0.99 (0.08)� 0.93 (0.06)�

Mrn-Rckr 6.64 (0.66)� 0.82 (0.11) 0.95 (0.08)� 0.74 (0.10)

Table 3 Same as Table 1 with 1.0 % added noise

Dataset SW TA-SVR SVR ? t SVRþ a
½MSE� 10�4� (units relative to SW)

Logistic 3.38 (0.10) 1.00 (0.03) 1.02 (0.04) 1.03 (0.02)

Hassel ðkÞ 324.0 (10.6)� 0.88 (0.03) 1.05 (0.04)� 1.02 (0.01)�

Hassel ðbÞ 353.4 (11.0) 1.00 (0.04) 1.03 (0.03)� 0.99 (0.01)

Mrn-Rckr 95.51 (3.42)� 0.72 (0.03) 0.94 (0.03)� 0.86 (0.01)�

Table 4 Mean prediction error for the studied datasets, on block test

sets at the end of the databases, for three methods tested in this work

in the noise-free case

Dataset SW TA-SVR SVR ? t

½MSE� 10�4� (units relative to SW)

Logistic 1.52 (0.09)� 0.48 (0.03) 1.02 (0.09)�

Hassel ðkÞ 23.07 (0.98)� 0.23 (0.01) 3.57 (0.40)�

Hassel ðbÞ 19.18 (0.89)� 0.26 (0.01) 6.62 (0.81)�

Mrn-Rckr 212.5 (37.5)� 0.15 (0.01) 0.16 (0.04)

The MSE results for SW (base method) are expressed in 10�4 units.

Performance for the remaining methods is expressed as a ratio to the

corresponding SW result. Between brackets we report the standard

error of MSE. Statistically significant underperformance with respect

to TA-SVR is indicated with a symbol �(p \ 0.05). For each row, the

minimum number is highlighted in bold

Table 5 Same as Table 4 with 0.1 % added noise

Dataset SW TA-SVR SVR ? t

½MSE� 10�4� (units relative to SW)

Logistic 1.49 (0.07)� 0.80 (0.05) 0.86 (0.08)

Hassel ðkÞ 29.04 (1.26)� 0.49 (0.03) 3.48 (0.30)�

Hassel ðbÞ 28.18 (1.06)� 0.53 (0.03) 4.73 (0.62)�

Mrn-Rckr 152.1 (15.8)� 0.23 (0.02) 0.20 (0.02)
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3.2 Driving force reconstruction

In this second application of TA-SVR, we show how it can

be used to improve the driving force profile reconstruction.

We selected the reconstruction approach introduced in

Verdes et al. [35] because it can be used with any kind of

model family, as opposed to the slightly improved method

by Széliga et al. [32], which is limited to neural network

models. The selected method is based on the fact that, for

two consecutive data segments generated by a driven sys-

tem, the change in prediction error from the first to the

second segment, for a model trained on the first segment, is

proportional (to first order approximation) to the change in

the driving parameter. The accuracy of the reconstruction

is related to the model goodness of fit, which, in view of the

results discussed in the previous subsection, suggests the

use of TA-SVR in this problem.

To evaluate this hypothesis, we used the same experi-

mental settings as in the previous subsection. In this case,

we applied two different methods (SW as in Verdes et al.

[35] and TA-SVR) to model the diverse systems and then

reconstruct the changing parameter profile.

To compare both methods, we computed the MSE

between the original and reconstructed profiles,

MSEa ¼
Pn

t¼1ðrt � atÞ2, where r denotes the imposed

parameter variation (scaled to zero mean and unit variance)

and a the reconstructed profile (with the same scaling). The

corresponding results for MSEa are given in Table 7. It is

clear from this table that the improved nonstationary

modelling of TA-SVR leads to a better reconstruction of

the driving force in all situations. As an illustrative

example, in Fig. 2, we show the mean reconstructed pro-

files together with the actual one.

We also explored the use of a continuous driving force

profile in Eq. 4 instead of a piecewise constant one (see

Fig. 1), using the same settings as before, for the noise-free

scenario. The results in Table 8 indicate that the coupled

modelling of TA-SVM also outperforms the independent

modelling of SW in this (more difficult) case in which the

individual models in the sequence are unable to accurately

approximate the original maps due to the continuous drift

of the forcing.

Finally, we used noise-free data to briefly evaluate the

reconstruction error dependence on n and m. First, we

doubled the number of modelling functions in the sequence,

i.e. m ¼ 20 and also doubled the number of segments in the

piecewise constant driving force s ¼ 20. This is a more

challenging setting for all approaches, as each model is fed

with less information than before, which is confirmed by the

larger MSEa values reported in Table 9. Again, TA-SVM

clearly outperforms SW in this task. As a last experiment,

we used the original configuration, i.e. 10 modelling func-

tions ðm ¼ 10Þ and 10 segments in the driving force

ðs ¼ 10Þ, but halved the total length of the sequence, which

also increased the difficulty of the modelling problem.

However, as we can see from Table 10, TA-SVM still

exhibits a significant outperformance with respect to SW.

Table 6 Same as Table 4 with 1.0 % added noise

Dataset SW TA-SVR SVR ? t

½MSE� 10�4� (units relative to SW)

Logistic 3.51 (0.14) 0.91 (0.04) 1.22 (0.06)�

Hassel ðkÞ 274.9 (17.0)� 0.94 (0.05) 2.52 (0.42)�

Hassel ðbÞ 291.6 (16.7) 0.96 (0.06) 2.34 (0.33)�

Mrn-Rckr 269.0 (22.1)� 0.53 (0.05) 0.88 (0.09)�

t [arbitrary unit]

α
 [a

rb
itr

ar
y 

un
it]

Original profile
Mean TA−SVM estimation
Mean SW estimation

Fig. 2 An example of reconstructed drift profiles using TA-SVM and

SW. It shows the mean value and standard error, over the 30

experiments, for the noise-free Hassel map case (varying k)

Table 7 Driving force reconstruction error for the method introduced

in Verdes et al. [35] using the SW and TA-SVR methods, with 10

modelling functions

Noise (%) Dataset SW

(MSE)

TA-SVR

(relative units)

0 Logistic 0.07 (0.02) 0.42 (0.33)

Hassel ðkÞ 0.35 (0.09) 0.04 (0.01)

Hassel ðbÞ 0.56 (0.10) 0.04 (0.01)

Moran Ricker 0.17 (0.02) 0.44 (0.08)

0.1 Logistic 0.50 (0.09) 0.65 (0.17)

Hassel ðkÞ 0.47 (0.08) 0.28 (0.11)

Hassel ðbÞ 0.59 (0.10) 0.20 (0.07)

Moran Ricker 0.20 (0.06) 0.41 (0.07)

1.0 Logistic 1.50 (0.11) 0.91 (0.07)

Hassel ðkÞ 0.89 (0.09) 0.33 (0.07)

Hassel ðbÞ 0.61 (0.08) 0.56 (0.12)

Moran Ricker 0.18 (0.07) 0.97 (0.39)

Between brackets we report the standard error of the reconstruction

error. For each row, the minimum number is highlighted in bold
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3.3 Input feature relevance

In this last application, we analyse a different type of

nonstationarity. In the previous problems some parameter

changed over time, but the input-output functional depen-

dence was fixed. Here we analyse a problem in which there

is a drift in the system which is associated to a change in

the relative importance of two input features, not only to a

change in a hidden parameter. For example, suppose that

we have a movie recommendation system in which the

inputs are qualitative aspects of the movie, like genre,

country of origin, director, etc., and the output is the esti-

mated ranking that a given user would give to the movie.

During a long period of time, the most relevant feature, for

a user that likes war movies, is ‘genre’. Then, at a given

time, the user becomes a fan of French movies, and then

the most relevant feature changes to ‘country of origin’.

This is the kind of change that we would like to detect in

this application.

One of the interesting properties of SVR is that the

relative importance of each input can be easily estimated,

following the recursive feature elimination (RFE) method

introduced by Guyon et al. [17]. The main idea behind RFE

is that the importance of a given input variable is directly

related to the second derivative of the SVR’s cost function

with respect to that input. We propose to use TA-SVR as an

improved detector of changes in relative input’s impor-

tance, applying to each of the coupled SVRs the RFE

method. We compare the performance of this combination

with the estimation obtained by RFE with the typical SW

strategy.

In this experiment, we used the Ikeda map [18]. We

generated a long record with 5,000 time points, which we

embedded in a 6-dimensional space of lagged copies of the

series according to: xt ¼ f ðI1; I2; xt�2s; xt�3s; xt�4s; xt�5sÞ,
with s ¼ 1 time units, I1 ¼ atxt�s þ ð1� atÞet and

I2 ¼ ð1� atÞxt�s þ atft, where e and f are centred Gauss-

ian noise variables with the same variance as xt, and at is a

sigmoid function of t centred at the dataset midpoint. These

two special inputs are used to simulate a problem in which

there is a slow shift from a model depending on I1 to I2.

From the full dataset, we took random samples with 200,

500 and 1,000 datapoints, 30 sets for each length. For each

sample we applied the procedure previously described to

select all free parameters (C; c, etc.) and, using those

optimal values, constructed a sequence of 10 independent

SVRs (for the SW strategy) and a single TA-SVR with

m ¼ 10 coupled models. Finally, we applied the procedure

described by Guyon et al. [17] to estimate the importance

of each input.

In Fig. 3, we show the obtained results. In each panel,

we report mean relevance values estimated over 30 runs.

The top row corresponds to the SW method, while the

bottom one to TA-SVR. In the left column, corresponding

to the largest dataset size of 1,000 points, we see that both

methods clearly detect the relevance shift from I1 to I2. In

the central column, corresponding to 500 points, the SW

estimation becomes noisier than TA-SVR but the drift can

still be detected. For small datasets, in the right column, we

find that the SW method can no longer be used to detect the

dependence drift, in contrast with the good results obtained

with TA-SVR. Overall, it is clear that the regularisation

provided by the coupling term in TA-SVR helps produce a

better estimation of the relative importance of each model

input.

4 Conclusions

In this work, we introduced the TA-SVR strategy, an

extension to the regression case of the previously devel-

oped TA-SVM. Here, we illustrated its application to

Table 8 Reconstruction error for a continuous driving force

Dataset SW

(MSE)

TA-SVR

(relative units)

Logistic 0.20 (0.06) 0.45 (0.17)

Hassel ðkÞ 0.27 (0.05) 0.19 (0.08)

Hassel ðbÞ 0.59 (0.11) 0.11 (0.04)

Moran Ricker 0.37 (0.08) 0.27 (0.09)

For each row, the minimum number is highlighted in bold

Table 9 Driving force reconstruction error when doubling the

number of prediction functions in the sequence

Dataset SW

(MSE)

TA-SVR

(relative units)

Logistic 0.99 (0.14) 0.13 (0.06)

Hassel ðkÞ 1.71 (0.07) 0.22 (0.06)

Hassel ðbÞ 1.76 (0.10) 0.15 (0.03)

Moran Ricker 1.20 (0.16) 0.51 (0.15)

For each row, the minimum number is highlighted in bold

Table 10 Driving force reconstruction error when shortening the

dataset to half of the original length

Dataset SW

(MSE)

TA-SVR

(relative units)

Logistic 0.24 (0.06) 0.05 (0.02)

Hassel ðkÞ 1.10 (0.12) 0.07 (0.03)

Hassel ðbÞ 1.24 (0.10) 0.06 (0.03)

Moran Ricker 0.43 (0.09) 0.20 (0.05)

For each row, the minimum number is highlighted in bold

Neural Comput & Applic (2015) 26:641–649 647

123



nonstationary chaotic time series only, but it should be

noted that the methodology can be applied to nonstationary

modelling problems of any kind.

We first analysed the modelling task on four different

nonstationary regression problems. Upon comparison with

three other efficient modelling methods from the literature,

TA-SVR proved to be superior to its competitors on this

task.

We also compared TA-SVR against the sliding window

strategy on two other aspects of nonstationary modelling:

hidden parameter variation estimation (or driving force

reconstruction) and input feature relevance determination

under a dependency drift. On both tasks, we found that the

proposed TA-SVR is more efficient than the sliding win-

dow approach.

The three nonstationary data analysis exercises consid-

ered in this work are different in nature but share a com-

mon property: their solutions follow from a regression

model fitted to some dataset. As such, the good results of

TA-SVR on these tasks can be probably related to its better

performance in nonstationary modelling, produced, as in its

classification version, by its more comprehensive use of

information along the full sequence of models through the

coupling term.

Future work includes a theoretical analysis of the

properties of TA-SVM and TA-SVR.
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