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Abstract In this study, predictive modelling was per-

formed for the cutting forces generated during the

orthogonal turning of AISI 316L stainless steel. An artifi-

cial neural network (ANN) and a multiple regression ana-

lysis were utilised. The input parameters of the ANN model

were the cutting speed, feed rate and coating type. In the

model, tungsten carbide cutting tools, uncoated and with

two different coatings (TiCN ? Al2O3 ? TiN and Al2O3),

were used. The ANN predictions closest to the experi-

mental cutting forces were obtained for the main cutting

force (Fc) and the feed force (Ff) by 3-7-1 and 3-6-1 net-

work architectures with a single hidden layer, respectively.

While the SCG learning algorithm provided the optimal

results for Fc, the optimal results for Ff were provided by

the LM learning algorithm. A very good performance of

the neural network, in terms of agreement with the

experimental data, was achieved. With the developed

model, the cutting forces could be precisely predicted

depending on the cutting speed, feed rate and coating type.

The prediction results showed that the ANN was superior

to the multiple regression method in terms of prediction

capability.

Keywords Cutting forces � Orthogonal machining �
Artificial neural network � Coating materials

1 Introduction

Due to their high resistance to corrosion and oxidation,

austenitic stainless steels have been commonly used in

many industrial areas including those of aircraft, nuclear,

defence, food processing and particularly in that of medi-

cine [1–4]. However, the machining of these steels is very

difficult because of their high ductility, work hardening rate

and low thermal conductivity [5]. The proper selection of

cutting parameters in the machining of these steels plays a

significant role in ensuring the quality of the product,

reducing the machining costs and increasing productivity

[6]. In addition, poor selection of the cutting parameters

causes a decrease in the surface quality as well as rapid

cutting tool wear [7–10]. Measurement of the cutting forces

is of great importance in the determination of the optimum

cutting parameters because the cutting forces are one of the

most significant factors affecting tool life [11–15].

In scientific studies carried out to determine the opti-

mum cutting parameters, expensive experimental setups

and long test durations are needed. For this reason, dif-

ferent analyses, optimisation and modelling techniques

have been developed, including finite element analysis, the

multiple regression method, the Taguchi method, fuzzy

logic, genetic algorithms and artificial neural networks

(ANN) [16–20]. In recent years, many ANN-based scien-

tific studies have been performed due to the good predic-

tion capability of this technique [21–23]. Owing to its
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memorisation and analytical skills, an ANN resembles a

simple imitation of the human brain. Solving systems for

which the solutions are not analytically possible or for

which a mathematical model cannot be completely struc-

tured has become easier through ANNs, which arose from

computer programs affected by natural neural systems [24,

25]. The ANN method is used in the machining area as

well. In the chip-removal process, a wide range of factors,

including environmental conditions, rigidity and surface

roughness, as well as cutting parameters, should be taken

into account. The ANN method is mostly used for the

prediction of surface roughness and cutting forces. In their

studies, Hao et al. [26] used ANNs to develop a model for

the prediction of the cutting forces in a self-propelled

rotating tool during the turning process. In the constructed

ANN architecture, while the cutting speed, feed rate, depth

of cut and inclination angle were used as inputs, the main

cutting force, feed force and radial force were outputs of

the network. They created a new hybrid model by com-

bining the ANN model with the genetic algorithm. Through

the new hybrid model, cutting forces could be obtained that

were very close to the experimental data. Suksawat [27]

presented an ANN application that predicted the main

cutting force and the classified chip form. The cutting

speed, feed rate and depth of cut were used as inputs to a

network for predicting the cutting force and classified chip

form occurring during the turning of nylon material with

HSS tools. As a result of the study, the convergence values

for the predictions of the classified chip form and the

cutting force were calculated with 86.67 and 91.13 %

accuracy. Ozkan et al. [28] developed an ANN model for

the prediction of the cutting forces and temperatures gen-

erated in the turning process under different cutting con-

ditions. By means of the developed model, the cutting

forces and temperature values could be predicted precisely.

In another study, a back propagation neural network model

has been developed for the prediction of surface roughness

in turning operation by Pal and Chakraborty [18]. The

convergence of the mean square error both in training and

testing came out very well. The performance of the trained

neural network has been tested with experimental data and

found to be in good agreement. Yilmaz et al. [29] per-

formed a study about predicting the surface roughness by

means of neural network approach method on machining of

a cast polyamide material. The network has two inputs

called spindle speed and feed rate for this study. Gradient

descent method was applied to optimise the weight

parameters of neuron connections. According to the pre-

dicted results, the ANN model developed for predicting the

surface roughness values in milling gave correct and

acceptable results.

For the present study, an ANN model was developed for

the prediction of the main cutting force and feed force

occurring during orthogonal cutting. In the input layer of

the ANN architectures, the coating type (Ct), feed rate

(f) and cutting speed (V) are included. In addition, multiple

regression analysis was performed for the same input and

output parameters. The cutting force values calculated

using the formulas obtained from both an ANN and a

multiple regression analysis were compared with the

experimentally measured cutting force values.

2 Materials and methods

2.1 Experimental process

Orthogonal turning tests using AISI 316L austenitic

stainless steel bars (see Table 1) as the workpiece material

were carried out on a Johnford T35 CNC lathe with 10-kW

spindle power and a maximum spindle speed of 6,500 rpm.

The experimental setup for orthogonal cutting is shown in

Fig. 1. The bars, 60 mm in diameter and 240 mm in cutting

length, were turned with two different coated and uncoated

cemented carbide cutting inserts. The workpiece and cut-

ting tools used in the orthogonal cutting tests are shown in

Fig. 2. A Kistler piezoelectric dynamometer model 9257B

with a load amplifier connected to a computer was used for

the acquisition of the cutting force (Fc) and feed force (Ff).

The orthogonal cutting tests were carried out at feed rates

of 0.05, 0.1 and 0.2 mm/rev, cutting speeds of 75, 100,

150, 200 and 250 m/min and a constant depth of cut of

2 mm (Table 2). General properties of cutting inserts pro-

duced by Iscar used in the machining of AISI 316L are

given in Table 3. The inserts had a -6� rake angle, 5�
clearance angle and 0.8 mm nose radius. In cutting

experiments, tool holder was used the tool holder code of

PTGNL 2525M16 and approaching angle of 90�. The

mechanical and thermal properties of the coating materials

are given in Table 4 [30].

2.2 Artificial neural networks

An ANN is a data processing and modelling technique that

arose in pursuit of mathematical modelling of the learning

process which was inspired by the human brain. The ANN

concept arose as the idea of imitating the brain’s working

principles on digital computers. The studies on this subject

started in 1942 with the mathematical modelling of neu-

rons, the biological units that constitute the brain, and the

application of this model to computer systems; afterwards,

it was utilised in many fields in parallel with the devel-

opment of computer systems. ANNs have the ability to

associate the input data, defined depending on single or

multiple parameters, regarding a system with that system’s

outputs, defined depending on single or multiple
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parameters [31]. The biggest advantage of ANNs is that

they are able to learn and to use different learning algo-

rithms [32]. In ANNs, the data coming from the external

world go to the input layer. These are the data that we want

the network to learn. The way that data are given to the

network varies with respect to the data set. The summation

function (R) is a function that calculates the net input

coming to a cell, and the net input is generally a sum of

multiplications of the inputs (x) with the relevant weights

(w), calculated with the formula in Eq. (1).

NETi ¼
Xn

j¼1

wijxj þ wbi ð1Þ

where NETi is the weighted summation of the input values,

i and j are processing elements, n is the number of pro-

cessing elements in the previous layer, wij is the weight of

the connections between the i and j processing elements, xj

is the output of the j processing element and wbi is the

weight of the biases between layers.

At the next stage, the output of the summation function

is sent to the transfer (activation) function. This function

transforms the received value into a real output through an

algorithm. As regards the transfer function used, the output

values are usually normalised between -1 and 1 [33] or

between 0 and 1 [34]. The transfer functions used in ANNs

are generally nonlinear functions. Using nonlinear transfer

functions allows ANNs to be applied to very different

complex problems. The common transfer functions in

ANNs are linear, step/signum, threshold, logistic sigmoid,

hyperbolic tangent sigmoid functions, etc. In the ANN

model developed in this study, the logistic sigmoid transfer

function was used and its formula is given in Eq. (2).

Table 1 Chemical

characteristics (wt%) of AISI

316L material

C Mn Si P S Ni Cr Mo Fe

0.017 1.50 0.520 0.029 0.0010 11.20 16.75 2.15 67.833

Fig. 1 Experimental setup for orthogonal cutting

Fig. 2 Workpiece material used in orthogonal cutting process

Table 2 Test parameters

Workpiece material AISI 316L

Coating type Uncoated, TiCN ? Al2O3 ? TiN, Al2O3

Cutting speed (V, m/min) 75, 100, 150, 200, 250

Feed rate (f, mm/rev) 0.05, 0.1, 0.2, 0.3

Depth of cut (a, mm) 2

Table 3 Cutting inserts used in the experimental study

ISO

grade

Insert

code

Coating

method

Coating

type

Total coating

thickness

(lm)

M10–M25

K10–K20

IC20 – Uncoated –

K05–K20 IC4028 CVD TiCN ? Al2O3

? TiN

(2 ? 2?1)

*5

P05–P15

K05–K20

IC428 CVD Al2O3 *5
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f NETið Þ ¼ 1

1þ e�NETi
ð2Þ

where f(NET) is the logistic sigmoid transfer function.

The significant advantages of ANNs are their learning

ability and their use of different learning algorithms. In

order to obtain the output values closest to the experimental

values, the best learning algorithm and the optimal number

of neurons in the hidden layer should be determined. Dif-

ferent types of learning algorithms used in the network

training process include gradient descent back propagation

(GD), quasi-Newton back propagation (BFGS), Leven-

berg–Marquardt back propagation (LM), scaled conjugate

gradient back propagation (SCG), resilient back propaga-

tion (RP), conjugate gradient back propagation with Polak–

Ribiére updates (CGP) and Bayesian regulation back

propagation (BR). The most important factor that deter-

mines its success in practice, after the construction of ANN

architecture, is the learning algorithm. In this study, the

LM, SCG, BFGS, RP and CGP learning algorithms were

used for network training. In addition, the number of hid-

den layers and neurons in each hidden layer were deter-

mined. Of the 60 experimental data obtained as a result of

an experimental study, 48 data were randomly selected as

training data, while 12 data were selected as testing data.

An investigation of previous studies in the literature found

the data numbers used in this study to be adequate for ANN

modelling (Kohli and Dixit [35]—31 data; Pal and Cha-

kraborty [36]—27 data; Cus and Zuperl [37]—30 data; Al-

Ahmari [38]—28 data; Davim et al. [39]—30 data; Karnik

et al. [40]—36 data; Chavoshi and Tajdari [41]—18 data;

Korkut et al. [17]—50 data; Asiltürk et al. [42]—27 data).

The input and output values were normalised between 0.1

and 0.9. The normalisation values of the network are given

in Table 5. Finally, the iteration number was entered and

the training process was started. The data obtained from the

ANN training were compared with the cutting force values

obtained experimentally from the cutting tests. For com-

parison, the root mean square error (RMSE), R2 (coefficient

of determination) and mean error percentage (MEP) values

were used. These values are calculated with the formulas

given in Eqs. (3–5).

RMSE ¼ 1

p

� �X

j

tj � oj

�� ��2
 !1=2

ð3Þ

R2 ¼ 1�
P

j tj � oj

� �2

P
j oj

� �2

 !
ð4Þ

MEP ð%Þ ¼
P

j tj � oj

� ��
tj

� �
� 100

p
ð5Þ

where t is the target value, p is the number of patterns and

o is the output value. The cutting parameters and coating

types used for turning AISI 316L austenitic stainless steel

under orthogonal conditions and the experimental cutting

force values obtained as a result of the cutting tests are

given in Table 6. As shown in Table 6, the digits for the

coating type to be entered into the multiple regression

analysis and the ANNs were determined as: uncoa-

ted = 1, TiCN ? Al2O3 ? TiN-coated = 2 and Al2O3-

coated = 3.

The ANN architectures for the prediction of the cutting

forces are shown in Fig. 3. In the ANN architecture con-

structed for the main cutting force, three neurons (coating

type, cutting speed and feed rate) were included in the

input layer, seven neurons were included in its hidden layer

and one neuron was included in the output layer. In addi-

tion, in the ANN architecture constructed for the feed

force, three neurons were included in the input layer, six

neurons were included in its hidden layer and one neuron

was included in the output layer.

Table 4 The mechanical and

thermal properties of coating

and uncoated materials [30]

Material TiN TiCN Al2O3 WC (uncoated)

Coating thickness (lm) 1.5–3 4–8 3–5 –

Hardness (HV) 2,300 3,000 2,000

Thermal expansion

coefficient (910-6) (K-1)

9.4 8 8.4 5

Modulus of elasticity (GPa) 600 448 415 650

Poisson ratio 0.25 0.23 0.22 0.25

Density (kg/m3) 4,650 4,180 3,780 11,900

Heat capacity (N/mm2 �C) 3 2.5 3.42 15

Thermal conductivity

(W/m �C)

20 (40 �C) 26 (25 �C) 33 (50 �C) 30 (30 �C)

21 (100 �C) 27 (100 �C) 28 (90 �C) 32 (100 �C)

22 (300 �C) 28 (300 �C) 19 (300 �C) 34 (300 �C)

23.5 (500 �C) 30.5 (500 �C) 13 (500 �C) 37 (500 �C)

26 (1,000 �C) 33.5 (1,000 �C) 7 (1,000 �C) 44 (1,000 �C)

27 (1,300 �C) 35 (1,300 �C) 7 (1,300 �C) 47.5 (1,300 �C)
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3 Results and discussion

3.1 Experimental evaluation of the main cutting force

As a result of the experimental studies, the change in the

main cutting force obtained under the same conditions for

each tool used is given in Fig. 4. As can be seen clearly

from the diagrams, increases in the main cutting force

depend on an increased feed rate. Since the increase in the

feed rate leads to an increase in the chip cross section, the

pressure affecting the cutting tool will also increase.

Consequently, the force required for cutting will increase.

In addition, another common point in the main cutting

force results obtained for each of the three cutting tools is

that the cutting force rates obtained for low cutting speeds

are high. In a sense, as the cutting force decreases, it

becomes harder to break chips off the workpiece. As the

cutting speed increases, the cutting temperature in the first

deformation zone increases and thermal softening occurs in

the cutting zone. This in turn leads to a decrease in the

cutting force. Similar results were found in the literature

[43, 44].

When Fig. 4 is examined, it can be observed that the

increase in the feed rate leads to a linear increase in the main

cutting force. Additionally, it can be seen that as the cutting

speed increases, the main cutting force decreases propor-

tionally. It is possible to say that the cutting force obtained

for the uncoated cutting tool is higher when compared with

that of the TiCN ? Al2O3 ? TiN-coated and the Al2O3-

coated cutting tools. This condition can be seen clearly,

especially when the maximum cutting forces obtained for

75 m/min cutting speed and 0.3 mm/rev feed rate are com-

pared with each other. The reason for this is the low thermal

conductivity coefficient of the coating materials [30].

Table 5 Normalization values of inputs and outputs

No Ct V (m/min) f (mm/rev) Fc (N) Ff (N) No Ct V (m/min) f (mm/rev) Fc (N) Ff (N)

1 0.25 0.25 0.15 0.28540 0.407097 31 0.5 0.5 0.6 0.544324 0.49871

2 0.25 0.25 0.3 0.40050 0.508387 32 0.5 0.5 0.9 0.762162 0.581935

3 0.25 0.25 0.6 0.63513 0.694839 33 0.5 0.66666 0.15 0.191351 0.234194

4 0.25 0.25 0.9 0.89351 0.885806 34 0.5 0.66666 0.3 0.304324 0.325806

5 0.25 0.33333 0.15 0.24702 0.338065 35 0.5 0.66666 0.6 0.504324 0.433548

6 0.25 0.33333 0.3 0.35567 0.423871 36 0.5 0.66666 0.9 0.718378 0.51871

7 0.25 0.33333 0.6 0.59621 0.590968 37 0.5 0.83333 0.15 0.195135 0.247742

8 0.25 0.33333 0.9 0.83027 0.712258 38 0.5 0.83333 0.3 0.303784 0.325161

9 0.25 0.5 0.15 0.193514 0.237419 39 0.5 0.83333 0.6 0.521081 0.421935

10 0.25 0.5 0.3 0.323784 0.328387 40 0.5 0.83333 0.9 0.684324 0.490323

11 0.25 0.5 0.6 0.53027 0.425806 41 0.75 0.25 0.15 0.204324 0.247097

12 0.25 0.5 0.9 0.736757 0.510323 42 0.75 0.25 0.3 0.346486 0.368387

13 0.25 0.66666 0.15 0.187568 0.216129 43 0.75 0.25 0.6 0.601622 0.581935

14 0.25 0.66666 0.3 0.315135 0.287742 44 0.75 0.25 0.9 0.847027 0.727097

15 0.25 0.66666 0.6 0.5 0.371613 45 0.75 0.33333 0.15 0.19027 0.232258

16 0.25 0.66666 0.9 0.702703 0.427097 46 0.75 0.33333 0.3 0.341081 0.36

17 0.25 0.83333 0.15 0.191351 0.209032 47 0.75 0.33333 0.6 0.570811 0.518065

18 0.25 0.83333 0.3 0.307568 0.263226 48 0.75 0.33333 0.9 0.764865 0.576129

19 0.25 0.83333 0.6 0.500541 0.330968 49 0.75 0.5 0.15 0.177838 0.194194

20 0.25 0.83333 0.9 0.671351 0.38 50 0.75 0.5 0.3 0.30973 0.319355

21 0.5 0.25 0.15 0.223784 0.270968 51 0.75 0.5 0.6 0.54 0.445161

22 0.5 0.25 0.3 0.351892 0.408387 52 0.75 0.5 0.9 0.720541 0.51871

23 0.5 0.25 0.6 0.605946 0.607742 53 0.75 0.66666 0.15 0.176757 0.212258

24 0.5 0.25 0.9 0.856757 0.774194 54 0.75 0.66666 0.3 0.296216 0.285806

25 0.5 0.33333 0.15 0.224865 0.283226 55 0.75 0.66666 0.6 0.481081 0.378065

26 0.5 0.33333 0.3 0.335135 0.37871 56 0.75 0.66666 0.9 0.684865 0.457419

27 0.5 0.33333 0.6 0.578378 0.563871 57 0.75 0.83333 0.15 0.183784 0.207097

28 0.5 0.33333 0.9 0.811351 0.669032 58 0.75 0.83333 0.3 0.298919 0.278065

29 0.5 0.5 0.15 0.182162 0.209677 59 0.75 0.83333 0.6 0.494595 0.36129

30 0.5 0.5 0.3 0.317297 0.346452 60 0.75 0.83333 0.9 0.667027 0.429677
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In particular, the thermal conductivity of the Al2O3 coating

decreases with increased temperature [45]. Thus, the spread

of the heat occurring within the tool is delayed [46]. Most of

the occurring heat is focused on the cutting zone. This in

turn leads to a decrease in the cutting force because the

increased cutting temperature decreases the friction coeffi-

cient in the tool–chip interface [47] and causes thermal

softening in the workpiece.

3.2 Experimental evaluation of the feed force

The variations in feed forces obtained from the experi-

mental studies conducted are given in Fig. 5. Depending on

the increased feed rate, the feed forces in the three tools

also increase. In addition, depending on the increased

cutting speed, the feed forces decrease [44, 48]. The fact

stands out that the feed forces obtained with an uncoated

Table 6 Experimental cutting

force values
Cutting speed

(m/min)

Feed rate

(mm/rev)

Uncoated (1) TiN ? Al2O3 ? TiCN (2) Al2O3 (3)

Fc (N) Ff (N) Fc (N) Ff (N) Fc (N) Ff (N)

75 0.05 528 631 414 420 3,788 383

75 0.1 741 788 651 633 641 571

75 0.2 1,175 1,077 1,121 942 1,113 902

75 0.3 1,653 1,373 1,585 1,200 1,567 1,127

100 0.05 457 524 416 439 352 360

100 0.1 658 657 620 587 631 558

100 0.2 1,103 916 1,070 874 1,056 803

100 0.3 1,536 1,104 1,501 1,037 1,415 893

150 0.05 358 368 337 325 329 301

150 0.1 599 509 587 537 573 495

150 0.2 981 660 1,007 773 999 690

150 0.3 1,363 791 1,410 902 1,333 804

200 0.05 347 335 354 363 327 329

200 0.1 583 446 563 505 548 443

200 0.2 925 576 933 672 890 586

200 0.3 1,300 662 1,329 804 1,267 709

250 0.05 354 324 361 384 340 321

250 0.1 569 408 562 504 553 431

250 0.2 926 513 964 654 915 560

250 0.3 1,242 589 1,266 760 1,234 666

Fig. 3 Single hidden layer ANN architectures created for cutting forces
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cutting tool at cutting speeds of V = 75 and 100 m/min are

higher than the results obtained with the other two cutting

tools. However, it is possible to say that the feed forces

obtained at other cutting speeds are closer to each other.

According to Fig. 5, the feed forces obtained with uncoated

tools are higher than the feed forces obtained with the

Al2O3-coated cutting tool. In addition, the Ff obtained with

the TiCN ? Al2O3 ? TiN-coated cutting tool for

V C 150 m/min and f C 0.2 mm/rev is higher than that

obtained with the uncoated tool. However, it can be said

that there are no significant differences between

TiCN ? Al2O3 ? TiN-coated and uncoated tools for

V C 150 m/min and f B 0.1 mm/rev. This was attributed

to low thermal conductivity coefficient of the coating

material. Low thermal conductivity of the coated cutting

tools exhibits better performance compared with uncoated

cutting tools [30, 49, 50].

When both main cutting and feed forces were evaluated

together, the cutting of AISI 316L stainless steel material at

150 m/min and higher cutting speeds may be more

advantageous in terms of tool life because it is clear that at

cutting speeds lower than 150 m/min in all three types of

tools, the main cutting and feed forces are very high. On

the other hand, when the cutting tools are evaluated within

themselves, it is possible to say that the forces obtained for

the Al2O3-coated cutting tool are lower. The thermal con-

ductivity of the Al2O3 coating decreases with increased

temperature [45]. Therefore, the Al2O3-coated cutting

tool exhibits better performance compared with TiCN ?

Al2O3 ? TiN-coated and uncoated tools [30, 49].

3.3 Prediction of cutting forces using multiple

regression analysis

The variance analyses performed for the main cutting force

and feed force are given in Table 7. As is apparent from the

table, the effects of all the cutting parameters

(Pr = 0.0067, Pr \ .0001, Pr \ .0001) on the main cutting

force are statistically significant. Here, Pr \ 0.05 value

indicates statistically significant of parameters. This situa-

tion shows that the coating type, cutting speed and feed rate

have a significant effect on the main cutting force in the

orthogonal cutting process. Nevertheless, when the F sta-

tistical values are considered, it is possible to say that the

feed rate has a greater effect on the main cutting force

when compared with the coating type and cutting speed.

Fig. 4 The variations in main cutting force depending on the coating type and cutting speed
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When the significance values in the variance analysis

conducted for the feed force are considered, it can be seen

that the cutting parameters (coating type Pr = 0.0221,

cutting speed Pr \ .0001, feed rate Pr \ .0001) are effec-

tive on the feed force. The F statistical values of the feed

rate, coating type and cutting speed parameters are

Fig. 5 The variations in feed force depending on the coating type and cutting speed

Table 7 Variance analysis for

main cutting force and feed

force

Source Degrees of freedom (df) Sum of square (SS) Mean square F value Pr [ F

Fc

Model 3 9,490,655.9 3,163,552 1,144.281 \.0001

Coating type 1 21,949.2 21,949.2 7.9392 0.0067

Cutting speed 1 287,463.8 287,463.8 103.9779 \.0001

Feed rate 1 9,181,242.8 9,181,242.8 3,320.927 \.0001

Error 56 154,821.1 2,765 \.0001

Total 59 9,645,477

Ff

Model 3 3,049,486.2 1,016,495 104.8405 \.0001

Coating type 1 53,728.9 53,728.9 5.5416 0.0221

Cutting speed 1 764,316.9 764,316.9 78.8310 \.0001

Feed rate 1 2,231,440.4 2,231,440.4 230.1489 \.0001

Error 56 542,955.7 9,696 \.0001

Total 59 3,592,441.9
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230.1489, 5.5416 and 78.8310, respectively. These values

show that the feed rate that has the highest F statistical

value has a greater effect on the feed force when compared

with the coating type and cutting speed. The statistical

results obtained through multiple regression analysis for

the main cutting force and feed force are given in Figs. 6

and 7. The mathematical statements established with

multiple regression analysis for the main cutting force and

feed force are given in Eqs. (6) and (7).

Fc ¼ ð400:851Þ�ðð23:425Þ � CtÞð
�ðð1:080Þ � VÞ þ ðð4; 074:169Þ � f ÞÞ ð6Þ

Ff ¼ ð664:757Þ�ðð36:650Þ � CtÞð
�ðð1:762Þ � VÞ þ ðð2; 008:542Þ � f ÞÞ ð7Þ

The variations in the predicted cutting forces depending

on the experimental results are given in Fig. 6. While the

maximum deviation values vary between 150 and -100 for

the main cutting force, the maximum deviation values for

the feed force are between 300 and -250. This is also an

indication that the coefficient of determination of the feed

force is lower. The variations in the cutting force values

predicted with multiple regression analysis, as per the

experimental cutting force values, are given in Fig. 7. The

predicted main cutting force values are very close to the

experimental cutting force values. It was determined that

the best convergence value was 99.96 % and the worst

convergence value was 77.65 %, whereas for the feed

force, it was found that the best convergence value was

99.69 % and the worst convergence value was 65.42 %.

Also, the coefficients of determination for the main cutting

force and feed force resulting from the regression analysis

were 0.98 and 0.85, respectively.

3.4 Prediction of cutting forces using artificial neural

networks

In the training of the ANN model developed for obtaining

the cutting forces, five different learning algorithms,

namely LM, SCG, BFGS, RP and CGP, were used to

determine the optimum learning algorithm. Also, by using

a range of network architectures, from three neurons to ten

neurons, the optimum network architecture was deter-

mined. As a result of trials, while the optimum results for

the main cutting force were obtained by the network

architecture with seven neurons in its hidden layer and by

the SCG learning algorithm, the optimum results for the

feed force were obtained by the LM learning algorithm and
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by the network architecture with six neurons in its hidden

layer. The network architectures developed for the main

cutting force and the statistical results obtained for the

learning algorithms are given in Table 8.

The matching of the experimental and ANN values for

testing and training sets of the main cutting forces is shown

in Figs. 8 and 9, respectively. Additionally, the matching

of the experimental and ANN values for testing and

Table 8 Statistical data for the main cutting forces using five different algorithms

Learning

algorithm

Number of

neurons

Training data Testing data

RMSE R2 MEP RMSE R2 MEP

SCG 3 0.015306 0.999106 3.589901 0.013884 0.999180 2.706918

SCG 4 0.009467 0.999658 1.480786 0.013993 0.999174 3.514036

SCG 5 0.008724 0.999710 1.700779 0.013431 0.999235 3.065112

SCG 6 0.007488 0.999786 1.276862 0.011329 0.999457 2.435329

SCG 7 0.006674 0.999830 1.396251 0.007364 0.999771 1.447662

SCG 8 0.004564 0.999921 0.875680 0.017976 0.998671 3.475144

SCG 9 0.004564 0.999921 1.116395 0.023382 0.997645 3.542660

SCG 10 0.004564 0.999921 1.033962 0.027418 0.996897 5.188471

LM 3 0.011260 0.999517 2.093985 0.012519 0.999329 2.415376

LM 4 0.008837 0.999702 1.358820 0.019276 0.998442 4.275722

LM 5 0.009429 0.999661 1.719516 0.011035 0.999483 2.163731

LM 6 0.007663 0.999776 1.395324 0.017538 0.998712 3.221716

LM 7 0.004564 0.999921 0.871082 0.015970 0.998932 3.879227

LM 8 0.004482 0.999923 1.145517 0.017449 0.998681 3.100300

LM 9 0.004554 0.999921 0.916429 0.016680 0.998806 3.838557

LM 10 0.004442 0.999925 1.036134 0.022302 0.997828 3.064588

BFGS 3 0.015227 0.999116 3.562690 0.013814 0.999189 2.693845

BFGS 4 0.008232 0.999742 1.591950 0.020150 0.998310 4.491831

BFGS 5 0.009142 0.999682 1.669994 0.011785 0.999413 2.347815

BFGS 6 0.008439 0.999729 1.712332 0.013133 0.999270 2.746763

BFGS 7 0.008170 0.999746 1.647688 0.011950 0.999393 2.259466

BFGS 8 0.007176 0.999804 1.293539 0.009509 0.999616 2.157031

BFGS 9 0.006180 0.999854 1.274929 0.017918 0.998624 3.384065

BFGS 10 0.004562 0.999921 0.863788 0.022545 0.997893 4.021354

RP 3 0.015415 0.999093 3.576337 0.012891 0.999290 2.531734

RP 4 0.012331 0.999420 2.470526 0.013562 0.999215 3.154455

RP 5 0.010335 0.999593 2.032983 0.010626 0.999523 2.269514

RP 6 0.009022 0.999690 1.638328 0.013198 0.999256 2.692624

RP 7 0.008194 0.999744 1.868142 0.011574 0.999438 2.358093

RP 8 0.007928 0.999760 1.473474 0.009242 0.999638 1.999521

RP 9 0.006937 0.999817 1.541089 0.009218 0.999634 2.132322

RP 10 0.006167 0.999855 1.067891 0.015161 0.999053 3.038948

CGP 3 0.026177 0.997373 6.087994 0.022788 0.997897 4.164616

CGP 4 0.011111 0.999529 2.575415 0.011671 0.999416 2.217321

CGP 5 0.016594 0.998947 3.475182 0.016420 0.998873 3.934075

CGP 6 0.009914 0.999625 2.088262 0.011475 0.999437 2.604078

CGP 7 0.011513 0.999495 2.467319 0.014016 0.999177 2.992922

CGP 8 0.010350 0.999592 2.180787 0.011702 0.999422 2.750823

CGP 9 0.011659 0.999482 2.478784 0.013824 0.999186 2.430141

CGP 10 0.005819 0.999871 1.220104 0.013854 0.999193 2.687012

Italic values show the optimum results for the main cutting force obtained by the network architecture with seven neurons in its hidden layer and

by the SCG learning algorithm
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training sets of feed forces is shown in Figs. 10 and 11,

respectively. They consist of the results of 60 tests that

were performed using uncoated, TiCN ? Al2O3 ? TiN-

and Al2O3-coated cutting tools. The most significant point

here is that the prediction values are very close to the

experimental values. As shown in Figs. 8, 9, 10 and 11, the

predictive ability of the network for Fc and Ff was found to

be satisfactory. This means that the selection of three input

parameters as influencing factors for predictions of main

cutting forces and feed forces provided satisfactory results.

Among the algorithms developed for the prediction of

cutting forces, the statistical values of the learning algo-

rithm and network architecture that provided the best

results are given in Table 9.

Having selected the most suitable network architectures

and learning algorithms, the mathematical statements

established using the ANN model developed for the pre-

diction of cutting force values are given in Eqs. (8) and (9).

where Fi (i = 1, 2, 3,…, 6 or 7) can be calculated according

to Eq. (10).

Fi ¼
1

1þ e�Ei
ð10Þ

where Ei is the weighted sum of the input and is calculated

by the equation given in Tables 10 and 11.

The weight values show the effects of the parameters

existing in the input layer on the cutting force values. The

weight values obtained for the main cutting force and

feed force are given in Tables 10 and 11. As seen in

Table 10, the most effective parameter, which affects the

main cutting force positively and negatively, is the feed

rate.
Fig. 8 Matching of the experimental and ANN values for testing sets

of main cutting forces

Fig. 9 Matching of the experimental and ANN values for training sets of main cutting forces

Fc ¼
1

1þ e�ð5:1916�F1þ0:5208�F2�0:4575�F3�7:0998�F4þ2:3128�F5þ1:0023�F6�1:9508�F7þ1:9509Þ

� �
� 1,850 ð8Þ

Ff ¼
1

1þ e�ð0:5889�F1þ0:4594�F2þ0:7798�F3�5:9822�F4�132:2598�F5�0:6642�F6þ132:7910Þ

� �
� 1,550 ð9Þ
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It can be seen clearly from the weight values in Table 11

that, while the most effective input affecting the feed force

positively is the feed rate, the most negatively effective

input is the cutting speed. The maximum error values for

the cutting force values obtained as a result of the ANN

predictions are given in Table 12. The deviation values in

Table 10 provide the evidence that the ANN model

developed is a valid model.

4 Conclusions

In this study, the multiple regression method and an ANN

were used for the prediction of the cutting forces that occur

during the orthogonal turning of AISI 316L austenitic

stainless steel. Several cutting experiments were conducted

during the experimental stage of the study by taking

different cutting parameters and coating types into con-

sideration. The findings of the study are as follows:

1. When the experimental and ANOVA results were

examined, the dominant factor affecting both the main

cutting force and the feed force was the feed rate. The

feed rate was followed by the cutting speed and

coating type, respectively.

2. The best results in the prediction of the main cutting

force were obtained by the network architecture with

seven neurons in its hidden layer and the SCG learning

algorithm, whereas the best results for the feed force

prediction were obtained with the network architecture

having six neurons in its hidden layer and the LM

learning algorithm. Because coefficients of determina-

tion were (R2) higher, the RMSE lower and the MEP

values within acceptable error limits (±5 %) for these

learning algorithms.

3. While the coefficients of determination for the main

cutting force and feed force resulting from the

regression analysis were 98 and 85 %, respectively,

in the ANN model, the coefficients of determination

of the cutting forces for both the training and the

testing set were more than 99 %. In addition, when

the results of the predictions made with both mod-

elling techniques were considered, it was concluded

that the error values obtained with ANNs were rather

lower than the error values obtained with the

regression analysis.

4. It was determined that the ANN results were within

acceptable error limits (±5 %). Therefore, it is

recommended that ANNs be used for the prediction

of cutting forces instead of conducting experimental

Fig. 11 Matching of the

experimental and ANN values

for training sets of feed forces

Table 9 Statistical values for

the cutting forces
Cutting

forces

Learning

algorithm

Number of

neurons

Training data Testing data

RMSE R2 MEP RMSE R2 MEP

Fc SCG 7 0.006674 0.999830 1.396251 0.007364 0.999771 1.447662

Ff LM 6 0.006333 0.999804 1.295207 0.013873 0.998816 3.235189

Fig. 10 Matching of the experimental and ANN values for testing

sets of feed forces
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studies, which are complicated, expensive and time

consuming.

5. ANNs have significant advantages when compared

with other conventional modelling techniques in terms

of speed, simplicity and learning capacity from

samples. This study has shown that ANNs constitute

a good alternative to conventional modelling tech-

niques for the prediction of cutting forces.
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