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Abstract This manuscript focuses the implementation of

artificial neural network-based algorithms to classify dif-

ferent types of faults in a power transformer, meant par-

ticularly for NonDestructive Test for transformer fault

classification. The performance analysis of Probabilistic

Neural Network (PNN) and Backpropagation Network

classifiers has been carried out using the database of dis-

solved gases collected from Punjab State Electricity Board,

Patiala, India. Features from the preprocessed data have

been extracted using dimensionality reduction technique,

i.e., principal component analysis. The selected features

were used as inputs to the Backpropagation Network and

PNN classifiers. A comparative study of the two intelligent

classifiers has been carried out, which reveals that PNN

classifier outperforms the Backpropagation Network

classifier.

Keywords Power transformer � Probabilistic Neural

Network � Backpropagation Neural Network � Fault

Diagnosis

1 Introduction

Power transformer is one of the major apparatus in trans-

mission and distribution system. The failure of power

transformer causes huge economic losses to industry and

inconvenience to the general public. In power transformers,

two types of insulations are used liquid insulation (mineral

oil or transformer oil) and solid impregnated insulation

(cellulose). Out of the two, the liquid insulation is very

important. The transformer oil provides electrical insula-

tion, dissipates heat, helps to preserve the core and winding

and prevents the direct contact of atmospheric oxygen with

cellulose-made paper insulation of windings [1–6].

The thermal and electrical stresses decompose the trans-

former oil, produce harmful gases such as hydrogen (H2),

methane (CH4), acetylene (C2H2), ethylene (C2H4) and eth-

ane (C2H6), and subsequently, the oil gets damaged. This

declines the performance of transformer oil. One can prevent

this by knowing the exact amount of harmful gases dissolved

in the transformer oil. The different conventional methods

such as Roger’s ratio method, Dornenburg’s method, Duval’s

triangle method and key gas ratio methods are used to

ascertain the exact amount of harmful gases dissolved in the

transformer oil. These methods are either inconclusive on

fault or give a false fault type [7–11]. To overcome these

uncertainties in conventional methods, various intelligent

methods such as artificial neural networks [12, 13], Wavelet

Analysis [14], Least Vector Quotient [15], Probabilistic

Neural Network (PNN) [16], fuzzy logic [17–19] Support

Vector Machine classifiers [20–23] and Self-Organizing Map

classifiers [24, 25] have been proposed.

This article deals with fault classification in power

transformers using Backpropagation Neural Network

(BPN) and PNN. The merits of BPN classifier include fair

approximation of a large class of functions, relatively

simple implementation, and mathematical formula used in

BPN algorithm can be applied to any network. On the other

hand, PNN classifier can generate accurate predicted target

probability scores. They are insensitive to outliers and have

faster convergence speed than BPN classifiers.
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Performance of BPN and PNN classifiers has been

compared for the transformer fault classification. PNN

classifier gives better results compared to BPN classifier.

The comparison has been carried out amongst other BPN

architectures too to classify transformer faults.

2 Proposed fault classification scheme

Figure 1 shows the flow chart of the proposed transformer

fault classification scheme. The raw data are collected and

preprocessed. After that, the dimension reduction and

feature selection are performed and in the last step of the

classification, neural network-based classifiers have been

applied to determine different faults.

3 Methodology

3.1 Dissolved gas analysis (DGA)

Dissolved gas analysis (DGA) provides advance warning

of developing faults. Some of the methods used in industry

for DGA are IEEE std. C 57.104:1991, IEC std.

60599:1999, Duval’s triangle, CIGRE, Nomograph meth-

ods. IEEE std. C 57.104:1991 and IEC std. 60599:1999

methods are key gas ratio methods [26, 27]. Ratio method

does not cover the entire range of data. So, the fault clas-

sification sometimes gives no results. CIGRE method is

combination of key gas ratio method and gas concentration

method [28, 29]. Duval’s triangle method and Nomograph

method are graphical methods. These methods have a

limitation. When multiple DGA faults occur in the system,

none of these methods are able to detect it. Table 1 shows

the allowable range of harmful gases (in ppm) in trans-

former oil for OLTC and commutating OLTC [30]. Table 2

shows different faults of power transformer defined by a

combined IEC/IEEE and CIGRE criteria [26].

3.2 Data collection

Transformers from ten substations of Punjab State Elec-

tricity Board, Patiala (India), are used to collect gas sam-

ples. The data are collected as per the ASTM standards.

The transformer rating ranges from 52–63 MVA. The

range of voltage is 132/33/11 kV. After the data collection,

they are preprocessed by removing linear trends, outliers,

etc. Table 3 shows the preprocessed data of samples

obtained from Punjab State Electricity Board. The raw gas

data, collected from different transformers, are statistically

analyzed. The variance plot of each of the gas sample has

been represented by ANOVA plot in Fig. 2. For normali-

zation purpose, the mean value is subtracted from each

point, i.e., the data can be said zero-mean data.

3.3 Feature selection

The process of mapping original features of the data into

fewer, more effective features is called feature extraction.

Linear Discriminant Analysis (LDA) and Principle Com-

ponent Analysis (PCA) are some of the well-known feature

extraction methods [31, 32]. LDA is a supervised feature

extraction technique, whereas PCA is unsupervised feature

extraction technique. Principal component analysis (PCA)

also known as Karhunen–Loeve transform is one of the

most popular statistical technique, which reduces the

dimensions of a dataset but preserves the correlation

structure in the data. It is basically used for feature

extraction. Steps of PCA are as follows:

(i) Get the input data

(ii) Calculate the mean of data and subtract the mean

(iii) Calculate the covariance cov x; yð Þ ¼
Pn

i¼1
Xi� �Xð Þ Xi� �Xð Þ
n�1

where Xi, i.e., input, is the

DGA Dataset, i = 1–600, �X is the mean value

of the dataset and y (i.e., output) is the fault type

of the transformer

(iv) Calculate the eigenvector and eigenvalue of

covariance matrix

Dissolved Gas Analysis 
Dataset

Pre-processing of 
Raw Data

Feature Extraction using 
Principle Component 

Analysis

Feature Selection

Feature Classification

Back 
Propagation
Neural 
Network
(BPN)

Probabilistic
Neural 
Network
(PNN)

Performance Analysis

Fig. 1 Block diagram of proposed transformer fault classification

scheme
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(v) Choosing components and forming a feature

vector

(vi) Derive new dataset from following formula:

Final data ¼ Row Feature Vector� Row Data Adjust

where Row Feature Vector is the matrix with eigenvectors

in the columns transpose and Row data Adjust is the mean-

adjusted transpose. An assumption made for feature

extraction and dimensionality reduction by PCA is that

most information of the observation vectors is contained in

the subspace spanned by the first m principal axes, where

m \ p for a p-dimensional data space. Therefore, each

original data vector can be represented by its principal

component vector with dimensionality m.

4 Results and discussion

The Backpropagation Neural Network and Probabilistic

Neural Network have been used as fault classifiers, to

classify different transformer fault types according to the

international standard IEC 60599. The following section

describes the two fault classifiers briefly.

Artificial neural network maps the input samples and

output in a nonlinear fashion. Backpropagation is one of

the age-old learning algorithms and is used to train a

multilayer feedforward neural network. Apart from the

input and output layer, there is one hidden layer. The

network has been trained for different numbers of neurons

Table 1 Allowable range of harmful gases (in ppm) in transformer oil for OLTC and commutating OLTC as per IEC 60599

Transformer type Hydrogen

(H2)

Methane

(CH4)

Ethane

(C2H2)

Ethylene

(C2H4)

Acetylene

(C2H2)

Carbon monoxide

(CO)

Carbon dioxide

(CO2)

No OLTC 60–150 40–110 50–90 60–280 3–50 540–900 5,100–13,000

Communicating

OLTC

75–150 35–130 50–70 110–250 80–270 400–850 5,300–12,000

Table 2 Combined criterion of IEC/IEEE and CIGRE standards for integrating fault types

Fault type Ratio of C2H2/C2H4

(R1)

Ratio of CH4/H2

(R2)

Ratio of C2H4/C2H6

(R3)

Ratio of CO/CO2

(R4)

\300 �C thermal fault \0.1 [1 \1 \0.1

300–700 �C thermal fault \0.1 [1 1–3 \0.1

300–700 �C thermal fault with cellulose

decomposition

\0.1 [1 1–3 0.1–1

[700 �C thermal fault \0.1 [1 [3 \0.1

[700 �C thermal fault involving cellulose

decomposition

\0.1 [1 [3 0.1–3.3

Low-energy partial discharge (corona) \0.1 \0.1 \1 0.1–0.3

High-energy partial discharge (corona) 0.1–3 \0.1 \1 0.1–0.3

Low-energy discharge (arcing) [0.1 0.1–1 [1 0.3–3.3

High-energy discharge (arcing) 0.1–3 0.1–1 [3 0.3–3.3

Table 3 Preprocessed samples of data of dissolved gases in power

transformers of Punjab state electricity board

Sample No. H2 CH4 C2H6 C2H4 C2H2

1 336 419 105 1,074 21

2 160 130 33 96 0

3 57 77 58 21 0

4 565 93 34 47 0

5 650 53 34 20 0
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Fig. 2 The variance plot of raw data collected from different

transformers
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Fig. 3 Error and epoch graph

of a Gradient Descent Method.

Best Training Performance is

0.0099 at epoch 66.

b Levenberg–Marquardt

method. Best Training

Performance is 0.099 at epoch

5. c Conjugate Gradient Descent

Method. Best Training

Performance is 0.0087 at epoch

16. d Resilient Method. Best

Training Performance is 0.0097

at epoch 35
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Fig. 4 Regression Plot of a Gradient Descent Method. R = 0.97.

Output = 0.94 9 Target ? 0.0022. b Levenberg–Marquardt method.

R = 0.99. Output = 0.95 9 Target ? 0.032. c Conjugate Gradient

Descent Method. R = 0.96. Output = 0.89 9 Target ? 0.020.

d Resilient Method. R = 0.95. Output = 0.86 9 Target ? 0.004
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in the hidden layer. It has been found by trial and error that

eighteen hidden neurons for this problem gave the best

result. The networks are trained until the mean square error

of the training samples fell below 0.005. In this paper, four

different backpropagation learning algorithms, namely

Gradient Descent, Levenberg–Marquardt, Conjugate Gra-

dient and resilient backpropagation algorithms, have been

compared for transformer fault classification. Levenberg–

Marquardt algorithm was designed to attend second-order

training speed without calculating Hessian Matrix. It has

been proved that Levenberg–Marquardt training algorithm

provides superior performance than conventional Gradient

Descent algorithm. In conjugate Gradient Descent algo-

rithm, the step size is adjusted in every iteration. In resil-

ient backpropagation algorithm, only the sign of the

derivative is used to update the weight. The magnitude of

the derivative has no effect on the weight update [33].

Five key gas ratios are considered as input to the neural

network, and six output codes are treated as the output of

the neural network. ANN of (5 9 18 9 6) is designed, and

backpropagation algorithm is used to train the neural net-

work. The dataset is divided into two categories such as

training set (50 %) and testing set (50 %). The network

parameters for backpropagation algorithm include the

following.

Gradient = 9.29 9 10-6, l = 1 9 10-6, learning

rate = 0.02, momentum factor = 0.8, number of neuron in

hidden layer = 18 and tolerance = 0.005.

Figure 3 shows the error and epoch graph for different

backpropagation learning algorithms. This figure gives a

plot between the error value, i.e., the difference between

the desired output and actual output, and the number of

iterations it takes to reach to minimum error. From this

figure, it is clear that Levenberg–Marquadt algorithm takes

less number of iterations to converge to the required tol-

erance level. Figure 4 shows the regression (R) plot of

different learning algorithms. It is plotted to measure the

correlation between outputs and targets. An R value of one

means a close relationship, zero a random relationship. The

Regression Plot drawn in this figure shows that the value of

R is closest to one indicating that output of the training

network is quite close to the targets, when the dataset was

trained with Levenberg–Marquardt.

There are some drawbacks of backpropagation training

algorithm. It is too slow for practical applications,

especially when too many hidden layers are employed.

An appropriate selection of training parameters in the

backpropagation algorithm is difficult and purely based

on trial and error. There are many learning algorithms or

modifications of the backpropagation algorithm in the

literature but none of these methods are able to com-

pletely solve the problems associated with the back-

propagation algorithm [34]. To overcome these

drawbacks of backpropagation algorithms, a new neural

network called PNN classifier is used in this article. In

1990, Specht introduced PNN architecture as a three-

layer feedforward neural network architecture. The layers

in PNN are input layer, pattern layer and summation

layer. PNN is the neural network implementation of

Parzen window kernel discrimination analysis. PNN is

implemented using probabilistic model. Unlike back-

propagation algorithm, it is bound to converge. No

learning process is required for PNN, and there is no

need to set weight [35, 36].

Parzen’s windowing estimation is given by

uki xð Þ ¼ 1

2pð Þd=2rd

Xm

i¼1

exp � x� xkið ÞT x� xkið Þ
2r2

" #

ð1Þ

Output of pattern layer is calculated as

Table 4 Confusion Matrix of Backpropagation Neural Network

showing fault classification results of different algorithms

Algorithms Fault Type PD D1 D2 T1 T2 T3

GD PD 89 0 11 0 0 0

LM 100 0 11 0 0 0

CGD 100 0 0 0 0 0

RA 100 0 0 1 1 0

GD D1 0 99 0 0 0 0

LM 0 97 0 0 0 0

CGD 0 84 0 4 0 0

RA 0 95 0 0 0 0

GD D2 0 0 75 0 2 0

LM 0 0 98 2 4 0

CGD 9 0 85 0 1 1

RA 0 0 98 2 4 0

GD T1 0 0 2 95 0 0

LM 0 0 0 95 0 0

CGD 2 0 0 98 0 0

RA 0 0 0 92 0 0

GD T2 0 0 2 1 87 0

LM 0 0 0 0 90 1

CGD 0 0 1 0 95 0

RA 0 0 0 0 88 1

GD T3 0 2 0 0 0 88

LM 0 0 0 0 1 88

CGD 1 0 0 0 0 99

RA 0 0 0 0 1 85

GD Gradient Descent Algorithm, LM Levenberg–Marquardt algo-

rithm, CGD Gradient Descent Scaled Conjugate RA resilient, PD

partial discharge, D1 = Low-energy discharge, D2 = High-energy

discharge, T1 = Thermal faults \ 300 �C, T2 = Thermal

faults \ 700 �C, T3 = Thermal faults [ 700 �C
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uki xð Þ ¼ 1

2pð Þd=2rd
exp � x� xkið ÞT x� xkið Þ

2r2

" #

ð2Þ

where xki is the neuron vector, r is the smoothing param-

eter, d is the dimension of pattern vector x, uki is the output

of pattern layer. T is the transpose of the distance between

the neuron vector xki and pattern vector x.

Output of summation layer for kth neuron is

pk xð Þ ¼ 1

2pð Þd=2rdNi

exp � x� xkið ÞT x� xkið Þ
2r2

" #

ð3Þ

Here, Ni is total number of samples in kth neuron.

The output of decision layer is

c xð Þ ¼ arg max pk xð Þf g k ¼ 1; 2; 3; . . .;m ð4Þ

m denotes the number of classes in training sample; c(x) is

estimated class of the pattern x.

The accuracy of different BPN learning algorithms has

been checked using confusion matrix. Each column of the

matrix represents the instances in a predicted class, while

each row represents the instances in an actual class. The

name stems from the fact that it makes it easy to see, if the

system is confusing two classes (i.e., commonly mislabel-

ling one as another).

Table 4 shows the confusion matrix for Backpropaga-

tion Neural Network and its various learning algorithms.

Accuracy percentage, to classify different transformer fault

types of the fault classification algorithms, i.e., Gradient

Descent Algorithm, Levenberg–Marquardt algorithm,

Gradient Descent Scaled Conjugate and Resilient, is 88.3,

93.6, 93.5 and 93 %, respectively. The accuracy percentage

is higher, when LM method is used to classify different

fault types of power transformer. Table 5 shows the con-

fusion matrix for PNN and accuracy of fault classification

using PNN comes out to be 95.6 %, which is an improved

accuracy than backpropagation learning algorithms. To

evaluate the performance of the classifiers to classify six

fault classes, PNN is compared with different learning

algorithms of backpropagation algorithm. The neural net-

work is trained for 600 samples of training data (100

samples of each class). The network is further tested with

600 samples (100 samples of each class). Table 6 gives a

comparative analysis of accuracy and regression among

different learning algorithms of backpropagation method

and PNN. From this table, it is seen that PNN is a better

classifier than others. The Table 7 gives the classification

results and compares the actual fault with the simulated

fault, and from the comparison, it is concluded that PNN is

a better classifier.

5 Conclusions

A comparative study of backpropagation algorithm and

Probabilistic Neural Network algorithms has been carried

out, to classify transformer faults, using these two algo-

rithms. Highest accuracies are 95.6 % for Probabilistic

Table 5 Confusion matrix of Probabilistic Neural Network showing

fault classification results

Fault type PD D1 D2 T1 T2 T3

Partial discharge (PD) 89 0 0 0 0 0

Low-energy discharge (D1) 0 99 0 0 0 0

High-energy discharge (D2) 0 0 98 0 0 0

Thermal faults \ 300 �C (T1) 0 0 0 95 0 0

Thermal faults \ 700 �C (T2) 0 2 0 0 96 0

Thermal faults [ 700 �C (T3) 1 0 0 0 0 97

Table 6 Comparison of regression and accuracy amongst different

intelligent methods

Methods Regression

(R)

Training recognition

accuracy (%)

Gradient Descent 0.98128 88.3

Levenberg–Marquardt

method (LM method)

0.98232 93.6

Conjugate Gradient 0.97905 93.5

Resilient BPN 0.97544 93

PNN 0.9875 95.6

Table 7 Comparison of the classification results with the actual faults

Sample no. H2 CH4 C2H6 C2H4 C2H2 Actual fault BPN PNN

GD LM CGD RA

1 336 419 105 1,074 21 High-temp. overheat 9 H 9 H H

2 160 130 33 96 0 Low-temp. overheat 9 H H 9 H

3 57 77 58 21 0 Low-temp. overheat H 9 H H H

4 565 93 34 47 0 Partial discharge 9 H 9 H H

5 650 53 34 20 0 Partial discharge H H 9 9 9

BPN Backpropagation Neural Network, PNN Probabilistic Neural Network, GD Gradient Descent Algorithm, LM Levenberg–Marquardt

algorithm, CGD Gradient Descent Scaled Conjugate, RA resilient
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Neural Network classifier and 93.6 % for Backpropagation

Network classifier (Levenberg–Marquardt method). The

findings show that Probabilistic Neural Network classifier

outperforms the Backpropagation Network classifier. The

proposed technique (Probabilistic Neural Network classi-

fier) is capable of identifying the faults even if the dis-

solved gas ratio data lie outside the specified ranges defined

by conventional ratio methods. From simulation point of

view, early convergence, no learning process and no need

to set weight are the added advantages, which make

Probabilistic Neural Network a very useful fault classifi-

cation tool for power transformers.
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