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Abstract Condition diagnosis of bearings is one of the

most common plant maintenance activities in manufac-

turing industries. It is essential to detect bearing faults early

to avoid unexpected breakdown of plant due to undetected

faulty bearings. Many meta-heuristics techniques for con-

dition diagnosis of single bearing systems have been

developed. The techniques, however, are not effectively

applicable for multiple bearing systems. In this paper, a

new hybrid technique of genetic algorithms (GAs) with

adaptive operator probabilities (AGAs) and back propa-

gation neural networks (BPNNs), called AGAs–BPNNs, is

proposed specifically for condition diagnosis of multiple

bearing systems. In this technique, AGAs are integrated

with BPNNs to attain better initial weights for the BPNNs

and hence reduce their learning time. We tested the pro-

posed technique on a two bearing systems, and used ten

extracted features from the system’s vibration signals data

as input and sixteen bearing condition classes as target

output. The experimental results show that the AGAs–

BPNNs technique obtains much higher classification

accuracy in shorter CPU time and number of iterations

compared with the standard BPNNs, and the hybrid of

standard GAs and BPNNs.

Keywords Genetic algorithms � Back propagation neural

networks � Condition diagnosis � Adaptive operator

probabilities � Multiple bearings

1 Introduction

A bearing is a device that allows restrained relative motion

between two moving parts. Bearings are used to reduce

friction on rotating shaft by providing smooth metals ball

or roller and a smooth inner and outer metal surface for the

balls to roll against. They are widely used in many appli-

cations, and different application has different kind of

bearing used. For instance, the angular-contact ball bear-

ings are used for automobile wheels, the cylindrical roller

bearings are used for aircraft gas turbine engine, and needle

roller bearings are used for car follower assembly [1].

In all these applications, the common issues are how to

extend bearing life in machines, how to reduce friction

energy losses and wear, and how to minimize maintenance

expenses and downtime of machinery due to frequent

bearing failures [2]. Appropriate bearing maintenance

requires good bearing condition diagnosis to prevent

overall machine failure since bearing is one of machine

parts which has high percentage of defect compared with

other components [3]. Therefore, an early and effective

fault or condition diagnosis of bearing is essential.

Earliness and effectiveness of fault diagnosis and

assessment can be achieved by good condition monitoring.

Condition monitoring is represented by vibration signals

that are captured by accelerometers. These accelerometers

record condition of the bearing system continuously.

Vibration signals data are commonly used for bearing fault

diagnosis since the information regarding the bearing

condition is contained in the vibration signal [4]. Vibration
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signals show difference characteristic if a problem in the

system exists. As can be seen in Fig. 1, the vibration sig-

nals of normal bearing are different from faulty bearing. In

the faulty bearing vibration signals, the amplitude of the

signals, for instance, are much higher than in the normal

bearing. However, in a multiple bearing systems when, for

instance, one of the bearings in the system has problems

and the others are normal, the vibration signals that tran-

spired from this condition may not give a representation

that visually distinct from the condition when all the

bearings are normal. Therefore, it is important to have a

technique which is able to accurately diagnose the system

condition based on the continuously monitored vibration

signals.

Many researchers have proposed techniques for bearing

condition diagnosis. Su and Li [5], for instance, proposed a

technique to detect fault of bearing by analyzing the fre-

quency characteristic of bearing vibration signals. Another

researcher applied discrete wavelet transform (DWT) to

vibration signals to predict the occurrence of spilling in ball

bearings [6]. Statistical analysis of sound vibration signal

was also used by Heng and Nor [7] for monitoring the

rolling element bearing condition. Other fault diagnosis

techniques were developed based on empirical mode

decomposition (EMD) and Hilbert Spectrum [8], and

Laplace wavelet enveloped power spectrum [9].

Individual meta-heuristic techniques such as the genetic

algorithms (GAs) and neural networks (NNs) have also

been used for condition diagnosis [10–12]. However,

individual meta-heuristic techniques suffer from their own

drawbacks, which can be overcome by forming a hybrid

approach combining the advantages of each technique [12].

Hence, researchers have recently started to propose hybrid

techniques of meta-heuristic to improve the performance of

condition diagnosis. Tang et al. [13] applied NN and niche

GA to diagnose five fault types in a gear. Wulandhari et al.

[14] improved the condition diagnosis work in specific type

of fault for multiple bearing using hybrid GAs–BPNN

approach. In order to extend our previous work in condition

diagnosis of multiple bearing and specific classes of fault,

we improve the classification accuracy and shorten the

CPU time by modifying the hybrid meta-heuristic

technique.

This paper proposes a new hybrid technique of GAs

with adaptive operator probabilities (AGAs) and back

propagation neural networks (BPNNs), called AGAs–

BPNNs. In this hybrid, AGAs are applied to obtain the best

initial weights for the learning process in BPNNs. In this

technique, we used ten features extracted from vibration

signals data of bearing system as inputs to diagnose the

condition. Those features are standard deviation, skewness,

kurtosis, the maximum peak value, absolute mean value,

root mean square value, crest factor, shape factor, impulse

factor and clearance factor [15]. These features are effec-

tive and practical in condition diagnosis due to their rela-

tive sensitivity to early faults, and robustness to various

loads and speeds [16]. These features are used as the input

of AGAs–BPNNs, whereas the target outputs are sixteen

conditions of the bearing system. In the result and analysis

section, we will show the comparison of performance of

standard BPNN, hybrid GAs–BPNNs and hybrid AGAs–

BPNNs. Detail steps for condition diagnosis of the bearing

system are presented in the next section.

2 Bearing vibration data

In this research, the vibration signals data used were

obtained from the Case Western Reserve University

Bearing Data Center [17]. The vibration signals data were

Fig. 1 Vibration signal data

from normal bearing and inner

race fault bearing
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captured from a two bearing systems, which consists of

drive end bearing (DE) and fan end bearing (FE), with

various combinations of the bearing conditions. The

specifications of the bearing are given in Table 1 below:

For the purpose of capturing the vibration signals data,

three accelerometers were attached on the bearings and the

baseline (BA) as shown in Fig. 2.

Bearing vibration data were collected under seven dif-

ferent conditions: (1) FE and DE normal, (2) FE normal

and DE inner race fault (DE-IRF), (3) FE normal and DE

ball fault (DE-BF), (4) FE normal and DE outer race fault

(DE-ORF), (5) FE inner race fault (FE-IRF) and DE nor-

mal, (6) FE ball fault (FE-BF) and DE normal and (7) FE

outer race fault (FE-ORF) and DE normal. The example of

the data captured is presented in Table 2.

From the Table 2, we can see that each condition has

three streams of data as captured by the three accelerom-

eters. Based on the available data, generally only seven

condition classes of bearing can be specified as the output

of the diagnosis. In this paper, we expanded the condition

classes from seven to sixteen classes by combining and

mixing the available data. The FE-IRF and DE-IRF class,

for instance, its BA data were set or obtained from the

average of BA accelerometer in FE-IRF and DE-IRF

condition, the FE data were obtained from FE accelerom-

eter in FE-IRF condition, and the DE data were obtained

from DE accelerometer in DE-IRF condition. The expan-

sion of condition classes was done to obtain more specific

condition diagnosis for each bearing so that any action to

each bearing can be specifically carried out. The advantage

of this expansion is that, here, we can identify the condition

of DE and FE bearing simultaneously. In these seven class

cases, we can only identify the condition of either one. The

sixteen classes of the bearing conditions are presented in

Table 3.

The classes of multiple bearing conditions are influ-

enced by ten features extracted from the data. The values of

the features lie within the interval which is the lower and

upper bound of the data extraction. The interval of the

features values are presented in Table 4.

From the values that are presented in Table 4, we can

see that some lower bound and upper bound of each con-

dition has nearly similar values; therefore, it is difficult to

identify the condition of the multiple bearing manually.

Based on this fact, we propose AGAs–BPNNs as one of the

techniques to identify the condition from multiple bearing

and compare the performance of this technique with stan-

dard BPNNs and GAs–BPNNs technique.

3 Proposed technique

This paper proposed an AGAs technique in GAs to obtain

better initial weights for BPNNs training. The adaptive

technique is applied to maintain the diversity of the pop-

ulation by varying the probabilities of crossover (pc) and

mutation (pm), see for examples [18–22]. The scheme of

AGAs–BPNNs is given in Fig. 3 below.

The algorithm for the proposed AGAs–BPNNs is as

follows:

1. Let (Ik,Tk) be the kth input and target pair of the

problem to be solved by BPNN, with k = 1, 2,…, Nin

and Nin is the number of paired data.

2. Let Npop, Nchro, pc0, pm0 and Niter be the number of

populations, number of chromosomes, initial crossover

probability, initial mutation probability and the max-

imum number of iterations, respectively. Initialize pc0,

pm0, Rpc and Rpm where Rpc are random vector of

numbers which generated in range [0, 1] with size

1 9 Nchro/2 and Rpm are random vector of numbers

which generated in range [0, 1] with size 1 9 Nchro.

Set i = 0.

3. Determine the BPNN architecture in terms of the

number of input neuron, hidden layer, hidden neuron

and output neuron, and the activation functions.

4. Generate an initial population of chromosomes Q0.

Each chromosome contains genes which correspond to

BPNN random weights, and the number of genes in a

chromosome is equal to the number of BPNN weights.

5. Calculate the fitness value F i; jð Þ of the jth chromo-

some in population Qi using

Table 1 Multiple bearing specifications [17]

Bearing Inside diameter (in.) Outside diameter (in.) Thickness (in.) Ball diameter (in.) Pitch diameter (in.)

DE bearing 0.9843 2.0472 0.5906 0.3126 1.537

FE bearing 0.6693 1.5748 0.4724 0.2656 1.122

FE Bearing DE Bearing

FE Accelerometer DE Accelerometer

BA Accelerometer

Fig. 2 Bearing and accelerometer structure
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F i; jð Þ ¼ 1

Eði; jÞ j ¼ 1; 2; . . .;Nchro ð1Þ

where Eði; jÞ is mean square error (MSE) of the jth

chromosome in the population Qi. It is calculated

based on the selected BPPN architecture as follows:

Eði; jÞ ¼ 1

2

XNin

k¼1

Tkj � Oi
kj

� �2

ð2Þ

where Tkj target of the kth input in the jth chromosome,

Oi
kj output of the kth input in the jth chromosome of the

population Qi based on the selected BPNN architecture

6. Generate the mating pool by selecting the best

chromosomes using roulette selection methods.

7. Select parent pairs of population Qi, say /i
1s;/

i
2s

� �
;

from the mating pool for crossover mechanism where

s = 1, 2, …, S; and S ¼ Nchro

2

� �
:

8. Calculate the crossover probability of the sth parents

pairs in the population Qi [20].

pcði;/i
1s;/

i
2sÞ ¼

pc0

FmaxðiÞ � F
0 ði; sÞ

� �

FmaxðiÞ � FðiÞ
� � if F

0 ði; sÞ[ FðiÞ

pc0 otherwise

8
<

:

ð3Þ

where

F
0 ði; sÞ ¼ Fð/i

1sÞ if Fð/i
1sÞ[ Fð/i

2sÞ
Fð/i

2sÞ otherwise

�

Fð/i
1sÞ; Fð/i

2sÞ: Fitness value of parents 1 and 2,

respectivelyFmaxðiÞ: Maximum fitness value of the

population QiFðiÞ: Average fitness value of the popu-

lation Qi

9. Calculate mutation probability of the jth chromosome

in the population Qi [20]
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5 Table 3 Sixteen classes of bearing conditions

No Condition No Condition

C1 FE and DE normal C9 FE-IRF and DE-ORF

C2 FE normal and DE-IRF C10 FE-IRF and DE-BF

C3 FE normal and DE-ORF C11 FE-ORF and DE-IRF

C4 FE normal and DE-BF C12 FE-ORF and DE-ORF

C5 FE-IRF and DE normal C13 FE-ORF and DE-BF

C6 FE-ORF and DE normal C14 FE-BF and DE-IRF

C7 FE-BF and DE normal C15 FE-BF and DE-ORF

C8 FE-IRF and DE-IRF C16 FE-BE and DE-BF
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pmði; jÞ ¼
pm0

FmaxðiÞ � Fði; jÞð Þ
FmaxðiÞ � FðiÞ
� � if Fði; jÞ[ FðiÞ

pm0 otherwise

8
<

:

ð4Þ

where Fði; jÞ is the fitness value of the jth chromo-

some in the population Qi

10. Set i = i ? 1

Generate Qi by applying crossover and mutation

mechanism based on the following rules:

(a) for s = 1:S

if pcði;/i
1s;/

i
2sÞ[ RpcðsÞ do crossover between

/i
1s and /i

2s. Otherwise, copy /i
1s and /i

2s as

offsprings.

(b) for j = 1: Nchro

if pmði; jÞ[ RpmðjÞ do mutation of the jth

chromosome. Otherwise, the jth chromosome

is kept unchanged.

11. If Qi converge or i is equal to Niter, then the best

chromosome is obtained and used as the initial

weights for BPNN learning. Else, go to step 5

4 Result and analysis

In this section, we discuss the result of experiment from

AGAs–BPNNs technique. We compared the hybrid

AGAs–BPNNs performance with the individual BPPNs

and hybrid GAs–BPNNs in terms of classification accuracy

and CPU time. The accuracy of classification is defined as

follows:

classification accuracy ¼ total true output class

total output
� 100 %

ð5Þ

The experiment is executed using a computer with Intel Core

2 Quad processor Q8200, 2.33 GHz and 1.96 GHz and RAM

Outcome: 

The best model of 

multiple bearing condition 

diagnosis 

NO YES 

BPNN learning 

Is fitness values of 

current population 

converge or the 

maximum number of 

iterations reached? 

Generate initial population of 

chromosome (The random 

BPNN weights) 

Calculate fitness value 

Selection  

Mating 

pool 

Crossover 
(Adapting the pcbased on 
average of fitness value) 

New population (new 

weights) 

Mutation  

(Adapting the pmbased on 

average of fitness value) 

Is the maximum of 

training iteration or 

the desired 

classification 

accuracy reached? 

NO 

YES 

Fig. 3 The scheme of the proposed hybrid AGAs–BPNNs Algorithm
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Table 5 Comparison of

performance between standard

BPNNs, hybrid GAs–BPNN and

hybrid AGAs–BPNN approach

in fault diagnosis

Technique Iteration GA max

generation

Classification accuracy (%) CPU

time
Training Validation Testing

BPNN 30-30-16 2,000 – 47.8 42.2 35.8 69.4

5,000 – 58.7 47.2 48.6 163.7

10,000 – 69.1 59.2 58.3 339.8

15,000 – 73.6 63.1 67.8 442.2

50,000 – 84.9 70.3 74.2 1,829.6

GA–BPNN 30-30-16 2,000 50 67.6 49.4 52.2 142.7

5,000 50 69.2 51.3 54.8 231.2

10,000 50 73.6 61.1 60.9 385.5

15,000 50 75.8 61.1 63.9 534.4

50,000 50 86.3 74.3 73.2 2,006.3

AGA–BPNN 30-30-16 2,000 30 68.5 57.5 55.8 160.4

5,000 30 73.1 63.9 67.5 261.1

10,000 30 78.3 68.6 74.9 439.1

15,000 30 79.5 72.8 75.8 612.4

50,000 30 87.1 74.3 79.6 1,937.6

BPNN 30-30-30-16 2,000 – 43.7 43.1 42.2 82.9

5,000 – 61.6 58.9 59.4 197.9

10,000 – 69.4 69.4 67.5 396.8

15,000 – 72.4 74.2 70.6 599.3

50,000 – 88 88.9 89.7 2,217.9

GA–BPNN 30-30-30-16 2,000 50 67.0 56.7 63.8 283.3

5,000 50 77.3 62.1 70.0 397.0

10,000 50 82.0 76.3 80.0 599.3

15,000 50 87.9 85.8 80.4 807.8

50,000 50 93.1 87.1 84.2 2,388.9

AGA–BPNN 30-30-30-16 2,000 30 68.9 61.3 60.3 270.4

5,000 30 77.4 72.1 67.5 332.9

10,000 30 83.4 75.4 75.4 545.0

15,000 30 87.5 82.9 82.1 740.5

50,000 30 99.7 89.6 91 2,319.7

BPNN 30-30-30-30-16 2,000 – 39.1 40.6 43.3 95.8

5,000 – 56.3 58.3 57.8 234.8

10,000 – 66.7 66.9 71.7 465.0

15,000 – 72.1 73.6 71.1 703.6

50,000 – 88.5 88.1 89.4 2,393.9

GA–BPNN 30-30-30-30-16 2,000 50 65.0 53.3 54.4 389.5

5,000 50 70.4 59.7 57.5 520.8

10,000 50 81.3 72.8 70.3 761.7

15,000 50 86.3 80.6 80.6 1,025.6

50,000 50 99.3 88.1 85.6 2,970.7

AGA–BPNN 30-30-30-30-

16

2,000 30 64.6 59.2 58.8 270.4

5,000 30 75.3 63.3 67.9 422.3

10,000 30 82.6 73.8 77.1 675.5

15,000 30 88.2 82.9 83.3 934.2

50,000 30 99.3 91.7 92.4 2,905.00
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3.46 GB. The 240 samples of time series data are used in

BPNNs, GAs–BPNNs and AGAs–BPNNs. These samples are

split randomly into three sets: 80 % for training, 10 % for val-

idation and 10 % for testing. BPNNs training uses 30 neurons

for input which is composed based on ten features extracted

from the vibration signal data of three accelerometers.

In GAs–BPNNs and AGAs–BPNNs techniques, we used

BPNNs with the topology: 30 neurons of input, 30 neurons

of each hidden layer and 16 neurons of output layer. In this

experiment, we set GAs features as follows: 100 chromo-

somes of each population, each chromosome contains

1,426, 2,356 and 3,286 genes, respectively according to the

number of hidden layer. Initial crossover probability is 0.6,

and initial mutation probability is 0.01.

For BPNNs, we used three topologies as follows: (1) 30

neurons of input, 30 neurons of the first hidden layer and 16

neurons of output layers, (2) 30 neurons of input, 30 neu-

rons of the first hidden layer, 30 neurons of the second

hidden layer and 16 neurons of output layer and (3) 30

neurons of input, 30 neurons of the first hidden layer, 30

neurons of the second hidden layer, 30 neurons of the third

hidden layers and 16 neurons of output layer. We refer m-

l1-l2-l3-n as BPNNs with m neurons input, l1 neurons in the

first hidden layers, l2 neurons in the second hidden layers,

l3 neurons in the third hidden layers, and n neurons output.

We performed ten times experiments for each algorithm and

record the average of their classification accuracy. Based on the

experiment, we observed that the standard BPNNs require

larger number of iteration and longer CPU time to achieve the

classification accuracy at par with the accuracy obtained by

AGAs–BPNNs. In BPNN 30-30-30-16 topology, for instance,

the standard BPNNs at 10,000 iterations achieved 69.4, 69.4

and 67.5 % for training, validation and testing, respectively, in

396.8 s CPU time, meanwhile, AGAs–BPNNs is capable to

achieve 77.4, 72.1 and 67.5 % for training, validation and

testing at 5,000 iterations in 332.9 s CPU time. Generally, the

performance comparisons between standard BPNNs, GAs–

BPNNs and AGAs–BPNNs are given in Table 5.

As shown in Table 5, the classification accuracy of

AGAs–BPNNs is higher than the standard BPNNs and

GAs–BPNNs for training, validation and testing processes.

The increment of the iteration influences to the increment

of the accuracy in training, validation and testing. Figure 4

shows the increment of the accuracy of standard BPNNs,

GAs–BPNNs and AGAs–BPNNs for topology 30-30-30-

30-16, with respect to the number of iterations. Figure 4a

describes the classification accuracy of training process. It

is clearly shown that the accuracy obtained using AGAs–

BPNNs accuracy is much higher than by GAs–BPNNs or

BPNNs. In addition, the accuracies obtained during the

validation and testing are also higher by AGAs–BPNNs

than by the GAs–BPNN or BPNNs as shown in Fig. 4b, c,

respectively.

5 Conclusion

In this paper, we introduced a new hybrid technique of

AGAs in GAs and BPNNs, called AGAs–BPNNs, for

condition diagnosis of multiple bearing systems. We

exploited the strong capability in optimization of GAs,

which here have been further improved by varying the

mutation and crossover operators probabilities, for

searching the best initial weights for BPNNs, and the

strong capability in classification of BPNNs to classify or

diagnose the condition of a multiple bearing system. The

AGAs strengthen the BPNNs to achieve the higher clas-

sification accuracy in shorter CPU time compared with the

standard BPNN or the hybrid GAs–BPNNs. Experimental

results showed that the AGAs–BPNNs with 30-30-30-30-

16 topology have the best performance to classify the

Fig. 4 The classification accuracy of training (a), validation (b) and

testing (c) task from standard BPNN, GAs–BPNN and AGAs–BPNN

for topology 30-30-30-30-16
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condition of the tested multiple bearing systems. Within a

shorter CPU time, it achieves 99.3, 91.7 and 92.4 % clas-

sification accuracies for the training, validation and testing,

respectively. This achievement provides the benefits for

condition diagnosis in the real case, since we require a

precise and quick process to diagnose the condition of

multiple bearing in order to avoid total breakdown.
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