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Abstract This paper focuses on the problem of decen-

tralized adaptive fuzzy control for a class of pure-feedback

large-scale nonlinear systems with time-delay. By com-

bining fuzzy logical systems’ universal approximation

capability with adaptive backstepping technique, an adap-

tive fuzzy control scheme is proposed. It is proved that the

developed controller guarantees that all the signals in the

closed-loop system are semi-globally uniformly ultimately

bounded in mean square. Simulation results are provided to

demonstrate the effectiveness of the proposed control

scheme.

Keywords Pure-feedback large-scale time-delay

systems � Adaptive decentralized control � Backstepping �
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1 Introduction

During the past decades, many researchers have dedicated

much effort to develop nonlinear control approaches for

dealing with the stability analysis and control design of

nonlinear systems, such as adaptive backstepping

control [1], sliding mode control [2, 3, 18], fault tolerant

control [4], and so on. Especially, the backstepping-based

adaptive control technique has become one of the most

popular control approaches for a class of deterministic

strict-feedback nonlinear systems. An adaptive backstep-

ping design was proposed in [1] to obtain global stability

for parametric strict-feedback systems with overparame-

terization, and was further developed for parameter

uncertainty strict-feedback nonlinear systems [5–8].

Alternatively, approximation-based adaptive fuzzy control

and adaptive neural network control approaches have been

developed to control nonlinear systems with unknown

nonlinear functions. Different from the classical adaptive

backstepping control, the main idea of adaptive fuzzy

control or adaptive neural control methodology is that

fuzzy logic systems or neural networks are utilized to

approximate unknown nonlinearities in system dynamics,

and adaptive controllers are constructed by combining

adaptive technique together with backstepping. By com-

bining novel Lyapunov functions with neural networks or

fuzzy logic systems, the adaptive backstepping design was

extensively applied to control strict-feedback nonlinear

systems with unknown functions [9–20, 37–40].

Unlike nonlinear strict-feedback systems, a pure-feed-

back system stands for a more general class of low-trian-

gular systems that have no affine appearance of the state

variables to be used as virtual control signals and an actual

input. It is quite restrictive and difficult to find the explicit

virtual control signals to stabilize the pure-feedback system

based on backstepping technique. In practice, many control

systems can be directly described by or transformed into

non-affine structure, such as biochemical process,

mechanical systems, Duffing oscillator, and so on [1].

Therefore, the study on stability analysis and controller

synthesis for pure-feedback nonlinear systems is more

H. Wang (&)

School of Mathematics and Physics, Bohai University,

Jinzhou 121000, Liaoning, People’s Republic of China

e-mail: ndwhq@163.com

X. Yang � Z. Yu

College of Engineering, Bohai University,

Jinzhou 121000, Liaoning, People’s Republic of China

K. Liu � X. Liu

Faculty of Engineering, Lakehead University, Thunder Bay,

ON P7B 5E1, Canada

123

Neural Comput & Applic (2015) 26:151–160

DOI 10.1007/s00521-014-1711-0



important and meaningful both in theory and in practical

applications [21–30]. By combining adaptive neural con-

trol and backstepping, in [21, 22], a class of pure-feedback

systems was investigated, where the last equation of the

controlled system is an affine nonlinear system to avoid the

algebraic loop problem. In [23], an ‘‘ISS-modular’’

approach combined with the small-gain theorem was pre-

sented for adaptive neural control of completely non-affine

pure-feedback systems. Afterwards, many researchers also

considered some other types of nonlinear systems in non-

affine structure [24–30].

Robust control of nonlinear time-delay systems is

another important and challenging work in recent years.

Time-delay appears commonly in various practical systems

such as rolling mill systems, biological systems, metallur-

gical processing systems, and network systems [31–34].

Since time delays usually result in unsatisfactory perfor-

mance and are frequently a source of instability, their pre-

sence must be taken into account in practical controller

designs. There have been some reported studies that

extended the backstepping-based adaptive neural control

approach to nonlinear systems with time delays. By intro-

ducing a new Lyapunov–Krasovskii functional, an adaptive

backstepping control scheme was presented in [35] for a

class of nonlinear time-delay systems and applied to

chemical reactor systems. Based on the Lyapunov–Raz-

umikhin method, an adaptive stabilizing control scheme

was presented in [36] for a class of strict-feedback nonlin-

ear time-delay systems. By combining adaptive technique

with neural networks or fuzzy logic systems, many inter-

esting results have been reported in [30, 37–39] for uncer-

tain nonlinear systems with unknown nonlinearities.

It is well known that large-scale systems, which are

composed of interconnected subsystems, often exist in

many practical systems, such as electric power systems,

economic systems, aerospace systems, and multi-agent

systems. Due to the complexity of the control synthesis and

physical restrictions on information exchange among sub-

systems, it is common to design a decentralized controller

to achieve an objective for the whole large-scale systems.

The main characteristics of decentralized control are that it

can alleviate computational burden and enhance robustness

and reliability against interacting operation failures. Earlier

research works on decentralized control were mainly con-

centrated on linear systems or nonlinear subsystems in

which the uncertainties satisfy the matching condi-

tions [41]. In Wen [42], proposed an adaptive backstep-

ping decentralized control approach for a class of large-

scale systems without satisfying the matching condition.

Thereafter, backstepping-based adaptive decentralized

control was extensively used to control uncertain inter-

connected large-scale nonlinear systems [43–45]. By

combining the adaptive backstepping control technique

with fuzzy logic systems or neural networks, much

research work has focused on the control design of large-

scale systems with unknown continuous nonlinear func-

tions, for example, see [46–53] and the references therein.

In [51, 52], the problem of approximation-based adaptive

decentralized state-feedback control was investigated for

non-affine nonlinear large-scale systems. However, in the

aforementioned results [51, 52], the number of adaption

laws depends on the number of the fuzzy rules bases. While

the order of the considered systems increases, the number

of adaptive parameters to be estimated will increase cor-

respondingly. As a result, the online learning time could be

very large. Thus, it is a meaningful issue to design an

adaptive fuzzy controller containing fewer adaptive

parameters for non-affine pure-feedback large-scale non-

linear time-delay systems.

Motivated by the above observations, the problem of

adaptive fuzzy decentralized control is considered for a class

of pure-feedback large-scale nonlinear interconnected sys-

tems with time-delay. In the controller design, fuzzy logic

systems are used to approximate the unknown packaged

nonlinearities and the backstepping technique is applied to

design a controller. The presented controller guarantees that

all the signals in the closed-loop system remain semi-glob-

ally uniformly ultimately bounded in mean square. The main

contributions of this note lie in the following aspects: (1) a

systemical approach is presented to control a class of pure-

feedback nonlinear interconnected time-delay systems; (2)

only one adaptive parameter needs to be estimated online for

each subsystem. In this way, the computational burden is

significantly alleviated, and thus the proposed control

approach could be easily implemented in practical applica-

tions. Simulation results are provided to illustrate the

effectiveness of the proposed control approach.

The remainder of this paper is organized as follows. The

problem formulation and preliminaries are given in Sect. 2.

An adaptive fuzzy decentralized control scheme is pre-

sented in Sect. 3. A simulation example is given in Sect. 4,

followed by Sect. 5 which concludes the work.

2 Problem formulation and preliminaries

In this paper, we consider a class of interconnected large-

scale nonlinear pure-feedback systems with N subsystems.

The ith ði ¼ 1; 2; . . .;NÞ subsystem is described by:

_xi;j ¼ fi;j �xi;j; xi;jþ1

� �
þ hi;j �ysð Þ; 1� j� ni � 1;

_xi;ni
¼ fi;ni

ð�xi;ni
; uiÞ þ hi;ni

�ysð Þ;
yi ¼ xi;1;

8
<

:
ð1Þ

where �xi;j ¼ ½xi;1; xi;2; . . .; xi;j�T ; �ys ¼ ½ys1; ys2; . . .; ysN �T

¼ ½y1ðt � s1Þ; y2ðt � s2Þ; . . .; yNðt � sNÞ�T , and si are
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unknown constant time delays in the ith subsystem and

satisfies si� smax, which is a positive constant. xi ¼
½xi;1; xi;2; . . .; xi;ni

�T 2 Rni ; ui 2 R; and yi 2 R are the state,

scalar control input, and scalar output of the ith nonlinear

subsystem, respectively. fi;jð�Þ : Rjþ1 ! R; ðj ¼ 1; 2; . . .; niÞ
are unknown smooth nonlinear functions, hi;jð�Þ : RN ! R

ðj ¼ 1; 2; . . .; niÞ are unknown smooth interconnections

between the ith subsystem and other subsystems, with

fi;jð0Þ ¼ hi;jð0Þ ¼ 0.

Remark 1 The system (1) has been widely studied in the

existing literature. For example, if the function

fi;jð�xi;j; xi;jþ1Þ ¼ xi;jþ1 and hi;jð�Þ ¼ 0 for j ¼ 1; 2; . . .; ni � 1,

the nonlinear system (1) becomes similar to the one inves-

tigated in [51]. Furthermore, if the function hi;jð�Þ ¼ 0 for

j ¼ 1; 2; . . .; ni, it becomes the system investigated in [29].

Using the mean value theorem [54], fi;jð�Þ in (1 ) can be

expressed as

fi;j �xi;j; xi;jþ1

� �
¼ fi;j �xi;j; x

0
i;jþ1

� �
þ gli;j

xi;jþ1 � x0
i;jþ1

� �
;

fi;ni
�xi;ni

; ui

� �
¼ fi;ni

�xi;ni
; u0

i

� �
þ gli;ni

ui � u0
i

� �
;

ð2Þ

where gli;j
:¼ gi;jð�xi;j; xli;j

Þ ¼ ofi;jð�xi;j;xi;jþ1Þ
oxi;jþ1

jxi;jþ1¼xli;j
; xi;niþ1 ¼

ui; xli;j
¼ li;jxi;jþ1 þ ð1� li;jÞx0

i;jþ1; 0\li;j\1; i ¼ 1; 2;

. . .;N; j ¼ 1; 2; . . .; ni.

Furthermore, by substituting (2) into (1) and choosing

x0
i;jþ1 ¼ 0; u0

i ¼ 0; it follows that

_xi;j ¼ gli;j
xi;jþ1 þ fi;jð�xi;j; 0Þ þ hi;jð�ysÞ; 1� j� ni � 1;

_xi;ni
¼ gli;ni

ui þ fi;ni
ð�xi;ni

; 0Þ þ hi;ni
ð�ysÞ;

yi ¼ xi;1:

8
<

:

ð3Þ

Remark 2 Note that the terms gli;j
x0

i;jþ1 and gli;ni
u0

i are

removed in (3) by choosing x0
i;jþ1 ¼ u0

i ¼ 0, which sim-

plifies the backstepping design procedure. If the values of

all variables are not chosen in this way, then the similar

results can also be obtained with minor changes on the

virtual control signal ai and actual control input u, see [30].

The control objective of this study is to design an

adaptive fuzzy controller such that all the signals in the

closed-loop system remain semi-globally uniformly ulti-

mately bounded.

To facilitate the controller design, the following

assumptions are imposed on the each subsystem.

Assumption 1 ([23]) For 1� i�N; 1� j� ni, function

gli;j
is unknown, but its sign is known. And there exist

unknown constants bm and bM such that

0\bm� jgli;j
j � bM\1:

Remark 3 Assumption 1 means gli;j
are either strictly

positive or negative. Without loss of generality, it is

assumed in this paper that 0\bm� gli;j
� bM . As shown

later, the constants bm and bM are not required in the

construction of the controllers. So, it is not necessary to

know the true values of bm and bM .

Assumption 2 ([55]) For uncertain nonlinear functions

hi;jð�ysÞ in (1), there exist unknown smooth functions

hi;j;lðyslÞ such that for 1� i�N; 1� j� ni,

jhi;jð�ysÞj
2�

XN

l¼1

h2
i;j;lðyslÞ; ð4Þ

where hi;j;lð0Þ ¼ 0; l ¼ 1; 2; . . .;N.

Remark 4 Noting hi;j;lðyslÞ in Assumption 2 are smooth

functions with hi;j;lð0Þ ¼ 0, so there exist unknown smooth

functions �hi;j;lðyslÞ such that

jhi;jð�ysÞj2�
XN

l¼1

y2
sl

�h2
i;j;lðyslÞ; ð5Þ

In the proposed controller design procedure, fuzzy logic

systems will be used to approximate nonlinear functions.

In [56], the following lemma has been proved, which

implies that fuzzy logic systems can be used as the

nonlinear function approximators.

Lemma 1 ([56]) Let f ðxÞ be a continuous function

defined on a compact set X. Then for any given constant

e [ 0, there exists a fuzzy logic system WT SðxÞ such that

sup
x2X
j f ðxÞ �WT SðxÞ j � e:

where W ¼ ½w1;w2; . . .;wN �T is the ideal constant weight

vector, SðxÞ ¼ ½s1ðxÞ; . . .; sNðxÞ�T=
PN

j¼1 sjðxÞ is the basis

function vector, N [ 1 is the number of the fuzzy rules and

siðxÞ are chosen as Gaussian functions, that is,

sjðxÞ ¼ exp
�ðx� liÞTðx� liÞ

g2
i

" #

; i ¼ 1; 2; . . .;N

with li ¼ ½li1; li2; . . .; lin�T being the center vector and gi

the width of the Gaussian function.

3 Adaptive fuzzy controller design

In this section, we will investigate adaptive fuzzy decen-

tralized control by using the backstepping method com-

bined with fuzzy approximation. The backstepping design

procedure contains n steps. In the developed design pro-

cedure, for the ith subsystem, fuzzy logic systems

WT
i;jSðZi;jÞ will be used to model the packaged unknown
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function �fi;jðZi;jÞ at step j. Both virtual control signals and

adaption laws will be constructed in the following forms:

ai;jðZi;jÞ ¼ �ki;jei;j �
1

2a2
i;j

ei;jĥiS
T
i;jðZi;jÞSi;jðZi;jÞ; ð6Þ

_̂hi ¼
Xni

j¼1

ki

2a2
i;j

e2
i;jS

T
i;jðZi;jÞSi;jðZi;jÞ � ciĥi; ð7Þ

where i ¼ 1; 2; . . .;N; j ¼ 1; 2; . . .; ni; ki;j; ai;j; ki; and ci

are positive design parameters, Zi;1 ¼ xi;1; Zi;j ¼
½�xT

i;j; ĥi�T ; ðj ¼ 2; . . .; niÞ with �xi;j ¼ ½xi;1; xi;2; . . .; xi;j�T ; and

ei;j satisfy the following variable transformation:

ei;j ¼ xi;j � ai;j�1 ð8Þ

with ai;0 ¼ 0. ĥi is the estimation of an unknown constant

hi which will be specified as

hi ¼ max
1

bm

kWi;jk2; j ¼ 1; 2; . . .; ni

� �
; ð9Þ

where bm is defined in Assumption 1, and kWi;jk denotes

the norm of the ideal weight vector of fuzzy systems,

which will be specified at the jth design step. Specifically,

ai;ni
is the actual control input ui.

In the following, for simplicity, the time variable t and

the state vector �xi;j will be omitted from the corresponding

functions and let Si;jðZi;jÞ ¼ Si;j.

Step 1. Consider the first subsystem in (3) and use

coordinate transformation ei;1 ¼ xi;1; ei;2 ¼ xi;2 � ai;1, we

have

_ei;1 ¼ gli;1
ei;2 þ gli;1

ai;1 þ fi;jð�xi;j; 0Þ þ hi;1ð�ysÞ: ð10Þ

Choose the Lyapunov function candidate as

Vi;1 ¼
1

2
e2

i;1: ð11Þ

Then, the time derivative of Vi;1 along (10) is

_Vi;1 ¼ ei;1 gli;1
ei;2 þ gli;1

ai;1 þ fi;1ð�xi;1; 0Þ þ hi;1ð�ysÞ
� �

:

ð12Þ

By employing (5) and Young’s inequality, we obtain

ei;1hi;1ð�ysÞ�
1

2
e2

i;1 þ
1

2

XN

l¼1

y2
sl

�h2
i;1;lðyslÞ: ð13Þ

Substituting (13) into (12) gives

_Vi;1 ¼ ei;1 gli;1
ei;2 þ gli;1

ai;1 þ fi;1ð�xi;1; 0Þ þ
1

2
ei;1

� 	

þ 1

2

XN

l¼1

y2
sl

�h2
i;1;lðyslÞ: ð14Þ

Step 2. According to (8), the time derivative of ei;2 is

given by

_ei;2 ¼ gli;2
ei;3 þ gli;2

ai;2 þ fi;2ð�xi;2; 0Þ þ hi;2ð�ysÞ � _ai;1;

where

_ai;1 ¼
oai;1

oxi;1
fi;1ð�xi;2Þ þ hi;1ð�ysÞ
� �

þ oai;1

oĥi

_̂hi: ð15Þ

Consider a Lyapunov function Vi;2 ¼ 1
2

e2
i;2. Its time deri-

vation is given by

_Vi;2 ¼ ei;2 gli;2
ei;3 þ gli;2

ai;2 þ fi;2ð�xi;2; 0Þ þ hi;2ð�ysÞ
�

� oai;1

oxi;1
fi;1ð�xi;2Þ þ hi;1ð�ysÞ
� �

� oai;1

oĥi

_̂hi

	
: ð16Þ

Following the procedure similar to (13) results in

�ei;2
oai;1

oxi;1
hi;1ð�ysÞ�

1

2
ðoai;1

oxi;1
Þ2e2

i;2 þ
1

2

XN

l¼1

y2
sl

�h2
i;1;lðyslÞ;

ð17Þ

ei;2hi;2ð�ysÞ�
1

2
e2

i;2 þ
1

2

XN

l¼1

y2
sl

�h2
i;2;lðyslÞ: ð18Þ

By combining (16) with (17) and (18) together, one has

_Vi;2� ei;2 gli;2
ei;3 þ gli;2

ai;2 þ fi;2ð�xi;2; 0Þ �
oai;1

oxi;1
fi;1ð�xi;2Þ

�

þ 1

2
ðoai;1

oxi;1
Þ2ei;2 þ

1

2
ei;2 �

oai;1

oĥi

_̂hi

	
þ 1

2

X2

k¼1

XN

l¼1

y2
sl

�h2
i;k;lðyslÞ:

ð19Þ

Step j ð3� j� ni � 1Þ. From (3) and (8), the time

derivative of ei;j is given by

_ei;j ¼ gli;j
ei;jþ1 þ gli;j

ai;j þ fi;jð�xi;j; 0Þ þ hi;jð�ysÞ � _ai;j�1;

ð20Þ

where

_ai;j�1 ¼
Xj�1

k¼1

oai;j�1

oxi;k
fi;kð�xi;kþ1Þ þ hi;kð�ysÞ
� �

þ oai;j�1

oĥi

_̂hi:

ð21Þ

Next, choose a Lyapunov function Vi;j ¼ 1
2

e2
i;j. Its time

derivative is

_Vi;j ¼ ei;j gli;j
ei;jþ1 þ gli;j

ai;j þ fi;jð�xi;j; 0Þ þ hi;jð�ysÞ
�

�
Xj�1

k¼1

oai;j�1

oxi;k
fi;kð�xi;kþ1Þ
�

: þhi;kð�ysÞ
�
� oai;j�1

oĥi

_̂hi

	
:

ð22Þ
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Furthermore, similar to the derivation process in (17) and

(18), we have

� ei;j

Xj�1

k¼1

oai;j�1

oxi;k
hi;kð�ysÞ�

1

2
e2

i;j

Xj�1

k¼1

ðoai;j�1

oxi;k
Þ2

þ 1

2

Xj�1

k¼1

XN

l¼1

y2
sl

�h2
i;k;lðyslÞ; ð23Þ

ei;jhi;jð�ysÞ�
1

2
e2

i;j þ
1

2

XN

l¼1

y2
sl

�h2
i;j;lðyslÞ: ð24Þ

Substituting (23) and (24) into (22) yields

_Vi;j� ei;j gli;j
ei;jþ1 þ gli;j

ai;j þ fi;jð�xi;j; 0Þ
 

�
Xj�1

k¼1

oai;j�1

oxi;k
fi;kð�xi;kþ1Þ þ

1

2
ei;j:

þ 1

2
ei;j

Xj�1

k¼1

ðoai;j�1

oxi;k
Þ2 � oai;j�1

oĥi

_̂hi

!

þ 1

2

Xj

k¼1

XN

l¼1

y2
sl

�h2
i;k;lðyslÞ: ð25Þ

Step ni. Similar to (20), the following result can be

obtained.

_ei;ni
¼ gli;ni

ui þ fi;ni
ð�xi;ni

; 0Þ þ hi;ni
ð�ysÞ � _ai;ni�1; ð26Þ

where _ai;ni�1 is defined in (21) with j ¼ ni.

Take a Lyapunov function as

Vi;ni
¼ 1

2
e2

i;ni
þ bm

2ki

~h2
i ; ð27Þ

where ~hi ¼ hi � ĥi is the parameter error and ki is a posi-

tive design constant.

Furthermore, we can obtain

_Vi;ni
¼ ei;ni

gli;ni
ui þ fi;ni

ð�xi;ni
; 0Þ þ hi;ni

ð�ysÞ �
oai;ni�1

oĥi

_̂hi

�

�
Xni�1

k¼1

oai;ni�1

oxi;k
ðfi;kð�xi;kþ1Þ þ hi;kð�ysÞÞ

!

� bm

ki

~hi
_̂hi:

ð28Þ

Repeating the derivations similar to (23)–(25) results in

_Vi;ni
� ei;ni

gli;ni
ui þ fi;ni

ð�xi;ni
; 0Þ �

Xni�1

k¼1

oai;ni�1

oxi;k
fi;kð�xi;kþ1Þ

 

þ 1

2
ei;ni

Xni�1

k¼1

oai;ni�1

oxi;k

� 	2

þ 1

2
ei;ni
� oai;ni�1

oĥi

_̂hi

!

þ 1

2

Xni

k¼1

XN

l¼1

y2
sl

�h2
i;k;lðyslÞ �

bm

ki

~hi
_̂hi: ð29Þ

Now, consider the Lyapunov function for the whole system

as

V ¼
XN

i¼1

Xni

j¼1

Vi;j þ VQ ¼
XN

i¼1

Xni

j¼1

1

2
e2

i;j þ
bm

2ki

~h2
i

 !

þ VQ;

where VQ is used to compensate for the delay terms and

defined as

VQ ¼
1

2

XN

i¼1

Xni

j¼1

Xj

k¼1

XN

l¼1

e�ðt�slÞ

Z t

t�sl

esy2
l ðsÞ�h2

i;k;lðylðsÞÞds:

Then, it follows from the results (14), (19), (25), and (29)

that

_V �
XN

i¼1

ei;1 gli;1
ai;1 þ fi;1ð�xi;1; 0Þ þ

1

2
ei;1

� �

þ
XN

i¼1

Xni�1

j¼2

ei;j gli;j
ai;j þ gli;j

ei;j�1

(

þ fi;jð�xi;j; 0Þ �
Xj�1

k¼1

oai;j�1

oxi;k
fi;kð�xi;kþ1Þ

þ 1

2
ei;j þ

1

2
ei;j

Xj�1

k¼1

oai;j�1

oxi;k

� 	2
)

þ
XN

i¼1

ei;ni
gli;ni

ui þ fi;ni
ð�xi;ni

; 0Þ
(

�
Xni�1

k¼1

oai;ni�1

oxi;k
fi;kð�xi;kþ1Þ

þ 1

2
ei;ni

Xni�1

k¼1

oai;ni�1

oxi;k

� 	2

þ 1

2
ei;ni

)

�
XN

i¼1

bm

ki

~hi
_̂hi �

XN

i¼1

Xni

j¼2

ei;j
oai;j�1

oĥi

_̂hi

þ 1

2

XN

i¼1

Xni

j¼1

Xj

k¼1

XN

l¼1

esl y2
l
�h2

i;k;lðylÞ � VQ:

ð30Þ

By rearranging terms in the summation and using the

definition of adaptive law in (7), we have

1

2

XN

i¼1

Xni

j¼1

Xj

k¼1

XN

l¼1

esl y2
l
�h2

i;k;lðylÞ

¼ 1

2

XN

i¼1

XN

l¼1

Xnl

j¼1

Xj

k¼1

esi y2
i
�h2

l;k;iðyiÞ;
ð31Þ
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�
XN

i¼1

Xni

j¼2

ei;j
oai;j�1

oĥi

_̂hi

¼
XN

i¼1

Xni

j¼2

ei;j
oai;j�1

oĥi

ciĥi

�
XN

i¼1

Xni

j¼2

ei;j
oai;j�1

oĥi

Xj�1

k¼1

ki

2a2
i;k

e2
i;kST

i;kSi;k

�
XN

i¼1

Xni

j¼2

ei;j
oai;j�1

oĥi

Xni

k¼j

ki

2a2
i;k

e2
i;kST

i;kSi;k

�
XN

i¼1

Xni

j¼2

ei;j
oai;j�1

oĥi

ciĥi

�
XN

i¼1

Xni

j¼2

ei;j
oai;j�1

oĥi

Xj�1

k¼1

ki

2a2
i;k

e2
i;kST

i;kSi;k

þ
XN

i¼1

Xni

j¼2

ki

2a2
i;j

e2
i;jS

T
i;jSi;j

Xj

k¼2

jei;k
oai;k�1

oĥi

j
 !

: ð32Þ

Taking (31) and (32) into account, we can rewrite (30) as

_V � � VQ þ
XN

i¼1

ei;1 gli;1
ai;1 þ �fi;1ðZi;1Þ

� �

þ
XN

i¼1

Xni�1

j¼2

ei;j gli;j
ai;j þ �fi;jðZi;jÞ

� �

þ
XN

i¼1

ei;ni
gli;ni

ui þ �fi;ni
ðZi;ni
Þ

� �

� 1

2

XN

i¼1

Xni

j¼1

e2
i;j �

XN

i¼1

bm

ki

~hi
_̂hi; ð33Þ

where the functions �fi;jðZi;jÞ; i ¼ 1; 2; . . .;N, are defined as

�fi;1ðZi;1Þ ¼ fi;1ð�xi;1; 0Þ þ ei;1 þ
yi

2
esi

XN

l¼1

Xnl

s¼1

Xs

k¼1

�h2
l;k;iðyiÞ;

ð34Þ

�fi;jðZi;jÞ ¼ gli;j
ei;j�1 þ fi;jð�xi;j; 0Þ �

Xj�1

k¼1

oai;j�1

oxi;k
fi;kð�xi;kþ1Þ

þ ei;j þ
1

2
ei;j

Xj�1

k¼1

oai;j�1

oxi;k

� 	2

þ oai;j�1

oĥi

ciĥi

� oai;j�1

oĥi

Xj�1

k¼1

ki

2a2
i;k

e2
i;kST

i;kSi;k

þ ki

2a2
i;j

ei;jS
T
i;jSi;j

Xj

k¼2

jei;k
oai;k�1

oĥi

j
 !

;

j ¼ 2; . . .; ni � 1;

ð35Þ

�fi;ni
ðZi;ni
Þ ¼ fi;ni

�xi;ni
; 0

� �
þ 1

2
ei;ni

Xni�1

k¼1

oai;ni�1

oxi;k

� 	2

�
Xni�1

k¼1

oai;ni�1

oxi;k
fi;kð�xi;kþ1Þ

þ ei;ni
þ oai;ni�1

oĥi

ciĥi �
oai;ni�1

oĥi

Xni�1

k¼1

ki

2a2
i;k

e2
i;kST

i;kSi;k

þ ki

2a2
i;j

ei;jS
T
i;jSi;j

Xni

k¼2

jei;k
oai;k�1

oĥi

j
 !

:

ð36Þ

Since the functions fi;j; gli;j
, and �hl;k;i are unknown,

�fi;jðZi;jÞ; i ¼ 1; 2; . . .;N; j ¼ 1; 2; . . .; ni, cannot be directly

used to construct the virtual control signal ai;j and actual

control signals ui. Then, according to Lemma 1, fuzzy logic

system WT
i;jSi;jðZi;jÞ is used to approximate �fi;jðZi;jÞ, such

that, for any given ei;j [ 0,

�fi;jðZi;jÞ ¼ WT
i;jSi;jðZi;jÞ þ di;jðZi;jÞ; ð37Þ

where di;jðZi;jÞ denotes the approximation error and satis-

fies jdi;jðZi;jÞj\ei;j.

Furthermore, by Young’s inequality, one has

ei;j
�fi;jðZi;jÞ ¼ ei;j

WT
i;j

kWi;jk
Si;jkWi;jk þ ei;jdi;jðZi;jÞ

� 1

2a2
i;j

e2
i;jkWi;jk2

ST
i;jSi;j þ

1

2
a2

i;j þ
1

2
e2

i;j þ
1

2
e2

i;j

� bm

2a2
i;j

e2
i;jhiS

T
i;jSi;j þ

1

2
a2

i;j þ
1

2
e2

i;j þ
1

2
e2

i;j;

ð38Þ

where i ¼ 1; 2; . . .;N; j ¼ 1; 2; . . .; ni and

hi ¼ max 1
bm
kWi;jk2; j ¼ 1; 2; . . .; ni

n o
.

Substituting (37) into (33) and using (38) results in

_V �
XN

i¼1

Xni�1

j¼1

ei;j gli;j
ai;j þ

bm

2a2
i;j

ei;jhiS
T
i;jSi;j

 !

þ
XN

i¼1

ei;ni
gli;ni

ui þ
bm

2a2
i;ni

ei;ni
hiS

T
i;ni

Si;ni

 !

þ
XN

i¼1

Xni

j¼1

1

2
a2

i;j þ
1

2
e2

i;j

� 	
�
XN

i¼1

bm

ki

~hi
_̂hi � VQ:

ð39Þ

Now, considering the virtual control signals ai;j in (6), the

following inequality holds.

ei;jgli;j
ai;j� � ki;jbme2

i;j �
bm

2a2
i;j

e2
i;jĥiS

T
i;jSi;j; 1� i�N; 1� j� ni:

ð40Þ
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By taking (40) and adaptive law
_̂hi in (7) into account, (39)

can be rewritten as

_V �
XN

i¼1

Xni�1

j¼1

ei;j �ki;jbmei;j þ
bm

2a2
i;j

ei;j
~hiS

T
i;jSi;j

 !

þ
XN

i¼1

ei;ni
�ki;ni

ei;ni
þ bm

2a2
i;ni

ei;ni
~hiS

T
i;ni

Si;ni

 !

�
XN

i¼1

bm

ki

~hi

Xni

j¼1

ki

2a2
i;j

e2
i;jS

T
i;jSi;j � ciĥi

 !

þ
XN

i¼1

Xni

j¼1

1

2
a2

i;j þ
1

2
e2

i;j

� 	
� VQ

� �
XN

i¼1

Xni

j¼1

ki;jbme2
i;j � VQ þ

XN

i¼1

cibm

ki

~hiĥi

þ
XN

i¼1

Xni

j¼1

1

2
a2

i;j þ
1

2
e2

i;j

� 	

� �
XN

i¼1

Xni

j¼1

ki;jbme2
i;j þ

cibm

2ki

~h2
i

 !

� VQ

þ
XN

i¼1

Xni

j¼1

1

2
a2

i;j þ
1

2
e2

i;j þ
cibm

2ki

h2
i

� 	
; ð41Þ

where the inequality ~hiĥi� � 1
2

~hi
2 þ 1

2
h2

i has been used in

the above inequality.

Now, we are in the position to give our main result in the

following theorem.

Theorem 1 Consider the large-scale pure-feedback

nonlinear time-delay systems (1) with Assumptions 1–2.

Suppose that for 1� i� n the packaged unknown functions
�fi;jðZi;jÞ can be well approximated by the fuzzy logic system

WT
i;jSi;jðZi;jÞ in the sense that the approximation errors

di;jðZi;jÞ is bounded. Then, for bounded initial conditions,

the controller (6), and adaptive law (7) guarantee that all

the signals in the closed-loop system remain bounded and

the error signals ei;j and ~hi eventually converge to the

compact set Xs defined by

Xs ¼ ei;j; ~hi



jei;jj �
ffiffiffiffiffiffiffiffi
2
m0

c0

r
; j~hij �

ffiffiffiffiffiffiffiffiffiffiffi
2ki

bm

m0

c0

s

; 1� i�N; 1� j� ni

( )

:

ð42Þ

Proof Define

c0 ¼ minf2ki;jbm; ci; 1; i ¼ 1; 2; . . .;N; j ¼ 1; 2; . . .; nig;

m0 ¼
XN

i¼1

Xni

j¼1

1

2
a2

i;j þ
1

2
e2

i;j þ
cibm

2ki

h2
i

� 	
:

Then, one has

_V � � c0V þ m0; t� 0: ð43Þ

Next, multiplying (43) by ec0t and integrating it over ½0; t�
gives

VðtÞ� Vð0Þ � m0

c0

� 	
e�c0t þ m0

c0

; 8t [ 0; ð44Þ

which means that

VðtÞ�Vð0Þ þ m0

c0

; 8t [ 0: ð45Þ

Therefore, from (45), ei;j and ~hi ði ¼ 1; 2; . . .;N; j ¼
1; 2; . . .; niÞ are bounded. Since hi are constants, ĥi are

bounded. Consequently, ai;j are also bounded because ei;j

and hi;j are bounded variables. Therefore, it can be con-

cluded that xi;j are bounded. This shows that all the signals

in the closed-loop system are bounded.

Furthermore, it is easily verified from (44) that

VðtÞ� m0

c0

; t! þ1: ð46Þ

Therefore, the error signals ei;j and ~hi eventually converge

to the compact set Xs specified in (42), that is, all the

signals in the closed-loop system are semi-globally uni-

formly ultimately bounded.

Remark 5 In this research, an adaptive fuzzy decentral-

ized control scheme has been developed for a class of pure-

feedback nonlinear large-scale systems with constant

delays. Apparently, under some assumptions, the proposed

method can also be extended to the case with time-varying

delays [i.e. si ¼ siðtÞ]. In this case, a common restriction to

time delay is that there exists a constant g such that

0\ _siðtÞ\g\1. Then with a minor change of the functions

VQ, the similar result can be obtained by repeating the

aforementioned procedure.

4 Simulation results

In this section, to illustrate the validity of the presented

control scheme, consider the following interconnected

pure-feedback nonlinear system with time-delay

_x1;1 ¼ ð1þ x2
1;1Þx1;2 þ x3

1;2 þ y1ðt � s1Þy2
2ðt � s2Þ;

_x1;2 ¼ ð2þ sinðx1;1x1;2ÞÞu1 þ cosð0:5u1Þ þ y3
1ðt � s1Þy2ðt � s2Þ;

y1 ¼ x1;1;

_x2;1 ¼ ð2þ cosðx2;1ÞÞx2;2 þ 0:25x5
2;2 þ y1ðt � s1Þ sin y2

2ðt � s2Þ
� �

;

_x2;2 ¼ ð1þ e�x2;1x2;2Þu2 þ 0:3 sinðu2Þ þ y2ðt � s2Þ ln 1þ y2
1ðt � s1Þ

� �
;

y2 ¼ x2;1;

8
>>>>>>>>><

>>>>>>>>>:

ð47Þ

where x1;1; x1;2; x2;1 and x2;2 denote the state variables, u1

and u2 are the system input signals. The non-affine
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functions are chosen as f1;1ðx1;2; x1;2Þ ¼ ð1þ x2
1;1Þx1;2 þ

x3
1;2; f1;2ðx1;1; x1;2; u1Þ ¼ ð2þ sinðx1;1x1;2ÞÞu1 þ cosð0:5u1Þ;

f2;1ðx2;1; x2;2Þ ¼ ð2þ cosðx2;1ÞÞx2;2 þ 0:25x5
2;2; f2;2ðx2;1; x2;2;

u2Þ ¼ ð1þ e�x2;1x2;2Þu2 þ 0:3 sinðu2Þ and the interconnected

terms are in the following forms:

h11ð�ysÞ ¼ y1ðt � s1Þy2
2ðt � s2Þ; h12ð�ysÞ

¼ y3
1ðt � s1Þy2ðt � s2Þ;

h21ð�ysÞ ¼ y1ðt � s1Þ sin y2
2ðt � s2Þ

� �
; h22ð�ysÞ

¼ y2ðt � s2Þ ln 1þ y2
1ðt � s1Þ

� �
:

It can be seen that the system (47) is a non-affine pure-

feedback interconnected system with time delay. In the

simulation, choose the time-delays s1 ¼ s2 ¼ 2 s. There-

fore, the upper bound smax ¼ 2 s. The control objective is to

design an adaptive fuzzy controller such that all the signals

in the closed-loop system remain bounded. The fuzzy

membership functions are chosen as follows:

lF1
i;j
ðxi;jÞ ¼ e�0:5�ðxi;jþ9Þ2 ; lF2

i;j
ðxi;jÞ ¼ e�0:5�ðxi;jþ7Þ2

lF3
i;j
ðxi;jÞ ¼ e�0:5�ðxi;jþ5Þ2 ; lF4

i;j
ðxi;jÞ ¼ e�0:5�ðxi;jþ3Þ2

lF5
i;j
ðxi;jÞ ¼ e�0:5�ðxi;jþ1Þ2 ; lF6

i;j
ðxi;jÞ ¼ e�0:5�ðxi;j�0Þ2

lF7
i;j
ðxi;jÞ ¼ e�0:5�ðxi;j�1Þ2 ; lF8

i;j
ðxi;jÞ ¼ e�0:5�ðxi;j�3Þ2

lF9
i;j
ðxi;jÞ ¼ e�0:5�ðxi;j�5Þ2 ; lF10

i;j
ðxi;jÞ ¼ e�0:5�ðxi;j�7Þ2

lF11
i;j
ðxi;jÞ ¼ e�0:5�ðxi;j�9Þ2 :

ð48Þ

By using Theorem 1, the virtual control signals, actual

controllers, and adaptive laws are chosen in the following

forms:

ai;1 ¼ �ki;1ei;1 �
1

2a2
i;1

ei;1ĥiS
T
i;1ðZi;1ÞSi;1ðZi;1Þ;

ui ¼ �ki;2ei;2 �
1

2a2
i;2

ei;2ĥiS
T
i;2ðZi;2ÞSi;2ðZi;2Þ;

_̂hi ¼
P2

j¼1

ki

2a2
i;j

e2
i;jS

T
i;jðZi;jÞSi;jðZi;jÞ � ciĥi;

8
>>>>>>><

>>>>>>>:

where ei;1 ¼ xi;1; ei;2 ¼ xi;2 � ai;1; Zi;1 ¼ ½xi;1�; Zi;2 ¼ ½�xi;2;

ĥi�T ; i ¼ 1; 2. The simulation is run under the initial con-

ditions ½x1;1ð0Þ; x1;2ð0Þ; x2;1ð0Þ; x2;2ð0Þ�T ¼ ½0:5; 0:3; 0:2;
0:2�T and ½ĥ1ð0Þ; ĥ2ð0Þ� ¼ ½0; 0�T . In the simulation, design

parameters are taken as follows: k1;1 ¼ k1;2 ¼ 9; k2;1 ¼
k2;2 ¼ 5; a1;1 ¼ a1;2 ¼ a2;1 ¼ a2;2 ¼ 1; c1 ¼ c2 ¼ 1; and

k1 ¼ k2 ¼ 5.

Figures 1, 2, 3 and 4 illustrate the simulation results.

Figure 1 shows the state variables x1;1 and x1;2 of the first

subsystems. Figure 2 shows the second subsystem state

variables x2;1 and x2;2. Figure 3 shows the response curve

of the adaptive parameters ĥ1 and ĥ2 and Fig. 4 displays the

control input signals u1 and u2. Obviously, simulation

results show that the controller works well and achieves the

desired convergence performance.

5 Conclusions

In this paper, an adaptive fuzzy decentralized control

scheme has been presented for a class of pure-feedback

large-scale nonlinear systems with time-delay. It has been

shown that the proposed controller guarantees that all the

signals in the closed-loop systems are semi-globally uni-

formly ultimately bounded in mean square. The main

advantage of the proposed control scheme is that only one

adaptive parameter need to be estimated online for each
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Fig. 1 The system state variables x1;1 and x1;2.
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Fig. 2 The system state variables x2;1 and x2;2.
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subsystem. Simulation results have been provided to show

the effectiveness of the suggested approach.

Our future research will mainly focus on the problem of

output-feedback control for pure-feedback nonlinear large-

scale systems based on the result in this paper.
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