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Abstract Since labeling all the samples by the user is

time-consuming and fastidious, we often obtain a large

amount of unlabeled examples and only a small number of

labeled examples in classification. In this context, the

classification is called semi-supervised learning. In this

paper, we propose a novel semi-supervised learning

methodology, named Laplacian mixed-norm proximal

support vector machine Lap-MNPSVM for short. In the

optimization problem of Lap-MNPSVM, the information

from the unlabeled examples is used in a form of Laplace

regularization, and lp norm (0 \ p \ 1) regularizer is

introduced to standard proximal support vector machine to

control sparsity and the feature selection. To solve the

nonconvex optimization problem in Lap-MNPSVM, an

efficient algorithm is proposed by solving a series systems

of linear equations, and the lower bounds of the solution

are established, which are extremely helpful for feature

selection. Experiments carried out on synthetic datasets and

the real-world datasets show the feasibility and effective-

ness of the proposed method.

Keywords Semi-supervised classification � Manifold

regularization � Mixed-norm � Sparsity � Proximal support

vector machine

1 Introduction

In many real situations, there are plentiful unlabeled

training examples since the acquisition of labels is time-

consuming and fastidious. In such situations, semi-super-

vised learning tries to utilize the unlabeled examples to

improve learning performance, especially when there are

limited labeled training examples. During the past decade,

semi-supervised learning has received significant attention

and a lot of approaches have been developed [1, 2–10].

Among the many semi-supervised learning methods,

manifold regularization (MR) is one of the most interesting

frameworks [11–14]. The MR introduces a meaningful

regularization term to capture the geometric information

from the data and makes the smoothness of the classifier

along the intrinsic manifold. Following the MR framework,

Belkin et al. proposed a Laplacian support vector machine

(Lap-SVM) [12], which is able to handle both the trans-

ductive and inductive cases. Qi et al. [28] proposed La-

placian twin support vector machine (Lap-TSVM), which

constructs a nonparallel classifier for semi-supervised

learning.

The semi-supervised learning methods proposed in this

paper are closely related with the proximal support vector

machine (PSVM) [15] and the p-norm (0 \ p \ 1) support

vector machine (p-norm SVM) [21–24] for supervised

classification problem. Different from the standard 2-norm

SVM, PSVM generates the linear classifier based on

proximity to one of two parallel planes that are pushed as

far apart as possible. It only requires solving a simple

nonsingular system of linear equations (LEs), while the

standard 2-norm support vector machine classifier requires

a more costly solution of a quadratic program. The p-norm

SVM comes from the good contribution on the p-norm

(p 2 ½0; 1�) in the optimization communities [17–25],
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where the 2-norm penalty in the standard linear SVM is

replaced by the p-norm ðp 2 ð0; 1ÞÞ penalty.

In this paper, we introduced two extra regularizers into

the optimization problem of PSVM. One is the manifold

regularizer, which captures the geometric structure of the

unlabeled and labeled examples, the other is the p-norm,

which can control the sparsity of hyperplane and realize

feature selection. The proposed method is called Laplacian

mixed-norm proximal support vector machine (Lap-

MNPSVM). Our Lap-MNPSVM can realize classification

and feature selection simultaneously. Unfortunately, the

optimization problem of our Lap-MNPSVM is neither

convex nor differentiable; it is therefore difficult to be

solved directly. We propose an algorithm to find its

approximate solution via solving a series systems of LEs.

And the lower bounds for the absolute value of nonzero

components in every local optimal solution are established,

which are extremely helpful to eliminate the zero compo-

nents in any numerical solution. The numerical experi-

mental results have shown that our Lap-MNPSVM is more

effective than some popular semi-supervised learning

methods such as transductive SVM (TSVM) [27], Lapla-

cian Regularized Least Square Classifier (Lap-RLS) [12],

Laplacian SVM (Lap-SVM) [12] and Laplacian Twin SVM

(Lap-TSVM) [28].

This paper is organized as follows. In Sect. 2, we

briefly introduce some works related to this paper first and

then describe our Lap-PPSVM in detail including solving

and analyzing the involved optimization problem in it. In

Sect. 3, numerical experiments are given to demonstrate

the effectiveness of our method. We conclude this paper

in Sect. 4.

2 Methods

In this section, we first remind proximal support vector

machine (PSVM) and the semi-supervised manifold regu-

larization; then, we carry out our Lap-MNPSVM.

We describe our notation firstly. All vectors are column

vectors unless transposed to a row vector by a super script

>. For a vector x in Rn; ½x�iði ¼ 1; 2; . . .; nÞ denotes the ith

component of x. jxj denotes a vector in Rn of absolute value

of the components of x. kxkp denotes the value ðj½x�1j
pþ

� � � þ j½x�nj
pÞ

1
p. Strictly speaking, when 0\p\1kxkp is not

a norm in general sense.1 But, we still follow the term

p-norm because of simplicity and the consistence with the

other references such as [17–25]. kxk0 is the number of

nonzero components of x. For two vectors x ¼

ð½x�1; . . .; ½x�nÞ
> 2 Rn and yð½y�1; . . .; ½y�nÞ

> 2 Rn; ðx � yÞ
denotes the inner product of x and y; x� y generates a new

vector with the i-th element ½x�i½y�i; i ¼ 1; 2; . . .; n.

Consider the semi-supervised classification problem

with the training set T

T ¼ fðx1; y1Þ; . . .; ðxl; ylÞ; xlþ1; . . .; xlþug; ð1Þ

where xj 2 Rn; j ¼ 1; 2; . . .; lþ u and yj 2 f1;�1g
ðj ¼ 1; . . .; lÞ. Denote the inputs of all examples X ¼
fxiglþu

i¼1 2 RðlþuÞ�n and each row Xi 2 Rn is the input of the

i-th example. Suppose the inputs of labeled examples

denoted by Xl ¼ fxigl
i¼1 2 Rl�n, the outputs of the labeled

examples denoted by Yl ¼ fyigl
i¼1 2 Rl�1. Our goal is to

construct a classifier utilizing both labeled and unlabeled

examples, which can realize the feature selection and give

a better generalization performance.

2.1 Proximal support vector machine (PSVM)

For supervised classification problem, instead of the stan-

dard support vector machine (SVM) that classifies the

examples by assigning them to one of two disjoint half

spaces in input or feature space, PSVM assigns examples to

the closer one of two parallel super planes. Its optimization

problem is as follows,

min
w; b; n

1

2
kwk2

2 þ b2
� �

þ C

2

Xl

i¼1

n2
i ; ð2Þ

s.t. yiððw � xiÞ þ bÞ ¼ 1� ni ; i ¼ 1; . . .; l : ð3Þ

The first term in (2) is the regularizer, optimizing it can

maximize the margin between two boundary hyperplanes

(ðw � xÞ þ b ¼ 1 and ðw � xÞ þ b ¼ �1) and avoid over-fit-

ting. Minimizing the second term is to minimize the

empirical risk. It is clear that PSVM requires only solving a

nonsingular system of LEs.

2.2 Semi-supervised manifold regularization

Recently, manifold learning techniques [11, 13, 16] have

attracted much attention as they can preserve some geo-

metric information of the data. Particularly, for semi-

supervised learning (SSL), Belkin et al. [12] introduced a

meaningful regularization term:

kfk2
M ¼

Xlþu

ij¼1

wijðf ðxiÞ � f ðxjÞÞ2 ¼ f 0Lf ; ð4Þ

where f ¼ ðf ðx1Þ; . . .; f ðxlþuÞÞ> represents the decision

function values over all the training examples, W ¼ ðwijÞ 2
RðlþuÞ�ðlþuÞ;wij is the edge-weight pre-defined for a pair of

points ðxi; xjÞ, and D is the diagonal matrix given by

1 kxkpð0\p\1Þ is a quasi-norm, which satisfies the norm axioms

except the triangle inequality.
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Dii ¼
Plþu

j¼1 wij; L ¼ D�W . It is easy to see that the MR

term contains all the information from the labeled and

unlabeled examples and is suitable for SSL.

2.3 Laplacian mixed-norm proximal SVM

(Lap-MNPSVM)

2.3.1 Linear Lap-MNPSVM

Now, we are in a position to present our novel algorithm—

the Laplacian p-norm proximal support vector machine

(Lap-MNPSVM) by modifying the above problems (2–3).

We hope our algorithm can automatically realize feature

selection and classification simultaneously. To realize the

former, we replace the kwk2
2 in the objective function (2)

by 1
2
kwk2

2 þ 1
2
kwkp

p ð0\p\1Þ. To realize the latter, we add

the extra regularization term (4) to the objective function

(2), making our Lap-MNPSVM is suitable for SSL. This

leads to the optimization problem:

min
w; b; n

1

2
kwk2

2 þ b2
� �

þ 1

2
kwkp

p

þ C

2

Xl

i¼1

n2
i þ

k
2

Xlþu

ij¼1

wijðf ðxiÞ � f ðxjÞÞ2 ; ð5Þ

s.t. yiððw � xiÞ þ bÞ ¼ 1� ni ; i ¼ 1; . . .; l ; ð6Þ

where wij ¼ expð� kxi�xjk2

r Þ; r is the parameter that can be

adjusted. Substituting the equality constraints and f ðxiÞ ¼
ðw � xiÞ þ b into the objective function, we get the simpli-

fied version:

min
w; b

1

2
kwk2

2 þ b2
� �

þ 1

2
kwkp

p þ
C

2

Xl

i¼1

½yi � ððw � xiÞ þ bÞ�2

þ k
2

Xlþu

ij¼1

wij½ððw � xiÞ þ bÞ � ððw � xjÞ þ bÞ�2 ; ð7Þ

where CðC [ 0Þ; kð0� k� 1Þ; l[ 0 and pð0\p\1Þ are

parameters.

We now give the geometric interpretation of problem

(7). The first term is the regularizer, optimizing it can

maximize the margin between two boundary hyperplanes.

The second term is also the regularizer that can control the

sparsity2 of the final classification hyperplane. The third

term minimizes the squared sum of errors, which makes the

examples to be classified as correct as possible. The last

term, (MR) term aims at to exploit the geometric infor-

mation inside all the examples, and enforces f ðxÞ ¼ ðw �
xÞ þ b smoothness along the intrinsic manifold M. In

addition, regularization parameter k is introduced to bal-

ance the relative significance between the empirical risk

term and MR term.

Note that, it is rather difficult to find the global solution of

problem (7) because its objective function is neither convex

nor differentiable. For the issue of nondifferentiable, we

approximate kwkp
p ¼

Pn
i¼1 j½w�ij

p
by
Pn

i¼1ðj½w�ij þ eÞp and

get the following problem

min
w; b

Fpðw; bÞ ¼
1

2
kwk2

2 þ b2 þ
Xn

i¼1

ðj½w�ij þ eÞp
 !

þ C

2

Xl

i¼1

½yi � ððw � xiÞ þ bÞ�2

þ k
2

Xlþu

i¼1

Xlþu

j¼1

wij½ððw � xiÞ þ bÞ � ððw � xjÞ þ bÞ�2

ð8Þ

here, e [ 0 is a very small number. But this term is still

concave due to 0\p\1: To solve this issue, the convex

term 1
2
kb� wk2

2 is used to approximate the concave termPn
i¼1ðj½w�ij þ eÞp, b is adjustable to fit the approximation.

Thus, we get the following convex quadratic program that

approximated problem (7):

min
w; b

1

2
kwk2

2 þ b2
� �

þ 1

2
kb� wk2

2

þ C

2

Xl

i¼1

½yi � ððw � xiÞ þ bÞ�2

þ k
2

Xlþu

ij¼1

wij½ððw � xiÞ þ bÞ � ððw � xjÞ þ bÞ�2 : ð9Þ

In order to get better approximation, we adjust b succes-

sively. This is an iterative process as follows:

Given an initial bð0Þ ¼ bð0Þ1 ; . . .bð0Þn

� �>
, suppose that the

current ðwðkÞ; bðkÞÞ is estimated by solving (9) with b ¼
bð0Þ. Set ðwðkþ1Þ; bðkþ1ÞÞ as the solution to the following

weighted optimization problem:

min
w;b

F2ðw;bÞ¼
1

2
kwk2

2þb2
� �

þ1

2
kbðkþ1Þ�wk2

2

� �

þC

2

Xl

i¼1

½yi�ððw�xiÞþbÞ�2

þk
2

Xlþu

ij¼1

wij½ððw�xiÞþbÞ�ððw�xjÞþbÞ�2 ; ð10Þ

where bðkþ1Þ¼ bðkþ1Þ
1 ;...bðkþ1Þ

n

� �>
is the weight vector and

is required to satisfy:

2 Sparsity is here defined as the number of nonzero components in the

normal vector w. This means that more zero components in w, more

sparse the hyperplane.
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p j½wðkÞ�ij þ e
� �p�1

sign ½wðkÞ�i
� �

¼ bðkþ1Þ
i

h i2

½wðkÞ�i: ð11Þ

Equation (11) means that the objective function of (8) has

the same steepest descent direction as the objective func-

tion of problem (10) at the current ðwðkÞ; bðkÞÞ, i.e.,

rFpðwðkÞ; bðkÞÞ ¼ rF2ðwðkÞ; bðkÞÞ; ð12Þ

So a reasonable choice is

bðkþ1Þ
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðj½wðkÞ�ij þ eÞp�2

q
: ð13Þ

Based on the above discussion, we can get the approxi-

mated solution ðwðkþ1Þ; bðkþ1ÞÞ of problem (7) by solving

(10). Note that problem (10) is a unconstrained quadratic

programming. Its KKT condition leads to solving the fol-

lowing LEs:

ðBþ C �Xl
> �Xl þ k �X>L �XÞ ~w ¼ �Xl

>Yl; ð14Þ

where

�X ¼

x>1 1

x>2 1

..

. ..
.

x>lþu 1

0
BBBBB@

1
CCCCCA
ðlþuÞ�ðnþ1Þ

; �Xl ¼

x>1 1

x>2 1

..

. ..
.

x>l 1

0
BBBB@

1
CCCCA

l�ðnþ1Þ

; ~w ¼ ½w>b�>;

and B ¼ diagð1þ ½bðkþ1Þ
1 �2; . . .; 1þ ½bðkþ1Þ

n �2; 1Þ.
The above LEs can be solved by the powerful conjugate

gradient (CG) algorithm [26] effectively , which is

described as follows: Suppose the linear system is repre-

sented as

Ax ¼ b; ð15Þ

where x is an unknown solution, A is a symmetric and

positive definite matrix, and b is a vector. The whole

procedure is shown by Algorithm 1.

Algorithm 1 The conjugate gradient algorithm for problem (15)
Input:

The matrix A and the vector b.
The prescribed convergence constant ε0.
The approximate initial solution x0.
1: Initialize the residual vector r0 = b − Ax0 and the search direction
p0 = r0.
2: Do While rk+1 < ε0

3: Set the step scalar ak = rk rk/pk Apk

4: Update the new solution xk+1 = xk + akpk

5: Renew the residual vectorrk+1 = rk − akApk

6: Set the step scalar bk = rk rk/rk rk

7: Modify the next search direction pk+1 = rk+1 + bkpk

8: Increase iterator k = k + 1
9: End While

Output:
The optimal solution for the problem (15).

So in this way it can be expected to find a solution of

(7). Now, there arises another issue: Since we can only

get the approximate local solution of problem (7) by

iteratively solving weighted-biased SVM (14) using

algorithm 1, how to identify the nonzero components in

the solution? To solve this issue, we prove the following

theorem, which can be used to identify nonzero com-

ponents in any local optimal solutions from an approx-

imate local optimal solution.

Theorem 1 For any local optimal solution ðw�; b�Þ to the

problem (7), we have ½w��i ¼ 0 if ½w��i 2 ð�Li; LiÞ, where

Li ¼ ½ p

2jC
Pl

j¼1
½xj�iðyj�b�Þj

�
1

1�p; ði ¼ 1; 2. . .nÞ:

Proof Suppose kw�k0 ¼ k: Without loss of generality, let

w� ¼ ð½w��1; ½w��2; . . .; ½w��k; 0; 0; . . .; 0ÞT and z� ¼ ð½w��1;
½w��2; . . .; ½w��kÞ

T : Construct the new training set

eT ¼ fðex1; y1Þ; . . .; ðexl ; ylÞ; exlþ1; . . .; exlþug;

where exi ¼ ð½xi�1; ½xi�2; . . .; ½xi�kÞ
>

. We consider the fol-

lowing optimization problem

min
z; b

Fpðz; bÞ ¼
1

2
kzk2

2 þ kzk
p
p þ b2

� �

þ C

2

Xl

i¼1

½yi � ððz � exiÞ þ bÞ�2

þ k
2

Xlþu

ij¼1

wij½ððz � exiÞ þ bÞ � ððz � exjÞ þ bÞ�2 :

ð16Þ

It is easy to know that ðz�; b�Þ is a local optimal solution

of (16), according to the KKT condition, we have

Inz� þ eX>l eXlz
� þ 1

2
pjz�jp�1

signðz�Þ

þ eX>ðD�WÞeXz� ¼ CeX>l ðYl � eb�Þ
ð17Þ

where In is a n dimensional identity matrix and

eX ¼

ex>1
ex>2
..
.

ex>lþu

0
BBBBB@

1
CCCCCA
ðlþuÞ�k

; eXl ¼

ex>1
ex>2
..
.

ex>l

0
BBBB@

1
CCCCA

l�k

;

e ¼

1

1

..

.

1

0
BBBB@

1
CCCCA

l�1

:

By (17), we have
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1

2
pjz�jp�1� jInz� þ eX>l eXlz

� þ 1

2
pjz�jp�1

signðz�Þ

þ eX>ðD�WÞeXz�j
¼ jCeX>l ðYl � eb�Þj: ð18Þ

So,

1

2
pj½z��ij

p�1� jC
Xl

j¼1

½xj�iðyj � b�Þj; ð19Þ

which is equivalent to j½z��ij 	
p

2jC
Pl

j¼1
½xj�iðyj�b�Þj

" # 1
1�p

: It

means that for any local optimal solution ðw�; b�Þ of (7),

we have ½w��i 2 ð�Li; LiÞ ) ½w��i ¼ 0; i ¼ 1; 2; . . .; n:

Based on the above discussion, our novel algorithm is

established as follows:

Algorithm 2 Laplacian p-norm proximal support vector machine (Lap-
PPSVM)
Input:

The training set (1), parameters C(C > 0), p(0 < p < 1) and λ > 0.
A specified maximum number of iterations Kmax and a very small ε1 > 0.
1: construct the optimization problem (7);
2: Start with a random β(0) and let k = 1, using Algorithm 1 solving
problem (14), get the solution (w(k), b(k)) and update β(k+1) according to
(13)
3: If β(k+1) − β(k) < ε1 or k attains
optimal solution of (7) (w∗, b∗) = (w(k), b(k)); Otherwise, set

update the weights for each i = 1, 2, · · · , n according to
to step 2

Output:
The optimal solution (w∗, b∗), the feature index set: F = {i|[w∗]i| > Li,
i = 1, · · · , n}; The decision function f(x) = sgn((w̃∗ · x̃) + b∗), where w̃∗

are composed by the components in the F of w∗ and the components of
x̃ are also corresponding to components in the feature set F of w∗.

Kmax, terminate and set the
k = k + 1

and (13) and
go

2.3.2 Nonlinear Lap-MNPSVM

In order to extend our model to the nonlinear case, we

consider the following kernel-generated hyperplane

Kðx;X>Þuþ b ¼ 0; ð20Þ

where K is an chosen kernel function: Kðxi; xjÞ ¼
ðuðxiÞ � uðxjÞÞ. The optimization problems for our nonlin-

ear lp LSTSVM can be expressed as

min
u;b

1

2
kuk2

2 þ kuk
P
P þ b2

� �
þ C

2

Xl

i¼1

ðKðxi;X
>Þuþ b� yiÞ2

þ k
2

Xlþu

i;j¼1

½ðKðxi;X
>Þu� Kðxj;X

>ÞuÞwij�2: ð21Þ

Now, we rewrite problem (21) into the following equiva-

lent form:

min
u;b

1

2
kuk2

2 þ kuk
P
P þ b2

� �
þ C

2
kfKleu � Ylk2

2 þ
k
2
eu> eKLeKeu;

ð22Þ

where

eu ¼ u

b

� �
;fKl ¼ KðXl;X

>Þ e
� �

; eK ¼ KðX;X>Þ e
� �

:

With an entirely similar process to the linear case,

problems (22) can be solved iteratively. At the k-th itera-

tion, suppose that the current ðu; bÞ is estimated by

ðuðkÞ; bðkÞÞ. Set ðuðkþ1Þ; bðkþ1ÞÞ as the solution to the fol-

lowing weighted QPP:

min
u;b

1

2
kuk2

2 þ kbðkþ1Þ � uk2
2 þ b2

� �
þ C

2
kfKleu � Ylk2

þ k
2
eu> eKLeKeu; ð23Þ

where

½bðkþ1Þ�i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p juðkÞ1 �ij þ e
� �p�2

r
: ð24Þ

Note that problems (23) is an unconstrained QPP, accord-

ing to the KKT conditions, it is equivalent to the following

LEs:

ðB1 þ CfKl
>fKl þ keKLeKÞeu ¼fKl

>Yl; ð25Þ

where B1 ¼ diagð1þ ½bðkþ1Þ�21; . . .; 1þ ½bðkþ1Þ�2lþu; 1Þ:
Then, we can use Algorithm 1 to solve the LEs (25). The

optimal solutions ðu; bÞ can be obtained by almost the same

iterative progress as algorithm 2, and a new data x 2 Rn are

assigned to class iði ¼ þ1or � 1Þ, depending on

f ðxÞ ¼ sgnKðx;X>Þuþ b:

3 Experiment and results

To evaluate the performance of our Lap-MNPSVM, we

investigate its classification accuracy and feature selection

on synthetic dataset and some real-world datasets. We

focus on the comparison between Lap-MNPSVM and

several state-of-the-art semi-supervised classifiers, includ-

ing TSVM, Lap-RLS, Lap-SVM and Lap-TSVM:

• TSVM [27]: Transductive SVM. It adopts the cluster

assumption and attempts to seek a low-density region to

separate classes (guided by the maximum margin

principle), avoiding the boundary passing through the

high-density region.

• Lap-RLS [12]: Laplacian Regularized Least Square

Classifier. It adopts the manifold assumption and solves

the optimization problem with the squared loss function

(an extension of RLS [30] for SSL).

• Lap-SVM [12]: Laplacian SVM. It adopts the manifold

assumption and uses the hinge loss to construct a

parallel hyperplane classifier by seeking a maximum

margin boundary on both labeled and unlabeled data

(an extension of SVM for SSL).
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• Lap-TSVM [28]: Laplacian Twin SVM. It also adopts

the manifold assumption and exploits the geometric

information embedded in the training data to construct

a nonparallel hyperplane classifier (an extension of

TWSVM for SSL).

Our algorithm code is written in MATLAB 2010 on a

PC with an Intel Core I5 processor with 4 GB RAM. With

regard to parameter selection, we employ the tenfold cross-

validation technique on the training set. Parameters C; k
and r in MR term are all selected from the set f2iji ¼
�6; . . .; 6g; p is selected from the set f0:1; 0:2; . . .; 0:9g.

3.1 Results

3.1.1 Comparison on UCI datasets

It is well known that the scale of the labeled examples is

important to the semi-supervised learning. To investigate

the impact of the ratio of labeled data on the performance

of Lap-MNPSVM, each classifier is applied on several

real-world datasets from the UCI machine learning repos-

itory, summarized in Table 1. These datasets represent a

wide range of fields (include pathology, vehicle engineer-

ing, biological information and finance), sizes (from 155 to

1,437) and features (from 6 to 34). All datasets are nor-

malized such that the features scale in ½�1; 1� before

training. Similar to [2], our experiments are set up in the

following way. First, each dataset is divided into two

subsets: 70 % for training and 30 % for testing. Then, we

randomly label m of the training set and use the remainder

as unlabeled examples, where m is the ratio of labeled

examples. Finally, we transform them into semi-supervised

tasks. Each experiment is repeated 10 times.

Accuracy (Acc) is utilized to evaluate the performance of

classification and is defined as follows. Accuracy denotes

the percentage of both positive points and negative points

correctly predicted and is defined as follows:

Acc ¼
TPþ TN

TP+FP+TN+FN
;

where TP, TN, FP and FN denote the number of true

positives, true negatives, false positives and false nega-

tives, respectively.

Tables 2, 3, 4 list the learning results of each classifier

and include the mean and deviation of test accuracy for

various m from 10 to 30 %. We have highlighted the best

performance. The results reveal that increasing the ratio of

labeled examples generally improves the classification

performance for almost all classifiers.

Now, we focus on the performance of our Lap-

MNPSVM. The results in Tables 2, 3, 4 show that Lap-

Table 1 Summary of UCI datasets

Datasets Size Features

Hepatitis 155 19

Hearts 270 14

Inosphere 351 34

WDBC 569 30

Australian 690 14

BUPA 345 6

Housevotes 435 16

CMC 1,473 9

German 1,000 20

Table 2 Mean and standard deviation (%) of test accuracy and the

number of selected features at 10 % of labeled examples

Dataset TSVM

Acc

Std

feature

Lap-

RLS

Acc

Std

feature

Lap-

SVM

Acc

Std

feature

Lap-

TSVM

Acc

Std

feature

Lap-

MNPSVM

Acc

Std

feature

Hepatitis 72.64

5.83

19

73.19

6.64

19

74.92

5.86

19

74.11

5.3522

19

79.56

6.36

9.2

Hearts 70.09

5.72

14

65.53

6.33

14

67.87

7.24

14

70.76

5.96

14

72.1

5.96

12.4

Inosphere 68.24

4.04

34

72.18

7.82

34

69.54

5.63

34

72.95

6.24

34

78.46

7.8

21.4

WDBC 86.32

6.55

30

88.73

7.14

30

84.14

5.92

30

86.38

6.62

30

92.35

3.19

24.6

Australian 64.49

5.82

14

64.13

6.44

14

65.21

7.53

14

66.61

7.04

14

80.39

3.67

10.8

BUPA 63.72

5.73

6

66.18

6.14

6

65.09

6.93

6

65.87

6.28

6

54.56

7.41

6

Housevotes 87.14

7.39

16

84.69

5.48

16

89.17

5.45

16

87.53

6.39

16

94.15

0.88

13

CMC 59.72

7.31

9

59.27

6.83

9

58.72

9.35

9

61.39

5.09

9

77.55

0.1

9

German 57.71

6.81

20

58.24

8.24

20

59.77

6.89

20

60.56

7.73

20

71.73

1.36

16.4

Ave.mean 70.01 70.29 70.49 71.79 77.87

Ave.std 6.13 6.78 6.75 6.3 4.08

Ave.mean and Ave.std denote the average mean and standard devi-

ation accuracy of each algorithm over all datasets
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MNPSVM is better than other methods on almost all

datasets. The accuracy is improved in varying degrees

using Lap-MNPSVM. In particular, on the dataset ‘Aus-

trialian,’ ‘CMC’ and ‘Germen,’ there are over 10 %

improvements using Lap-MNPSVM. Only on the dataset

‘BUPA,’ Lap-MNPSVM preforms obviously worse than

other methods. But, from the perspective of average ‘mean’

and ‘std’ accuracy, given at the bottom of Tables 2, 3, 4,

our Lap-MNPSVM owns the best performance among all.

Lap-MNPSVM has not only the highest average accuracy

but also the lowest standard deviation. This shows that

Lap-MNPSVM performs better and more stable. In addi-

tion to better performance on classification accuracy, our

Lap-MNPSVM can pick out the really relevant features,

while the other methods can not. The reason may be that

the Lap-MNPSVM considers two aspects simultaneously:

classification and feature selection. By selecting the proper

parameters in the Lap-MNPSVM model, it can balance the

classification and feature selection better. In one word, our

Lap-MNPSVM performs better than other methods.

3.1.2 Comparison on MNIST dataset

MNIST Dataset is a handwritten digit dataset and consists

of gray scale images of handwritten digits from ‘0’ to ‘9’ as

shown in Fig. 1. The size of each sample is 28� 28 pixels.

Table 3 Mean and standard deviation (%) of test accuracy and the

number of selected features at 20 % of labeled examples

Dataset TSVM

Acc

Std

feature

Lap-

RLS

Acc

Std

feature

Lap-

SVM

Acc

Std

feature

Lap-

TSVM

Acc

Std

feature

Lap-

MNPSVM

ACC

Std

feature

Hepatitis 74.47

6.96

19

73.42

7.24

19

74.92

5.86

19

76.87

7.39

19

81.78

2.9

18.8

Hearts 69.23

6.49

14

68.17

5.27

14

73.19

7.79

14

72.95

6.49

14

77.28

5.56

12

Inosphere 69.12

7.54

34

73.09

7.34

34

72.98

5.68

34

74.25

6.65

34

83.65

3.6

31.6

WDBC 92.93

6.74

30

90.20

6.75

30

91.84

6.31

30

93.53

7.17

30

92.94

3.77

28.4

Australian 66.19

6.73

14

64.38

7.13

14

67.45

8.10

14

65.96

7.04

14

85.53

3.57

13.2

BUPA 65.17

8.09

6

63.11

8.28

6

65.91

8.15

6

67.85

6.59

6

62.33

3.39

6

Housevotes 89.34

7.26

16

86.58

7.35

16

90.01

6.59

16

91.67

6.52

16

95.54

1.38

15.2

CMC 61.05

6.48

9

60.71

8.03

9

62.73

7.31

9

63.41

5.91

9

77.55

0.1

9

German 59.34

8.17

20

60.40

8.31

20

62.18

7.20

20

61.70

6.83

20

72.13

2.06

20

Ave.mean 71.87 71.12 73.46 74.24 80.97

Ave.std 7.16 7.30 7.00 6.73 2.93

Ave.mean and Ave.std denote the average mean and standard devi-

ation accuracy of each algorithm over all datasets

Table 4 Mean and standard deviation (%) of test accuracy and the

number of selected features at 30 % of labeled examples

Dataset TSVM

Acc

Std

feature

Lap-

RLS

Acc

Std

feature

Lap-

SVM

Acc

Std

feature

Lap-

TSVM

Acc

Std

feature

Lap-

MNPSVM

Acc

Std

feature

Hepatitis 78.11

6.73

19

76.75

7.09

19

77.13

8.64

19

79.25

5.74

19

80

5.44

18.4

Hearts 71.63

6.48

14

72.39

6.71

14

75.11

7.24

14

76.85

6.12

14

77.53

4.04

12.4

Inosphere 69.79

7.64

34

73.24

6.59

34

74.03

7.38

34

75.67

5.88

34

83.46

3.43

27

WDBC 91.28

6.87

30

95.89

5.14

30

92.68

5.29

30

94.34

5.99

30

95.76

1.21

25.8

Australian 65.73

7.64

14

62.53

8.61

14

66.84

5.35

14

68.48

5.63

14

84.76

1.01

13.6

BUPA 63.92

7.12

6

69.48

6.29

6

66.10

6.97

6

68.95

7.33

6

64.47

4.69

6

Housevotes 93.12

7.11

16

90.28

6.73

16

92.62

7.13

16

94.01

5.34

16

95.69

1.5

16

CMC 62.13

7.26

9

58.21

6.43

9

63.79

6.25

9

64.82

5.43

9

77.55

0.1

9

German 61.92

8.17

20

62.92

6.47

20

64.31

6.49

20

63.49

8.37

20

74.13

1.66

20

Ave.mean 73.07 73.52 74.73 76.2 81.48

Ave.std 7.22 6.67 6.74 6.20 2.56

Ave.mean and Ave.std denote the average mean and standard devi-

ation accuracy of each algorithm over all datasets
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As the reference [28], we use digits 5 and 8 to form a

binary classification problem. The size of labeled examples

are 300, 600, and 1,200 separately (‘5’ and ‘8’ have the

same number of samples.) Then, 420 ‘5’ and ‘8’ are ran-

domly selected as unlabeled examples. All labeled and

unlabeled examples together form the training set. The test

dataset contains 1,500 examples. We use the training set to

select the optimal parameters and learn the classifier and

then test it on the test set. The experiments are repeated 10

times. Table 5 shows the result in the case of RBF kernel.

We can see that Lap-MNPSVM has not only the best

accuracy but also the best stability. The accuracy of Lap-

MNPSVM is about 1 % higher than Lap-TSVM in various

situations, and the standard deviation is only 0.4 at most.

The reason of better performance of our Lap-MNPSVM

may be that it has an adaptive norm which can be adjusted

according to the dataset while the other methods has only

the fixed norm for all datasets.

3.1.3 Comparison on synthetic dataset

In this subsection, we compare the effectiveness of our

Lap-MNPSVM with TSVM, Lap-SVM and Lap-TSVM for

two semi-supervised synthetic datasets, in terms of the

classification performance and decision boundary. Figure 2

shows the one-run results from this dataset of each clas-

sifier. It can be found that the decision boundary of TSVM,

Lap-SVM and Lap-TSVM is too close to some positiveFig. 1 An illustration of 10 subjects in MNIST dataset

Table 5 The testing accuracy

of ‘5’ versus ‘8’ dataset. The

size of the unlabeled data is 420

Labeled data size TSVM Lap-SVM Lap-TSVM Lap-MNPSVM

300 91.68 ± 2.25 94.37 ± 2.14 95.53 ± 1.98 96.44 ± 0.41

600 92.48 ± 1.88 95.41 ± 2.32 96.34 ± 2.54 97.47 ± 0.3

1,200 93.77 ± 1.45 96.56 ± 1.12 97.23 ± 2.33 98.29 ± 0.17

Fig. 2 The comparison on synthetic dataset. a Trueclass, b TSVM, c Lap-SVM, d Lap-TSVM, e Lap-MNPSVM
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examples, while our Lap-MNPSVM can obtain a more

reasonable decision boundary than the others. Furthernore,

from Table 6, we can see that our Lap-MNPSVM performs

best because only it can achieve 100 % accuracy. The

behind reason may be that our Lap-MNPSVM has an

adaptive norm, which can be adjusted according to the

dataset.

4 Conclusion

This paper proposes a novel algorithm named Laplacian

mixed-norm proximal support vector machine (Lap-

MNPSVM). For the corresponding optimization problem,

an approximate local optimal solution is obtained by

solving a series of LEs. Furthermore, we analyzing the

lower bounds theoretically, which is extremely helpful to

select the really relevant features. Our Lap-MNPSVM can

automatically realize feature selection and classification for

semi-supervised learning. Numerical experiments show

that our Lap-MNPSVM is effective in both selecting rel-

evant features and improving the classification accuracy,

compared with some popular methods. In the future, one

possible work will be extending Lap-MNPSVM to multi-

class classification.
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