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Abstract Wi-Fi-based indoor localization with high

capability and feasibility needs to implement lifelong

online learning mechanism. However, the characteristic of

Wi-Fi is wide variability, which lies in not only the fluc-

tuation of signal strength value, but also the increase or

decrease in the number of access points (APs). The tradi-

tional algorithms are effective for signal fluctuation, but

cannot handle the dimension-changing problem of features

caused by increase and decrease in APs’ number. To solve

this problem, we propose a Feature Adaptive Online

Sequential Extreme Learning Machine (FA-OSELM)

algorithm. It can transfer the original model to a new one

with a small number of data with new features, so as to

make the new model suitable for the new feature dimen-

sion. The experiments show that the FA-OSELM can get

higher accuracy with a small amount of new data, and it is

an effective method to make lifelong indoor localization

practical.

Keywords Feature adaptive � Online Sequential Extreme

Learning Machine (OS-ELM) � Lifelong � Indoor
localization

1 Introduction

As indoor location-based service (indoor LBS) [1] has been

more and more important in our daily life, indoor location

estimation is becoming the key problem. At present, the

most popular techniques implementing indoor location is

Wi-Fi-based location fingerprinting [2–4]. It has the major

advantage of exploiting existing wireless network infra-

structures and consequently avoiding extra deployment

costs.

Location fingerprinting requires to operate a spatial

signal strength map from different access points (APs)

strategically located in a given area. It becomes a classical

classification problem where different supervised machine

learning techniques have been used to train classifiers,

using the signal strength from different APs as their input

data and providing the location estimation as their output

estimation. K-NN (nearest neighbor) [5], decision tree [6],

Bayesian [7], neural networks [8], extreme learning

machine (ELM) [9] are most frequently used by location

fingerprinting. Among all the algorithms above, ELM is

more and more widely used for its competitive fast learning

speed during both offline and online phrases.

Nevertheless, due to Wi-Fi signal is dynamically

changing over time [10], the location accuracy decreases as

time goes on. The dynamism of Wi-Fi signals is diverse.

On the one hand, the dynamism means the signal

strength value, which is caused by the volatility of Wi-Fi

signal and the change of environment. It will lead occa-

sional received signal strength indication (RSSI) value

missing, as shown in Table 1. For this situation, the general

approach is to supplement it with a default value according

to the data’s distribution. Chen [11] sets all the missing

values to -95, the minimum strength of the signal received

in the environment. Roos [12] replaces the missing values
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with some constant smaller than any of the measured

values.

On the other hand, the dynamism also denotes the

number of APs. Due to the basic function of Wi-Fi APs is

to provide Internet, it is very common that some APs are

removed or some new APs are added in the environment,

shown in Fig. 1. This situation will be difficult to solve

when the missing APs offer the fingerprint information, or

the new coming APs will be used as the feature. It will

bring the change of feature dimension, which is a challenge

for traditional machine learning algorithms. By using these

traditional methods, such as support vector machine (SVM)

[4, 13] and ELM, we can do nothing but collect new data

and retrain a model, it requires a lot of extra computation

and labor costs. At the same time, there are no direct

machine learning algorithms, which can handle the training

data of varying feature dimension.

Focusing on this problem, we regard it as a feature

transfer learning problem and propose a Feature Adaptive

Online Sequential Extreme Learning Machine (FA-

OSELM) algorithm. It can transfer the original model to a

new one with a few of incremental data, rather than com-

pletely retrain a new model. The experiments show that the

transferred model can get high accuracy.

The rest of the paper is organized as follows. We firstly

review ELM and OS-ELM briefly in Sect. 2. Then in

Sect. 3, we introduce FA-OSELM in detail. After that, we

do some experiments and evaluate the performance in

Sect. 4. At last, in Sect. 5, we make a short conclusion.

2 Brief of ELM and OS-ELM

In this section, we review ELM [9, 14, 15] and OS-ELM

[16] algorithms by introducing their motivation, modeling

and algorithm steps.

ELM is developed by Huang et al. And it belongs to

artificial neural network (ANN) family, especially an sin-

gle-layer feedforward networks (SLFN), where learning is

made without iterative tuning. According to ELM learning

theory [17], if SLFNs f ðxÞ ¼ hðxÞb with tunable piecewise

continuous hidden-layer feature mapping h(x) can

approximate any target continuous functions, tuning is not

required in the hidden layer then. All the hidden-node

parameters, which are supposed to be tuned by conven-

tional learning algorithms, can be randomly generated

according to any continuous sampling distribution [18, 19].

Comparing with other traditional learning methods,

ELM has not only better performance in classification

Table 1 Wi-Fi location fingerprints

ID RSSI

AP1 AP2 AP3 … APn

1 -85 -81 -67 … N/A

2 -79 -83 N/A … -84

3 N/A -73 -65 … -80

… … … … … …
m -88 N/A -70 … -87

Fig. 1 The increase or decrease

in the APs number. a AP6 is

removed from the environment,

which will lead decreasing of

the feature dimension, b a new

AP7 is added in the area, which

can offer positive influence on

location accuracy
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precision and regression fitting degree, but also less time

consumption in offline learning and online prediction [20].

Now, more and more work has been done to develop

ELM. Andrés [21] and Wang [22] propose some new

method to improve the generalization capability of ELM.

Miche [23] improves the optimally pruned extreme learn-

ing machine (OP-ELM) with LARS and Tikhonov regu-

larization to a double-regularized ELM. Therefore, it can

maintain numerical stability and efficient pruning of the

neurons. Dealing with some problems, especially relatively

large datasets, ELM suffers from instability and over-fit-

ting. Zhai et al. [24] propose an approach of fusion of

extreme learning machine (F-ELM) with fuzzy integral

based on probabilistic SLFNs.

And in order to alleviate some extent the problems of

instability and over-fitting problems of ELM when dealing

with large datasets, Zhai et al. [25] propose a dynamic

ensemble extreme learning machine based on sample

entropy. The experimental results show that the proposed

approach is robust and efficient. Furthermore, ELM has

been widely utilized in various kinds of applications such

as indoor localization [26, 27], activity recognition [28,

29], transportation mode recognition [30, 31], context-

aware computing [32] and so on.

Given N arbitrary distinct samples xi; tið Þ 2 Rn�
Rm; i ¼ 1; 2; . . .;N. Here, xi is a n 9 1 input vector xi ¼
xi1; xi2; . . .; xin½ �T and ti is a m 9 1 target vector

ti ¼ ti1; ti2; . . .; tim½ �T . The network with L hidden nodes is

shown in Fig. 2. The output function of this network can be

represented as follows:

fL xj
� �

¼
XL

i¼1

biG ai; bi; xj
� �

; j ¼ 1; . . .;N ð1Þ

where ai and bi are the learning parameters of hidden

nodes, and bi is the weight connecting the ith hidden node

to the output node. G ai; bi; xð Þ is the output of the ith

hidden node with respect to the input x. For additive hidden

node with the activation function g(x): R ? R (e.g., sig-

moid and threshold), G ai; bi; xð Þ is given by

G ai; bi; xð Þ ¼ g ai � xþ bið Þ; bi 2 R ð2Þ

If an SLFN with L hidden nodes can approximate these

N samples with zero error, it then implies that there exist

bi; ai and bi such that

fL xj
� �

¼
XL

i¼1

biG ai; bi; xj
� �

¼ tj; j ¼ 1; . . .;N: ð3Þ

Equation (3) can be summarized as

Hb ¼ T ð4Þ

where

H a1; . . .; aL; b1; . . .; bL; x1; . . .; xLð Þ

¼
G a1; b1; x1ð Þ � � � G aL; bL; x1ð Þ

..

. . .
. ..

.

G a1; b1; xNð Þ � � � G aL; bL; xNð Þ

2

64

3

75 ð5Þ

b ¼
bT1
..
.

bTL

2

64

3

75

L�m

and T ¼
tT1
..
.

tTN

2

64

3

75

N�m

ð6Þ

According to [10], the hidden-node parameters ai and bi
(input weights and biases or centers and impact factors) of

SLFNs do not need to be tuned during training and may

simply be assigned with random values. The smallest norm

least-squares solution of the above linear system is

b̂ ¼ HyT ð7Þ

where H� is the Moore–Penrose generalized inverse of

matrix H [33, 34]. Different methods can be used to cal-

culate the Moore–Penrose generalized inverse of a matrix:

orthogonal projection method, orthogonalization method,

iterative method and singular value decomposition (SVD)

[34]. The orthogonal projection method [34] can be used in

two cases: when HTH is nonsingular and H� = (HTH)-1HT

or when HHT is nonsingular and H� = HT(HHT)-1.

2.1 OS-ELM

The batch ELM described previously assumes that all the

training data (N samples) are available for training. How-

ever, in real applications, the training data may arrive

chunk by chunk or one by one (a special case of chunk),

and hence, the batch ELM algorithm has to be modified for

this case so as to make it online sequential.

First, given a chunk of initial training set @0 ¼
xi; tið Þf gN0

i¼1 and N0 C L, if one considers using the batch

x1

x2

xN-1

xN

g1(x)

g2(x)

g3(x)

gL(x)

t1

t2

tm-1

tm

a11

aNL

11

Lm

Input
Samples

Output
Label

Fig. 2 SLFN with L hidden nodes
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ELM algorithm, one need to consider only the problem of

minimizing kH0b� T0k. According to [16], the solution to

minimizing kH0b� T0k is given by bð0Þ ¼ K�1
0 HT

0 T0

where K0 ¼ HT
0H0.

Now support that we are given another chunk of data

@1 ¼ xi; tið Þf gN0þN1

i¼N0þ1, where N1 denotes the number of

observations in the chunk, the problem then becomes

minimizing

H0

H1

� �
b� T0

T1

� �����

���� ð8Þ

where

H1 ¼

Gða1; b1; xN0þ1Þ � � � GðaL; bL; xN0þ1Þ
..
. . .

. ..
.

Gða1; b1; xN0þN1
Þ � � � GðaL; bL; xN0þN1

Þ

2

664

3

775

N1�L

;

T1 ¼

tTN0þ1

..

.

tTN0þN1

2

664

3

775

N1�m

ð9Þ

Considering both chunks of training data sets @0 and @1,

the output weight b is formulated as

bð1Þ ¼ K�1
1

H0

H1

� �T
T0
T1

� �
ð10Þ

where

K1 ¼
H0

H1

� �T
H0

H1

� �
ð11Þ

and

H0

H1

� �T
T0

T1

� �
¼ HT

0 T0 þ HT
1 T1 ¼ K0K

�1
0 HT

0 T0

þ HT
1 T1 ¼ K0b

0ð Þ þ HT
1 T1

¼ K1 � HT
1H1

� �
b 0ð Þ þ HT

1 T1 ¼ K1b
ð0Þ

� HT
1H1b

0ð Þ þ HT
1 T1 ð12Þ

So the model of OS-ELM will be updated by the

incremental data. The contribution of incremental data x� is
reflected by the correction Db, of existing parameter of

training model b0, which forms the new parameter of

training model b� as Eq. (13).

b� ¼ b0 þ Db x�ð Þ ð13Þ

Obviously, the result of b� is based on previous result b0,
but the calculation burden is not heavy for it do not need all

the data to retrain the model.

Combining (10) and (12), b(1) is given by

b 1ð Þ ¼ K�1
1

H0

H1

� �T
T0

T1

� �

¼ K�1
1 K1b

0ð Þ � HT
1H1b

0ð Þ þ HT
1 T1

� �

¼ b 0ð Þ þ K�1
1 HT

1 T1 � H1b
0ð Þ

� �
ð14Þ

where

K1 ¼
H0

H1

� �T
H0

H1

� �
¼ HT

0 HT
1

	 
 H0

H1

� �
¼ K0 þ HT

1H1

ð15Þ

Obviously, Eq. (14) corresponds to Eq. (13), the new

b(1) is drives from b(0), we only need the new coming

incremental data to update the b(0) to b(1). So we greatly

reduce the computation cost because only a few data are

used for updating.

With the incremental number increasing, when the

(k ? 1)th chunk of data set @kþ1 ¼ xi; tið Þf g
Pkþ1

j¼0
Nj

i¼
Pk

j¼0
Nj

� �
þ1

is received, where k C 0 and Nk?1 denotes the number of

observations in the (k ? 1)th chunk, the Eq. (14) for

updating b(k?1) will be written as

bðkþ1Þ ¼ bðkÞ þ K�1
kþ1H

T
kþ1 Tkþ1 � Hkþ1b

ðkÞ
� �

ð16Þ

K�1
kþ1H

T
kþ1 Tkþ1 � Hkþ1b

ðkÞ
� �

can be seen as the correction

of the original model b(k) with the new samples

@kþ1 ¼ xi; tið Þf g
Pkþ1

j¼0
Nj

i¼
Pk

j¼0
Nj

� �
þ1

.

3 FA-OSELM

In Sect. 2, we have reviewed the ELM and OS-ELM

algorithms. Fortunately, they have already been applied

indoor localization research area. Xiao et al. [35] achieved

a perfect performance in Wi-Fi indoor location using ELM.

But due to the basic function of Wi-Fi is to provide

Internet, it is very common that some APs are removed or

some new APs are added. This change will affect the

variation of feature dimension, and thus, the old model will

not work anymore.

Considering the problem, we propose a FA-OSELM.

When the number of features is changed, we can update the

model using a small amount of incremental data with new

features.

Firstly, given N0 arbitrary distinct samples xi; tið Þ
2 Rn � Rm; i ¼ 1; 2; . . .;N0. Here, xi is a n 9 1 input vector

xi ¼ xi1; xi2; . . .; xin½ �T and ti is a m 9 1 target vector

ti ¼ ti1; ti2; � � � ; tim½ �T .
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When the number of APs used as the features changes,

we can collect a new batch data to update the model. Given

another N1 arbitrary distinct samples x0i; ti
� �

2 Rn0�
Rm; i ¼ 1; 2; . . .;N1. Here, x

0
i is a n0 9 1 input vector

x0i ¼ x0i1; x
0
i2; . . .; x

0
in0

	 
T
, but ti is still a m 9 1 target vector

ti ¼ ti1; ti2; . . .; tim½ �T .
If n0 \ n, it means some APs in the location area are

missing; if n0 [ n, it means that we set some new APs to

the location area. In these two situations, the problem is

still to minimize

H0

H1

� �
b� T0

T1

� �����

���� ð17Þ

But the H0;H1; T0 and T1 refer the follows:

H0 ¼
Gða1; b1; x1Þ � � � GðaL; bL; x1Þ

..

. . .
. ..

.

Gða1; b1; xN0
Þ � � � GðaL; bL; xN0

Þ

2

64

3

75

N0�L

;

T0 ¼
tT1
..
.

tTN0

2

64

3

75

N0�m

ð18Þ

H1 ¼

Gða0
1; b1; x

0
N0þ1Þ � � � Gða0

L; bL; x
0
N0þ1Þ

..

. . .
. ..

.

Gða0
1; b1; x

0
N0þN1

Þ � � � Gða0
L; bL; x

0
N0þN1

Þ

2

664

3

775

N1�L

;

T1 ¼

tTN0þ1

..

.

tTN0þN1

2

664

3

775

N1�m

ð19Þ

where

ai ¼ a1; a2; . . .; anf gf gLi¼1; xi ¼ x1; x2; . . .; xnf gf gN0

i¼1

ð20Þ

a0i ¼ a01; a
0
2; . . .; a

0
n0

� �� �L

i¼1
; x0i ¼ x01; x

0
2; . . .; x

0
n0

� �� �N1

i¼1

ð21Þ

ai is the weight vector connecting the input layer to the ith

hidden node, and bi is the bias of the ith hidden node. ai � xi
denotes the inner product of vectors ai and xi in Rn. ai and

bi can be random generated. Once determined, they cannot

be changed any more. According to Eqs. (18) and (19), we

can see that ai has the same dimension with xi, a
0
i has the

same dimension with x0i. Actually, ai and xi have one by

one corresponding relationship for each column, so as to a0i
and x0i:

As shown in Fig. 3, when the feature dimension is

changed, the bone structure of network has no change. But

as the feature dimension is different from previous, we

have to adjust ai to fit new feature dimension. As the same

time, the hidden node has no change, so the bi will not

change.

Therefore, we propose a input-weight transfer matrix P,

and a input-weight supplement vector Qi to generate a0i by

Eq. (22).

a0i ¼ ai � PþQi

� �L

i¼1
ð22Þ

where

P ¼
P11 � � � P1n

0

..

. . .
. ..

.

Pn1 � � � Pnn
0

2

64

3

75

n�n
0

ð23Þ

Qi ¼ Q1 � � � Qn0½ �1�n0 ð24Þ

matrix P has the following rules:

• Each line has only one ‘1,’ and the rest are all ‘0’;

• Each column has one ‘1’ at most, and the rest are all

‘0’;

• If Pij ¼ 1, it means that after the change of feature

dimension, the ith dimension of the original feature

vector has become the jth dimension of the new feature

vector.

Qi is used to supplement when the feature dimension

increases, we need to add the corresponding InputWeight

for the new adding features. Qi has the following rules:

• When feature dimension decreased, the Qi is an all-zero

vector, that is to say, we do not need to add

corresponding InputWeight for the new adding features;

• When feature dimension increased, if the ith item of

a0i is new feature, the ith item of Qi should be

x1

x2

xN0

g1(x)

g2(x)

g3(x)

gL(x)

t1

t2

tm-1

tm

11

Lm

Input
Samples

Output
Label

gL-1(x)

Fig. 3 FA-OSELM network
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generated randomly according to the distributing of

ai.

We take the Wi-Fi APs as an example:

if features: Ap1;Ap2;Ap3;Ap4;Ap5
� �

! Ap1;Ap2;
�

Ap3;Ap5g:
we can generate:

P ¼

1
0

0

0
0

0
1

0

0
0

0
0

1

0
0

0
0

0

0
1

2

6664

3

7775
, Qi ¼ 0; 0; 0; 0f g;

if features: Ap1;Ap2;Ap3;Ap4;Ap5
� �

! Ap1;Ap2;Ap3;
�

Ap6;Ap4;Ap5g:
we can generate:

P ¼

1 0 0 0 0 0
0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0
0 0 0 0 0 1

2

6664

3

7775
, Qi ¼ 0; 0; 0;Q4; 0; 0f g;

where Q4 can be generated randomly.

As mentioned above, FA-OSELM can be summarized in

the following steps:

1. Determine the model parameters by the original

dataset of N0 samples, such as the number of hidden

nodes L and the activation function g(x).

2. Randomly assign the value of weight vector ai and

bias scalar bi, i = 1, 2, …, L.

3. Calculate the original hidden-layer output matrix

H0.

4. Calculate the initial model parameter b(0) = H0
�T0.

5. When coming N1 samples data X1; T1 with different
feature, generate the input-weight transfer matrix P
and input-weight supplement vector Qi, i = 1,
2, …, L according to rules mentioned above.

6. Calculate the new weight vector a0i ¼ ai � PþQi,

i = 1, 2, …, L.

7. Divide the newly incremental data into k parts, set

j = 1, then go to iterative process.

8. Using the new weight vector a0i to calculate the jth

iteration of model parameter Hj by Eq. (19).

9. Calculate the bj by the Eq. (16).

10. If j\ k, set j = j ? 1 and go to (8); else go to (11).

11. After k times iteration, we can get the final parameter

b* = bj.

From Step (5) to Step (10), when a new batch of data

comes, we will adjust the weight vector basing on the

change of features. So we name our algorithm FA-OSELM.

The workflow of the algorithm can be concisely given in

Fig. 4.

4 Experiments and performance evaluation

As the Wi-Fi access points always move, which will leads

the change of feature dimension, we use FA-OSELM to

enable the existing model to overcome it with a small

amount of incremental data, saving human labeling work

and time-consuming.

All the experiments are running on the computer with

following configuration:

Operation System Windows XP Professional SP3

CPU Intel Pentium(R) 4 CPU

Main Frequency 3.2 GHz

RAM 2G

4.1 Data preparing

For the classification studies, four benchmark problems

have been considered: two Wi-Fi indoor location data sets:

No

Yes

†

Fig. 4 The workflow of algorithm
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(1) office area dataset and (2) lounge area dataset; two UCI

[36] datasets: (3) image segment and (4) satellite image.

We use the Wi-Fi datasets to show FA-OSELM has good

performance on lifelong indoor localization. Meanwhile,

the experiments on UCI datasets show that FA-OSELM is

also effective in other applications.

Office area is a 12 9 6 m2 working space in eighth floor

of our institute, shown in Fig. 5. Red points are the loca-

tions where data are mostly collected with distance about

2 m. We collect the data at different time of a day and last

for a month. Finally, we collected 5,635 data. We choose

the most stable 7 APs as the feature, so each fingerprint is a

seven dimension vector.

Lounge area is an 8.7 9 55 m2 space in first floor of our

institute, shown in Fig. 6. Also the red points show the

locations where data are mostly collected with distance

2–3 m. A total of 2,484 data are collected for a week, and

18APs are selected as the feature.

The image segmentation problem consists of a database

of images drawn randomly from seven outdoor images and

consists of 2,310 regions of 3 9 3 pixels. The goal is to

recognize each region into one of the seven paths, and

grass using 19 attributes extracted from each square region.

The satellite image problem consists of a database

generated from landsat multispectral scanner. One frame of

landsat multispectral scanner imagery consists of four

digital images of the same scene in four different spectral

bands. The database is a (tiny) subarea of a scene, con-

sisting of 82 9 100 pixels. Each data in the database cor-

responds to a region of 3 9 3 pixels. The aim is to classify

of the central pixel in a region into the six categories,

namely red soil, cotton crop, gray soil, damp gray soil, soil

with vegetation stubble, and very damp gray soil using 36

spectral values for each region.

Specifications of two UCI datasets are shown in Table 2.

Beforebeing used, theywerenormalizedwith z-scoremethod.

4.2 Experimental performance

4.2.1 Model selection

According to Huang [20], the accuracy will be impro-

ved with regularization factor C, which can optimize the

architecture of learning model. Thus, for FA-OSELM, only

two user-specified parameters, regularization factor and

number of hidden nodes (C, L), should be determined.

We divide the training data of each dataset into two

equal subsets and use cross-validation method to determine

user-specified parameters (C, L), where C is chosen from

the range {2-20, 2-18,…, 218, 220} and L is chosen from the

range{10, 20,…, 990, 1,000}. The performance of each

data sets’ parameters is illustrated in Figs. 7, 8, 9 and 10.

From all above mentioned in Figs. 7, 8, 9 and 10, for

different datasets, we need to select the optimal parameter

settings of L and C to achieve good performance. For

example in Fig. 7, we can obtain the optimal performance

with the optimal parameter pair (L = 350, C = 2-6) in

Table 3. Generally speaking, the performance can be

reached the higher accuracy increasingly as long as the

number of hidden nodes L is getting larger, but due to the

over-fitting problem, the accuracy will decrease in some

cases in Figs. 8 and 9. Meanwhile, regularization factor

Table 2 Specifications of two UCI data sets

Dataset # Attributes # Classes # Data

Image segment 19 7 2,310

Satellite image 36 6 6,435

Fig. 5 Wi-Fi indoor location (office area)

Fig. 6 Wi-Fi indoor location (lounge area)
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Fig. 7 Performances with different user-specified parameters (C,

L) for image segment dataset
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C also can help to achieve high accuracy when taking the

specific value. To tradeoff between high accuracy and

computation complexity, we obtain the optimal parameter

settings for all the datasets in Table 3. Additionally, we use

the RBF activation function in all experiments.

4.2.2 FA-OSELM’s performance when dealing

with feature dimension reducing

In the study of Wi-Fi indoor localization, when one AP we

used as the feature is missing, it will lead one feature

missing. For this case, the old ELM model cannot be used

any more and there are two common handing methods:

(1) According to the distribution of the missing feature, we

can fulfill the lost item with a default value, such as mean

value or a random value; (2) train another new model with

some new offline training data. Besides, we can use FA-

OSELM to update the old model to a new one with a few of

incremental data.

We apply all the methods on four datasets. We divide

each dataset into three parts: training data, incremental data

and testing data. Incremental data and testing data have the

same feature dimension, but one less than the training data.

This missing one feature dimension is random selected

from the original (Figs. 11, 12).

The results of two UCI datasets are shown in Table 4.

We can see that FA-OSELM has a better performance than

retraining a new model. The reason is that when one fea-

ture is lost, the original model still contains the majority

information of the new feature. However, the incremental

data are too little to retain a good new model, but it is

Table 3 User-specified

parameters
Dataset L C

Image segment 350 2-6

Satellite image 300 2-10

Wi-Fi location

(office area)

400 2-8

Wi-Fi location

(lounge area)

400 2-12
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Fig. 8 Performances with different user-specified parameters (C,

L) for satellite image dataset
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Fig. 9 Location accuracy (\5 m) with different user-specified

parameters (C, L) for Wi-Fi location dataset (office area)
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effective to transfer the original model and overcome the

change of the features. FA-OSELM also performs better

than the methods of supplementing with a mean value or

random values because the supplemented values only

enable the old model, but offer meaningless information.

4.2.3 FA-OSELM’s performance when dealing

with feature dimension increasing

On the contrary, when a new AP is equipped in the location

area, it can offer some new feature information, but the old

ELM model cannot involve it, as the feature dimension will

be changed. If we want to utilize it, we can do nothing but

collect a bench of data and train a new model, which needs

extra labor cost. Otherwise, we have to just ignore it and

still use the old model. Fortunately, FA-OSELM allows us

to transfer the old model to a new one, and it can take full

use of the new feature dimension with a little labor cost. As

the former experiments, we also divide each datasets into

three parts: training data, incremental data and testing data.

But in order to test the performance when feature dimen-

sion increases, we set the feature dimension of incremental

data equals to testing data, but one more than the training

data.

The results of UCI datasets are shown in Table 5. We

can obtain the same conclusion that FA-OSELM still works

well in feature increasing situation. We can explain the low

accuracy of retraining a new model as the underfitting

caused by less scale of incremental data. But for FA-

OSELM, the little scale of incremental data can further

bring in the incremental information to the old model and

improve the testing accuracy. Comparing with using the

old model directly, FA-OSELM offers limited accuracy

increasing for the two UCI datasets. The reason is that it is

variable that how much influence each feature can affect

the accuracy.

As shown in Figs. 13 and 14, FA-OSELM’s perfor-

mances are much better than the other two for the Wi-Fi

location problems. The reason is that, for Wi-Fi location

problem, FA-OSELM can not only maintain the old mod-

el’s information, but also take full of the new added

feature.

4.2.4 FA-OSELM’s performance as more and more

incremental data comes

While adapt to the new feature dimension, FA-OSELM

performs better than any other methods mentioned above

with a small amount of incremental data. For the Wi-Fi-

based indoor localization problem, if we can get more

incremental data, we will have more information about the

new location environment. We want to value whether FA-

OSELM is stable and can get better performance with more

incremental data.

Thus, we extend the Wi-Fi location dataset of office area

to be 6,835 with another 1,200 data. We maintain the

original training data and select 600 of the new data to be

the testing data, and the rest are used as incremental data.

They are ordered chronologically and divided into ten

equal parts. We design the experiments as the previous two

to measure the capability in two situations: when a feature

is missing and a new feature is added. The results are

shown in Figs. 15 and 16.

As shown in Figs. 15 and 16, as more incremental

data chunks come, the accuracy will keep stable after a

period of increasing. Because more incremental data

offer more positive information to help FA-OSELM to

transfer the old model so as to fit the new feature. When

Table 4 Testing accuracy in feature missing experiments

Datasets Data proportion

(training:incremental:testing)

Feature dimension Testing accuracy

Training

data

Incremental

data

Testing

data

FA-OSELM

(%)

Retrain

(%)

Supplement

(mean value)

(%)

Supplement

(random value)

(%)

Image segment 3:1:1 19 18 18 94.51 89.63 92.29 92.99

Satellite image 5:1:1 36 35 35 86.22 82.79 83.44 81.90

Table 5 Testing accuracy in feature increasing experiments

Datasets Data proportion

(training:incremental:testing)

Feature dimension Testing accuracy

Training

data

Incremental

data

Testing

data

FA-OSELM

(%)

Retrain

(%)

Old model

(%)

Image segment 3:1:1 18 19 19 93.50 88.81 91.99

Satellite image 5:1:1 35 36 36 86.78 82.42 84.23
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the accuracy keeps stable, it means the new model has

already overcome the accuracy gap caused by the change

of the feature.

5 Conclusion

In this paper, we proposed a FA-OSELM method for

lifelong indoor localization. Why we raise this problem is

that: Indoor location estimate based on Wi-Fi is difficult for

the sake of the APs’ high dynamics. The high dynamics

means not only the APs’ signal strength, but also the

increase or decrease in APs’ number. If the lack of signal

strength is accidental, we can supplement with a default

value. But if the APs used as the features are missing

(maybe someone removed them), or we set new APs in

0 2 4 6 8 10
0.4

0.5

0.6

0.7

0.8

0.9

1
Feature Missing (Office Area)

Distance (m)

A
cc

ur
ac

y

FA-OSELM

Retrain

Supt (mean)

Supt (random)

Fig. 12 Location accuracy of feature missing experiment (office area

dataset)
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chunk in feature missing case (office area dataset)
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somewhere, the location accuracy is not high enough. We

can do nothing but to recollect a batch of new data and

retrain a new model. Not only data collection will consume

a lot of time and money, but also it is a waste of previous

data. So we propose the FA-OSELM method which can use

a small amount of data to transfer the original model to a

new one. The new model not only retains the original

features’ characteristic, but also fit for the features’ change.

All the experiments show that FA-OSELM has better

performance than the other methods in all the designed

experiments.
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