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Abstract The extreme learning machine (ELM) is a

new method for using single hidden layer feed-forward

networks with a much simpler training method. While

conventional kernel-based classifiers are based on a single

kernel, in reality, it is often desirable to base classifiers on

combinations of multiple kernels. In this paper, we pro-

pose the issue of multiple-kernel learning (MKL) for

ELM by formulating it as a semi-infinite linear pro-

gramming. We further extend this idea by integrating with

techniques of MKL. The kernel function in this ELM

formulation no longer needs to be fixed, but can be

automatically learned as a combination of multiple ker-

nels. Two formulations of multiple-kernel classifiers are

proposed. The first one is based on a convex combination

of the given base kernels, while the second one uses a

convex combination of the so-called equivalent kernels.

Empirically, the second formulation is particularly com-

petitive. Experiments on a large number of both toy and

real-world data sets (including high-magnification sam-

pling rate image data set) show that the resultant classifier

is fast and accurate and can also be easily trained by

simply changing linear program.

Keywords Extreme learning machine � Multiple-kernel

learning (MKL) � ELM kernel � Minimal norm of weights �
QCQP � SILP � Multi-class ELM

1 Introduction

An optimal method to an automatic selection of optimal

kernels is to learn a linear combination K ¼
Pm

j¼1 ljKj

with mixing coefficients l together with the model

parameters. This framework, named multiple-kernel

learning (MKL), was first introduced by [1] where two

kinds of constraints on b and K have been considered,

leading to either semi-definite programming or QCQP

approaches, respectively. For appropriately designed sub-

kernels Kj, the optimized combination coefficients can then

be used to understand which features of the examples are of

importance for discrimination: If one is able to obtain an

accurate classification by a sparse weighting lj, then one

can quite easily interpret the resulting decision function.

Intuitively, sparseness of b makes sense when the expected

number of meaningful kernels is small. Requiring that only

a small number of features contribute to the final kernel

implicitly, it assumes that most of the features to be

selected are equally informative. In other words, sparseness

is good when the kernels already contain a couple of good

features that alone capture almost all of the characteristic

traits of the problem. This also implies that features are

highly redundant. It is now generally recognized as a

powerful tool for various machine learning problems [2, 3].

Extreme learning machine (ELM) is proposed by Huang

[4, 5]. ELM is a new type of single hidden layer feed-

forward neural networks (SLFNs), and its core is a fixed

hidden layer, which contains a large number of nonlinear

nodes. The hidden layer bias of ELM is chosen randomly
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beforehand, and only the output weights of ELM need to be

calculated. The only factor which needs to be set by users

is the size of ELM (the number of hidden nodes) [6].

Benefiting from the simple structure and effective training

method, ELM has been successfully used in many practical

tasks such as prediction, fault diagnosis, recognition,

classification, signal processing, and so on.

Although ELM has made some achievements, but there

is still space for improvement. Some scholars are engaged

in optimizing the learning algorithm of ELM. Han et al. [7]

encoded a priori information to improve the function

approximation of ELM. Kim et al. [8] introduced a variable

projection method to reduce the dimension of the param-

eter space. Zhu et al. [9] used a differential evolutionary

algorithm to select the input weights of ELM.

Some other scholars dedicated to optimize the structure

of ELM. Wang et al. [10] made a proper selection of the

input weights and bias of ELM in order to improve the

performance of ELM. Li et al. [11] proposed a structure-

adjustable online ELM learning method, which can adjust

the number of hidden layer RBF nodes. Huang et al. [12,

13] proposed an incremental structure ELM, which

increases the hidden nodes gradually. Meanwhile, another

incremental approach referred to as error-minimized

extreme learning machine (EM-ELM) was proposed by

Feng et al. [14]. All these incremental ELM start from a

small size of ELM hidden layer and add random hidden

node (nodes) to the hidden layer. During the growth of

networks, the output weights are updated incrementally.

On the other hand, an alternative method to optimize the

structure of ELM is to train an ELM that is larger than

necessary and then prune the unnecessarily nodes during

learning. A pruned ELM (PELM) was proposed by Rong

et al. [15, 16] for classification problem. Yoan et al. [17]

proposed an optimally pruned extreme learning machine

(OP-ELM) methodology. Besides, there are still other

attempts to optimize the structure of ELM, such as CS-

ELM [18] proposed by Lan et al., which used a subset

model selection method. Zong et al. [29] put forward the

weighted extreme learning machine for imbalance learn-

ing. The kernel trick applied to ELM was introduced in

previous work [30].

Lanckriet et al. [1] pioneered the work of parameterized

combinations of kernel learning in which the optimal ker-

nel is obtained as a linear combination of pre-specified

kernels. This procedure named as multiple-kernel learning

(MKL) in the literature allows kernels to be chosen more

automatic based on data and enhances the autonomy of

machine learning process [27]. On the other hand, MKL is

particularly valuable in application [32], i.e., through linear

combination of kernel matrix learning, MKL offers the

advantage of integrating heterogeneous data from multiple

sources such as vectors, strings, trees, and graphs.

Recently, MKL had been successfully applied to combine

various heterogeneous data sources in practice [19].

Compared with the existing L?-norm MKL method, the

L2-norm MKL could lead to non-sparse solutions and more

advantages when applied to biomedical problems. Ye et al.

[20] showed that the multiple-kernel learning for LS-SVM

can be formulated as a SDP problem, which has much less

computational complexity compared with that of C-SVM.

Sonnenburg et al. [22] applied a semi-infinite linear pro-

gramming (SILP) strategy by reusing the SVM imple-

mentations for solving the subproblems inside the MKL

optimization more efficiently, which made MKL applicable

to large-scale data sets. Yang et al. [26] used the elastic net

regularizer on the kernel combination coefficients as a

constraint for MKL. Gu et al. [28] aimed to learn the map

between the space of high-magnification sampling rate

image patches and the space of blurred high-magnification

sampling rate image patches based on the multi-kernel

regression, which are the interpolation results generated

from the corresponding low-resolution images. Liu et al.

[33] designed sparse, non-sparse, and radius-incorporated

MK-ELM algorithms.

We propose the issue of multiple-kernel learning for

ELM by formulating it as a semi-infinite linear program-

ming (SILP). In addition, the proposed algorithm optimizes

the regularization parameter in a unified framework along

with the kernels, which make the learning system more

automatic. Empirical results on benchmark data sets prove

that multiple-kernel learning for ELM (MKL-ELM) has

good competitive performance compared with the tradi-

tional ELM algorithm.

2 Kernelized extreme learning machine

At first, we will briefly review the ELM proposed in [5, 6,

31]. The essence of ELM is that the hidden layer in ELM

need not be tuned. The output function of ELM for gen-

eralized SLFNs is

fLðxÞ ¼
XL

i¼1

bihiðxjÞ ¼
XL

i¼1

bihðwi � xj þ biÞ ¼ hðxÞb

j ¼ 1; . . .;N

ð1Þ

where wi 2 Rn is the weight vector connecting the input

nodes and the ith hidden node, bi 2 R is the bias of the ith

hidden node, bi 2 R is the weight connecting the ith hidden

node and the output node, and fLðxÞ 2 R is the output of the

SLFNs. Where wi � xj denote the inner product of wi and xj,

bi are the learning parameters of hidden nodes, which are

randomly chosen before learning.

If the standard SLFNs with at most ~N hidden nodes can

approximate theses N samples with zero error, it then

means there exists bi, wi, and bi such that
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XL

i¼1

bihðwi � xj þ biÞ ¼ tj; j ¼ 1; . . .;N ð2Þ

Equation (2) can be written compactly as

Hb ¼ T: ð3Þ

Then, Eq. (3) become a linear system, and the smallest

norm least squares solution of the linear system is

b ¼ HyT; ð4Þ

where Hy is the Moore–Penrose generalized inverse [4] of

the hidden layer output matrix H.

H ¼
hðx1Þ
..
.

hðxNÞ

0

B
@

1

C
A

¼
hðw1; b1; x1Þ � � � hðwL; bL; x1Þ

..

. . .
. ..

.

hðw1; bN ; x1Þ � � � hðwL; bL; xNÞ

0

B
@

1

C
A

N�L

;

T ¼ ½t1; . . .; tN �T , and b ¼ ½b1; b2; . . .; bL�T :
H is called the hidden layer output matrix of the network

[4, 5]; the ith column of H is the ith hidden node’s output

vector with respect to input x1; x2; . . .; xN ; and the jth row

of H is the output vector of the hidden layer with respect to

input xj.

It has been proven in [5, 6] that SLFNs with hidden

nodes have the universal approximation capability; the

hidden nodes can be randomly generalized in the beginning

of learning. As introduced in [6], one of the methods to

calculate Moore–Penrose generalized inverse of a matrix is

the orthogonal projection method: Hy ¼ HTðHHTÞ�1:

According to the ridge regression theory [25], one can

add a positive value to the diagonal of HHT ; the resultant

solution is more stable and tends to have better general-

ization performance:

f ðxÞ ¼ hb ¼ hðxÞHT I

C
þHHT

� ��1

T; ð5Þ

The feature mapping hðxÞ is usually known to users in

ELM. However, if a feature mapping hðxÞ is unknown to

users, a kernel matrix for ELM can be defined as follows [6]:

XELM ¼ HHT : XELMi;j
¼ hðxiÞ � hðxjÞ ¼ Kðx

i
; xjÞ: ð6Þ

Thus, the output function of kernel ELM classifier can

be written compactly as:

f ðxÞ ¼ hðxÞHT I

C
þHHT

� ��1

T

¼
Kðx; x1Þ

..

.

Kðx; xNÞ

2

6
4

3

7
5

T

I

C
þ XELM

� ��1

T: ð7Þ

ELM is to minimize the training error as well as the

norm of the output weights [6].

Minimize : Hb� Tk k2 and bk k: ð8Þ

In fact, according to (8), the classification problem for

ELM with multi-output nodes can be formulated as:

Minimize: LPELM
¼ 1

2
bk k2þC

1

2

XN

i¼1

nik k2

S:t: : hðxÞb ¼ tTi � nTi ; i ¼ 1; . . .;N

ð9Þ

where ni ¼ ½ni;1; . . .; ni;m�T is the training error vector of the

m output nodes with respect to the training sample xi.

Based on the KKT condition, to train ELM is equivalent to

solving the following dual optimization problem:

Minimize: LDELM
¼ 1

2
bk k2þC

1

2

XN

i¼1

nik k2

�
PN

i¼1

Pm

j¼1

ai;jðhðxiÞbj � ti;j þ ni;jÞ: ð10Þ

Algorithm 1: Given a training set ðxi; tiÞf gNi¼1� Rn � R,

activation kernel function gð�Þ, and the hidden node num-

ber L:

Step 1: Randomly assign input weight wi and bias

bi; i ¼ 1; . . .; L:
Step 2: Calculate the hidden layer output matrix H.

Step 3: Calculate the output weight b: b ¼ HyT:

3 Multiple-kernel-learning algorithms for extreme

learning machine

3.1 Minimum norm least squares (LS) solution

of SLFNs

It is very interesting and surprising that unlike the most

common understanding that all the parameters of SLFNs

need to be adjusted, the input weights wi and the hidden

layer biases bi are in fact not necessarily tuned, and the

hidden layer output matrix H can actually remain

unchanged once random values have been assigned to these

parameters in the beginning of learning. For fixed input

weights wi and the hidden layer biases bi, seen from

Eq. (11), to train an SLFN is simply equivalent to finding a

least squares solution b̂ of the linear system Hb ¼ T:

Hðŵ1; . . .; ŵ ~N ; b̂1; . . .; b̂ ~NÞb̂� T
�
�
�

�
�
�

¼ min
wi;bi;b

Hðw1; . . .;w ~N ; b1; . . .; b ~NÞb� T
�
�

�
� ð11Þ
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Hðw1; . . .;w ~N ; b1; . . .; b ~NÞb̂� T
�
�
�

�
�
�

¼ min
b

Hðw1; . . .;w ~N ; b1; . . .; b ~NÞb� T
�
�

�
�: ð12Þ

If the number ~N of hidden nodes is equal to the number

N of distinct training samples ~N ¼ N; matrix H is square

and invertible when the input weight vectors wi and the

hidden biases bi are randomly chosen, and SLFNs can

approximate these training samples with zero error.

However, in most cases, the number of hidden nodes is

much less than the number of distinct training samples
~N � N; H is a non-square matrix, and there may not exist

wi, bi, bi (i ¼ 1; . . .; ~N) such that Hb ¼ T: The smallest

norm least squares solution of the above linear system is

b̂ ¼ HyT; ð13Þ

where Hy is the Moore–Penrose generalized inverse of

matrix H [21].

3.2 QCQP formulation

In the scenario of ELM, the duality gap of Eq. (9) and its

dual program is zero since the Slater constraint qualifica-

tion holds, and we get

min
x;n

max
a

Lðx; n; aÞ ¼ max
a

min
x;n

Lðx; n; aÞ

max aTy� 1

2
aTKa� 1

2C
aTa

s.t.
Xn

i¼1
ai ¼ 0:

ð14Þ

The Lagrangian dual yields:

min
k

max
a

aTy� 1

2
aTKa� 1

2C
aTaþ kaT1n; k�0 ð15Þ

The Lagrangian function is given as

Lðk; aÞ ¼ aTy� 1

2
aTKa� 1

2C
aTaþ kaT1n; k� 0 ð16Þ

To obtain the dual, the derivatives of the Lagrangian

function with respect to the primal variables a have to

vanish

oLðk; aÞ
oa

¼ 0 ! y� Ka� 1

C
aþ k1n ¼ 0; ð17Þ

K þ 1

C
I

� �

a ¼ yþ k1n;

a ¼ K þ 1

C
I

� ��1

ðyþ k1nÞ:
ð18Þ

According to (18), the Eq. (16) can be formulated as:

Lðk; aÞ ¼ aTy� 1

2
aTðyþ k1nÞ þ kaT1n

¼ aTy� 1

2
aTy� 1

2
kaT1n þ kaT1n

¼ 1

2
aTyþ 1

2
kaT1n

¼ 1

2
K þ 1

C
I

� ��1

yþ k1nð Þ
 !T

yþ k1nð Þ

¼ 1

2
ðyþ k1nÞT K þ 1

C
I

� ��1

yþ k1nð Þ

ð19Þ

We get its dual program:

min
k

1

2
ðyþ k1nÞT K þ 1

C
I

� ��1

ðyþ k1nÞ; ð20Þ

for the Slater constraint qualification holds. We consider

the parameterization K ¼
Pp

i¼1 liKi with additional affine

constraint
Pp

i¼1 li ¼ 1 and positive semi-definiteness

constraint K � 0. Attaching these constraints into Eq. (20)

and minimizing with respect to l gives:

min
l;k

1

2
ðyþ k1nÞT

Xp

i¼1

liKi þ
1

C
I

 !�1

ðyþ k1nÞ

s:t:
Pp

i¼1

liKi � 0;

Pp

i¼1

li ¼ 1;

ð21Þ

i.e.,

min
l;k;t

t

s:t:

1

2

Xp

i¼1

liKi þ
1

2C
I yþ k1n

ðyþ k1nÞT t

0

B
@

1

C
A� 0;

Pp

i¼1

liKi � 0;
Pp

i¼1

li ¼ 1:

ð22Þ

when the weights li are constrained to be nonnegative

and Ki are positive semi-definite, the constraint
Pp

i¼1 Ki � 0 is satisfied naturally. In that case, we again

consider the parameterization K ¼
Pp

i¼1 liKi with con-

straint
Pp

i¼1 li ¼ 1 and li C 0. Substituting this into

Eq. (20) and minimizing with respect to l give the fol-

lowing formulation:
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min
l:l�0;lT 1p¼1

max
a:aT 1n¼0

�1

2

Xp

i¼1

lia
TKiaþ aTy� 1

2C
aTa

( )

¼ max
a:aT1n¼0

min
l:l�0;lT 1p¼1

aTy� 1

2C
aTa� 1

2

Xp

i¼1

lia
TKia

( )

¼ max
a:aT1n¼0

aTy� 1

2C
aTa� 1

2
max

l:l�0;lT1p¼1

Xp

i¼1

lia
TKia

( )

¼ max
a:aT1n¼0

aTy� 1

2C
aTa� 1

2
max
p� i�1

aTKia

� �

;

ð23Þ

where lTi 1
p ¼ 1 means

Pp
i¼1 li ¼ 1 (p is the number of

kernels). Here, it should be noted that the order of the

minimization and the maximization is interchanged in

the first equation. This is right since the conditions that the

objective is convex in l and concave in a, the minimization

problem is strictly feasible in l, and the maximization

problem is strictly feasible in a [1]. Equation (23) can be

reformulated as the following QCQP

max
a;t

� 1

2
t þ aTy� 1

2C
aTa

s:t: t� aTKia; i ¼ 1; . . .; p;
aT1n ¼ 0:

ð24Þ

Such a QCQP problem can be solved efficiently with

general-purpose optimization software packages, like

MOSEK [23], which solve the primal and dual problems

simultaneously using the interior point methods. The

obtained dual variables can be used to fix the optimal

kernel coefficients.

In some cases, the performance of ELM depends criti-

cally on the values of C. We show that the formulations

(22) and (24) can be reformulated slightly, and this new

formulation leads naturally to the estimation of the regu-

larization parameter C in a joint framework. As can be seen

from Eq. (22), the identity matrix appears in exactly the

same form as kernel matrices; we can treat the regulari-

zation parameter as one of the coefficients for the kernel

matrix and optimize them simultaneously. This leads to the

following formulation:

min
l;k;t

t

s:t:

Pp

i¼1

liKi yþ k1n

ðyþ k1nÞT t

0

@

1

A� 0;

Pp

i¼1

liKi � 0;
Pp

i¼0

li ¼ 1; l0 � 0;

ð25Þ

where l0 ¼ 1
C
and K0 = I. To optimize the regularization

parameter in Eq. (24), we modify Eq. (23) slightly:

min
l:l� 0;lT 1pþ1¼1

max
a:aT 1n¼0

� 1

2

Xp

i¼0

lia
TKiaþ

1

2
aTy

( )

¼ max
a:aT1n¼0

min
l:l� 0;lT 1pþ1¼1

� 1

2

Xp

i¼0

lia
TKiaþ

1

2
aTy

( )

¼ max
a:aT1n¼0

1

2
aTy� 1

2
max

l:l� 0;lT1pþ1¼1

Xp

i¼0

lia
TKia

( )

¼ max
a:aT1n¼0

1

2
aTy� 1

2
max

p� i� 0
aTKia

� �

;

ð26Þ

where K0 stands for unit matrix I, l0 denotes the reciprocal
of regularization parameter. Substituting aTKia by t and

moving it to the constraint, we get the following quadrat-

ically constraint linear program:

max aTy� t

s: t: t� aTKia; i ¼ 0; . . .; p;
aT1n ¼ 0:

ð27Þ

We will show that the joint optimization of C works

better in most cases in comparison with the approach of

pre-specifying C.

3.3 SILP formulation

In this section, we show how these problems can be

resolved by considering a novel dual formulation of the

QCQP as a semi-infinite linear programming (SILP)

problem. In the following formulation, Kj represents the

jth kernel matrix in a set of p ? 1 kernels with the

(p ? 1)th kernel identity matrix. The MKL-ELM is for-

mulated as

max
h;u

u

s:t: hj � 0; j ¼ 1; . . .; pþ 1

Ppþ1

j¼1

h2j 	 1;

1

2

Xpþ1

j¼1

hjfjðbqÞ �
1

2

Xk

q¼1

bTq Y
�1
q 1q � u; 8bq; q ¼ 1; . . .; k

fjðbqÞ ¼
Pk

q¼1

ð1
2
bTqKjbqÞ; j ¼ 1; . . .; pþ 1; q ¼ 1; . . .; k

ð28Þ

The MKL-ELM is presented in algorithm 2.
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Step1 optimizes h as a linear programming. Since the

regularization coefficient is automatically estimated as

hp?1, step 3 simplifies to a linear problem as

0 1T

1 XðlÞ

� �
0

bðlÞ

� �

¼ 0

Y�11

� �

ð29Þ

4 Empirical results

In this section, we will perform classification experiments

on such following data set: Banana, Breast Cancer, Titanic,

Waveform, German, Image, Heart, Diabetes, Ringnorm,

Thyroid, Twonorm, Flare Solar, and Splice (Table 1).

In the experiments, we will compare the following:

1. SK-ELM: single-kernel ELM

2. MK-ELM(MEB) [33]: the radius-incorporated multi-

ple-kernel ELM

4.1 Multiple different kinds of kernels

Here, four sorts of different kernel functions, i.e., polyno-

mial kernel function k1ðx; yÞ ¼ ð1þ xTyÞd; Gaussian kernel

function k2ðx; yÞ ¼ exp � x� yk k2
.
r2

	 

; linear kernel

function k3ðx; yÞ ¼ xTy; and Laplacian kernel function ¼
expð� x� yk k=pÞ; are selected to construct the multiple

kernels k ¼
P4

i¼1 liki; where the corresponding kernel

parameters are specified as d = 2, r2 ¼ 20; p = 5 before

experiments. All kernel matrixes Ki are normalized through

replacing Kiðm; nÞ by Kiðm; nÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Kiðm;mÞKiðn; nÞ
p

to get

unit diagonal matrix [1, 24]. Table 2 gives the results

of the single-kernel ELM experiments on the Image,

Ringnorm data set, etc. The criterion TRA (%) and TSA

(%) represent the accuracy of the training set and of the

testing set. As can be seen from Table 2, our proposed

algorithm is a very potential tool. Most of the testing rates

are high, basically attaining 90 % in the Laplacian kernel

cases. About 88.66 % testing rate is obtained for the

Ringnorm set in ELM cases, while for the image data set,

such criterion is beyond 90.64 %. On the one hand,

comparisons of Table 2 may suggest that the MKL-ELM

has higher (at least the same) testing rate than the single

kernel; on the other hand, the former is more time-con-

suming than the latter in parameter selection. Therefore,

the MKL-ELM is proved again to be a more potential tool

than the single-kernel one. Furthermore, most experi-

mental results indicate that the proposed algorithm has

higher accuracy, as well as the robust stability than the

MK-ELM (MEB), SK-ELM, and ELM on the multi-class

problems, which can be observed from the multiple-ker-

nel experimental results in Table 2. Moreover, the pro-

posed algorithm has less time-consuming than the

MK-ELM (MEB).

Table 3 reports the optimal kernel weight lif g4i¼1 for

every kernel function and the experimental results through

MKL, i.e., the SILP formulation through MKL in the

ELM-SILP. Summation of the average value of l1, l2, l3,
l4 and l0 is not equal to 1. The optimal kernel weights

l1, l2 = 0, while l3, l4 = 0 can be used to explain the

cause why the MKL-ELM is likely to be better than the

SK-ELM. Moreover, the TRA in the MKL-ELM can

attain the maximum TRA in the SK-ELM. Higher TRA

with MK will show better fitting capability of the MKL-

ELM, while higher TSA will show better predication

capacity. The above experimental results prove that the

MKL-ELM has a lower upper bound of the expected risk

and may give potential better data representation than the

SK-ELM.

4.2 Fusing kernel experiments

In the section, the experiments are made through the

fusing kernel learning (FKL) and exhibit the performance

of the fusing kernel. In every feature set, five kinds of

Table 1 Data sets used in the experiments

Data set Dimensionality Training patterns Test patterns

Banana 2 400 4,900

Breast cancer 9 200 77

Titanic 3 150 2,051

Waveform 21 400 4,600

German 20 700 300

Image 18 1,300 1,010

Heart 13 170 100

Diabetes 8 468 300

Ringnorm 20 400 7,000

Thyroid 5 140 75

Twonorm 20 400 7,000

Flare Solar 9 666 400

Splice 60 1,000 2,175
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Gaussian kernel functions with bandwidth r2 ¼
0:1 1 10 20 40½ � are used to form the fusing kernel

k ¼
P2

i¼1

P5
j¼1 lijkij

	 

. On the basis of the results men-

tioned above, it is clear that the fusing kernel not only can

provide a good data representation of feature set, but also

can distinguish which kernels are fit for the underlying

problem. The perception into the reasoning made by the

fusing kernel may be analyzed through the kernel weights

reported in Table 4. The results of kernel weights, TRA,

TSA, and CPU(s) are listed in Table 4. Obviously, there

are very high TRA and TSA performance, which are

obtained by the fusing kernel. Of course, it should be

pointed out that the accuracy improvement on the fusing

kernel model is at the cost of increasing the model com-

plexity, which can be embodied from the increased

experimental CPU time in Table 4.

Figure 1 shows the training time with varying number of

samples for QCQP and SILP. For the max sample size,

QCQP achieves 400 and the SILP approach achieves 1,300.

For the training time, our approach costs the least time,

three times faster than QCQP. In fact, our algorithm can

solve various scale problems. We find that the termination

of SILP is due to the problem of out of memory in Matlab,

Table 2 Experimental results of our method, MK-ELM(MEB), SK-

ELM, and ELM: multi-class data sets

Data sets Algorithm Training times

(s)

Testing

Rate

(%)

Dev

(%)

Banana Our method 12.2237 89.62 8.22

MK-ELM

(MEB)

25.5569 89.02 5.16

SK-ELM 0.1332 88.95 3.12

ELM 0.0002 87.24 4.87

Breast

cancer

Our method 30.4421 81.71 0.84

MK-ELM

(MEB)

70.2358 83.22 0.92

SK-ELM 0.0095 85.78 1.01

ELM 0.1291 88.23 2.07

Titanic Our method 17.9782 82.03 9.22

MK-ELM

(MEB)

46.8891 81.15 8.21

SK-ELM 0.1233 80.62 4.12

ELM 0.0014 79.54 5.87

Waveform Our method 320.5543 97.55 0.28

MK-ELM

(MEB)

700.3315 96.22 0.32

SK-ELM 4.1734 92.83 0.23

ELM 0.6513 90.72 1.21

German Our method 250.6681 85.26 0.97

MK-ELM

(MEB)

360.5522 86.91 0.99

SK-ELM 2.9965 88.92 1.02

ELM 0.1355 92.70 1.63

Image Our method 240.4451 96.81 0.28

MK-ELM

(MEB)

650.8841 95.17 0.28

SK-ELM 3.0002 93.22 0.29

ELM 0.0468 90.64 1.26

Heart Our method 6.9982 93.27 4.27

MK-ELM

(MEB)

20.2256 91.26 5.34

SK-ELM 0.0897 94.84 9.24

ELM 0.0435 95.22 9.14

Diabetes Our method 50.6342 93.95 0.62

MK-ELM

(MEB)

130.445 92.66 1.02

SK-ELM 0.1235 91.63 0.92

ELM 0.0062 88.71 2.17

Ringnorm Our method 70.6523 96.52 0.26

MK-ELM

(MEB)

206.2241 94.61 0.25

SK-ELM 0.1282 92.73 0.25

ELM 0.05427 88.66 1.67

Table 2 continued

Data sets Algorithm Training times

(s)

Testing

Rate

(%)

Dev

(%)

Thyroid Our method 1.6123 97.82 8.31

MK-ELM

(MEB)

3.1245 96.22 6.53

SK-ELM 0.0142 98.29 4.25

ELM 0.0006 95.32 3.32

Twonorm Our method 260.9782 99.6 0.28

MK-ELM

(MEB)

600.3722 97.21 0.29

SK-ELM 4.173 92.57 0.29

ELM 0.3725 88.75 1.53

Flare solar Our method 21.0967 77.83 0.61

MK-ELM

(MEB)

60.1125 79.61 0.93

SK-ELM 0.1128 82.65 0.89

ELM 0.0092 83.26 2.56

Splice Our method 852.27 88.71 0.09

MK-ELM

(MEB)

2,050.32 87.62 0.02

SK-ELM 15.37 84.93 0.12

ELM 0.7826 83.79 0.32
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and the termination of QCQP is due to the same problem in

MOSEK.

The benchmark data set was constructed by 2,000

samples in Fig. 2. We used different kernel widths to

construct the RBF kernel matrices and increase the number

of kernel matrices from 2 to 200. The QCQP formulations

had memory issues when the number of kernels was larger

than 80.

In Fig. 3, the benchmark data were made up of two

linear kernel matrices and 1,000 samples. The samples

were equally and randomly divided into various numbers

of classes. The number of classes gradually increased from

2 to 20.

5 Conclusions and future research

We investigate the issue of multiple-kernel learning based

on ELM for classification in this paper. This problem is

formulated as convex programs, and thus, globally optimal

solutions are guaranteed. The final kernel functions for the

multiple-kernel models are determined by black-box

learning from the initially proposed kernel functions.

Theoretically, the kernel functions used to construct the

multiple-kernel models may be different for various prob-

lems, so the problem insight could impact on the selection

of the kernel functions to improve the performance. In fact,

some convex optimization problems are computationally

Table 3 Experimental results

of multiple different types of

kernels

* l0 is the reciprocal of the

regularized parameter C

Data set MK-ELM (Proposed) l0
* l1 l2 l3 l4 TRA (%) TSA (%)

Banana QCQP 1.000 0.008 0.000 0.088 0.000 87.5 87.8

SILP 0.915 0.182 0.175 0.153 0.330 89.6 88.0

Breast cancer QCQP 1.000 0.000 0.000 0.077 0.923 84.2 82.7

SILP 0.986 0.010 0.013 0.079 0.000 82.3 81.7

Titanic QCQP 1.000 0.199 0.223 0.000 0.578 82.3 82.0

SILP 0.973 0.268 0.113 0.159 0.000 85.4 86.7

Waveform QCQP 1.000 0.501 0.000 0.178 0.321 92.7 93.2

SILP 0.898 0.229 0.110 0.325 0.071 94.8 97.5

German QCQP 1.000 0.263 0.000 0.214 0.523 85.2 86.4

SILP 0.828 0.213 0.131 0.219 0.123 83.6 85.2

Image QCQP 1.000 0.157 0.000 0.401 0.442 97.7 96.2

SILP 0.952 0.422 0.213 0.172 0.212 98.2 97.5

Heart QCQP 1.000 0.226 0.612 0.162 0.000 89.4 90.2.

SILP 0.982 0.134 0.213 0.279 0.058 92.7 93.9

Diabetes QCQP 1.000 0.768 0.211 0.000 0.021 87.3 89.2

SILP 0.957 0.182 0.175 0.153 0.330 91.6 92.2

Ringnorm QCQP 1.000 0.218 0.113 0.248 0.390 95.2 94.1

SILP 0.977 0.362 0.223 0.279 0.130 96.7 96.5

Thyroid QCQP 1.000 0.223 0.332 0.247 0.198 92.7 93.5

SILP 0.955 0.287 0.363 0.272 0.113 95.2 97.8

Twonorm QCQP 1.000 0.872 0.012 0.024 0.192 97.8 98.2

SILP 0.983 0.282 0.057 0.135 0.602 98.5 99.6

Flare Solar QCQP 1.000 0.752 0.126 0.027 0.095 79.2 78.3

SILP 0.920 0.419 0.015 0.193 0.228 79.3 77.8

Splice QCQP 1.000 0.556 0.028 0.014 0.402 80.2 80.1

SILP 0.962 0.322 0.256 0.323 0.226 86.4 88.7

Table 4 Experimental results of fusing kernels

FKL l0 Toy 1 Toy 2 TRA (%) TSA (%) CPU (s)

l11 l12 l13 l14 l15 l21 l22 l23 l24 l25

ELM-QCQP 0.373 0.385 0.015 0.028 0.089 0.000 0.000 0.051 0.059 0.000 0.000 98.6 97 7.622

ELM-SILP 0.399 0.399 0.397 0.228 0.165 0.139 0.399 0.392 0.222 0.148 0.118 99.8 99.2 60.262
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expensive, and the proposed algorithm is efficient to solve.

Furthermore, we consider the problem of optimizing the

kernel, thus approaching the desirable goal of automated

model selection. To evaluate the proposed algorithms, we

have conducted extensive experiments, which demonstrate

the effectiveness.

The proposed MKL-ELM classifier is to learn the opti-

mal combination of multiple large-scale data sets. Despite

multiple-kernel ELM displaying some superiorities over

the single-kernel ELM both theoretically and experimen-

tally, there is much work worth investigating in the future,

such as developing efficient algorithm to deal with large-

scale training problem resulted from the increasing of the

number of kernels.

From the practical point of view, our method can be

easily applied in lots of applications, such as pattern

recognition, time serial prediction, high-magnification

sample image in painting, and bioinformatics.
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