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Abstract The Muskingum model is the most widely used

and efficient method for flood routing in hydrologic engi-

neering; however, the applications of this model still suffer

from a lack of an efficient method for parameter estima-

tion. Thus, in this paper, we present a hybrid particle

swarm optimization (HPSO) to estimate the Muskingum

model parameters by employing PSO hybridized with

Nelder–Mead simplex method. The HPSO algorithm does

not require initial values for each parameter, which helps to

avoid the subjective estimation usually found in traditional

estimation methods and to decrease the computation for

global optimum search of the parameter values. We have

carried out a set of simulation experiments to test the

proposed model when applied to a Muskingum model, and

we compared the results with eight superior methods. The

results show that our scheme can improve the search

accuracy and the convergence speed of Muskingum model

for flood routing; that is, it has higher precision and faster

convergence compared with other techniques.

Keywords Particle swarm optimization � Nelder–Mead

simplex method � Muskingum model � Hybrid algorithm �
Parameter estimation

1 Introduction

Flood routing is a fundamental step in disaster manage-

ments; thus, we carry out intensive research in this area and

we figure out that flood routing procedures can be classified

into two types: hydrologic methods and hydraulic ones.

Hydrologic methods employ the basic principle of conti-

nuity and the relationship between the discharge and the

temporary storage dedicated for the excess volumes of

water during the flooding periods. On the other hand,

hydraulic methods employ approximate solutions for

gradually varied and unsteady flow in open channels, based

on either the convection-diffusion equations or the one-

dimensional Saint-Venant equations.

Compared with hydrologic techniques, the hydraulic

methods usually present a more accurate description of the

flood wave profile, whereas these methods are restricted to

particular applications because of their higher requirements

for computing technologies. In fact, the hydrologic routing

approaches are relatively easy to execute and give fairly

precise results. Among all the hydrologic models used for

flood routing, the Muskingum model is the most widely

used in view of its simplicity.

Muskingum model was designed for the first time by

McCarthy for flood control and management in the Mus-

kingum River, Ohio. According to a large group of water
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resources engineers, the Muskingum model is a very

valuable tool for flood forecasting and disaster manage-

ment. But they indicate that the most difficult task is to

estimate parameters of employing the Muskingum model

because these parameters can not be graphically derived

from historical inflow or outflow hydrography.

In the past years, some researchers adopted many opti-

mization methods to optimize the parameters of the Mus-

kingum model. In 1997, Mohan [1] used genetic algorithm

to estimate these parameters and verified its performance in

comparison with another method proposed by Yoon and

Padmanabhan [2]. After a while, Geem [3] introduced the

Broydene-Fletchere-Goldfarbe-Shanno (BFGS) method,

which searches the solution area based on gradients to

estimate the Muskingum parameters. Later, another

remarkable approach was proposed by Chen [4] where he

applied Gray-encoded accelerating genetic algorithm

(GAGA) to optimize these parameters. In 2009, Chu [5]

applied PSO to estimate the parameters from another per-

spective. Afterward, Luo [6] utilized an immune clonal

selection algorithm (ICSA) for the same task. In 2011,

Barati [7] used Nelder–Mead simplex method (NMSM) to

estimate these parameters. At the same time, Xu et al. [8]

adopted differential evolution to estimate these parameters.

BFGS and NMSM belong to local optimization algorithms,

while the rest ones of the aforementioned methods belong

to global optimization algorithms.

PSO is a swarm intelligence algorithm based on the

imitation of social interaction and creatures’ communica-

tion such as bird flocks and fish schools [9]. PSO shares

many similarities with swarm intelligence optimization

algorithms and has been proved to be an effective

approach, which can tackle a variety of difficult optimi-

zation problems. In [10], an improved cooperative PSO

was applied to train the feedforward neural network. In

2012, Ghosh [11] proposed an inertia-adaptive PSO with

particle mobility factor to optimize the global optimization

problems. Meanwhile, Wang [12] used a converging linear

PSO to train support vector data descriptors. Then, Jia [13]

combined multi-objective PSO with Pareto-optimal solu-

tions to solve the batch processes problem. Another

important application for PSO was proposed by Lee [14]

using a hybrid GA-PSO for network decomposition. In

addition, PSO was applied to the optimization of fuzzy

controllers [15]. Recently, Altun [16] solved the problem

of cost optimization of mixed feeds by a PSO.

In recent years, there are many excellent variants of PSO

have been designed, e.g., comprehensive learning PSO

[17], DMS-PSO [18–20], adaptive PSO [27], orthogonal

learning PSO [28], PSO with an aging leader and chal-

lengers [29], cooperatively coevolving PSO [30], distance-

based locally informed PSO [31], quantum-based PSO

[32], and parallel hybrid PSO [33]. In this paper, we

combine the PSO with the NMSM to optimize the

parameters of the Muskingum model.

The remainder of our work is organized as follows. We

discuss the background of Muskingum models in Sect. 2.

We then describe the main principles of the PSO and the

NMSM and present a hybrid PSO in Sect. 3. Section 4

consists of experimental results and analyses. Section 5

provides the conclusions of the paper.

2 Muskingum models

In this section, we introduce the Muskingum model in

order to describe the flood routing. Using the continuity

equations [4], we introduce the flow conditions with two

different locations on the same river as follows:

dW

dt
¼ I � Q; ð1Þ

W ¼ kðxI þ ð1� xÞQÞ; ð2Þ

In the two equations above, I denotes the inflow discharges

and Q denotes the outflow discharges, W denotes the

storage volume, k and x represent the model parameters,

and t denotes the time.

To forecast a flood wave, we have deduced the fol-

lowing routing equation Eq. (3) by combining the Eqs. (1)

and (2):

QðiÞ ¼ c1IðiÞ þ c2Iði� 1Þ þ c3Qði� 1Þ; i ¼ 2; � � � ; n;
ð3Þ

where IðiÞ and QðiÞ describe the observed inflow discharge

and the observed outflow discharge, respectively, at a time

interval ti, n is the maximum time point in all time; and c1,

c2, and c3 are constant values and must satisfy the fol-

lowing three equations [34]:

c1 ¼
0:5Dt � kx

k � kxþ 0:5Dt
; ð4Þ

c2 ¼
0:5Dt þ kx

k � kxþ 0:5Dt
; ð5Þ

c3 ¼
k � kx� 0:5Dt

k � kxþ 0:5Dt
; ð6Þ

where Dt is the time step.

From Eqs. (4–6), we can obtain Eqs. (7) and (8):

k ¼ c2 þ c3

c1 þ c2

Dt; ð7Þ

x ¼ c1 þ c2

2ðc2 þ c3Þ
þ c1

c1 � 1
; ð8Þ

We apply the following fitness function so as to estimate

these parameters efficiently,
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min f ðk; xÞ ¼
Xn�1

i¼1

jðkx� 0:5DtÞIðiþ 1Þ � ðkxþ 0:5DtÞIðiÞ

þ Qðiþ 1Þ þ ½�kð1� xÞ þ 0:5Dt�QðiÞj
ð9Þ

3 Hybrid particle swarm optimization algorithm

In this section, first, we introduce the standard PSO algo-

rithm, followed by an explanation of the NMSM. Finally,

our new hybrid PSO (HPSO) algorithm is presented.

3.1 Particle swarm optimization algorithm

3.1.1 The fundamental principle of PSO

Based on its unique search mechanism, PSO algorithm

randomly initializes the particle swarm within the feasible

solution space and velocity space in the first place. Put in

another way, the initial position and velocity of the particle

can be determined. The position can be subsequently

adopted as to characterize the problem solution. For

instance, the position and velocity of the particle in the i

place within a d-dimensional search space can be expressed

as Xi ¼ ½xi;1; xi;2; � � � ; xi;d� and Vi ¼ ½vi;1; vi;2; � � � ; vi;d�,
respectively. The best position of each particle at the time t,

i.e., (pbest), Pi ¼ ½pi;1; pi;2; � � � ; pi;d�, and the best known

position of swarm, i.e., (gbest)Pg, can be ascertained

through evaluating the objective function of each particle.

The velocity and position of each particle can be updated

using the following equations:

vi;jðt þ 1Þ ¼ xvi;iðtÞ þ c1r1½pi;j � xi;jðtÞ� þ c2r2½pg;j � xi;jðtÞ�
ð10Þ

xi;jðt þ 1Þ ¼ xi;jðtÞ þ vi;jðt þ 1Þ; j ¼ 1; 2; � � � ; d ð11Þ

Here, x is the inertia weight factor, x is a linearly

decreasing, which changes from 0.9 to 0.4. c1 and c2 are

positive acceleration constants, n1 and n2 refer to random

numbers uniformly distributed between 0 and 1. In addi-

tion, the migration of particles can be appropriately limited

if we make some settings to the particles? velocity range,

i.e., ½vmin; vmax� and their position interval, i.e., ½xmin; xmax�.
As can be seen from the above equations, updating the

velocity of particles has to go through three stages.

Firstly, the effect of the current velocity of the particle

gets reflected. By taking the current status of particles into

consideration, the algorithm can strike a balance between

its global and local search ability;

Secondly, the effect of the cognition modal can be

checked. In actuality, this is the very impact of the memory

of the particle itself, which enables the particle to do global

search in order to avoid local optimum;

Thirdly, the effect of the social modal can be seen. In

other words, the impact of the swarm information dem-

onstrates the information sharing among particles. Under

the combined effects of these three stages, the particle is

able to use the information sharing mechanism according

to historical experience and constantly adjusts its position

in order to find a better solution [35].

The above-mentioned way of updating particle posi-

tions in every generation in PSO algorithm is described

in Fig. 1.

PSO algorithm has two versions, namely the global

version and the local version. In the global version, the two

extreme values of particle tracking are the best location of

the particle and that of the whole population. In the local

version, the particle only tracks its own optimal position.

Instead of tracking the best position of the population, the

particle tracks the best location of all the particles in the

topology field, whose equation of updating its velocity can

be seen as follows:

vi;jðt þ 1Þ ¼ wvi;jðtÞ þ c1r1½pi;j � xi;jðtÞ� þ c2r2½pl;j � xi;jðtÞ�
ð12Þ

Here, Pl ¼ ½pl;1; pl;2; . . .; pl;d� is the best location in the local

field. A global version PSO algorithm is adopted in the

present paper.

3.1.2 The flow of PSO algorithm

The process of basic PSO algorithm is as follows.

Step 1 Initialize randomly the position and velocity of each

particle in the population. If the search space is d-

dimensional, each particle contains d variables.

Step 2 Evaluate all the particles in the population and

store their current positions and fitness values in

their pbest. The positions and fitness values of

individuals with optimal fitness values in pbest

stored in gbest.

+

+

Fig. 1 The process of position update with one particle
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Step 3 Update the position and velocity of each particle

in accordance with Eqs. (10) and (11),

respectively.

Step 4 Evaluate all the particles in the population.

Step 5 Compare the current fitness value of each particle

in the whole population with the fitness value of

its pbest. If the current fitness value is superior,

use the particles current position and fitness value

to update its pbest.

Step 6 Compare the fitness values of all the and pbest,

gbest and update gbest.

Step 7 If the termination criterion is met, output gbest

and the fitness value. Meanwhile, stop updating

the algorithm. Otherwise, go to Step 3.

3.1.3 Features of PSO algorithm

To sum up, PSO algorithm has the following advantages.

1. The algorithm has wide universality and does not rely

on the information of the problem.

2. It uses swarm search and has memory capacity, which

can retain the optimal information of local individuals

and the global population.

3. Its principle is simple and easy to implement.

4. Using cooperative search, it utilizes the local informa-

tion of individuals and global information of swarm to

guide the search.

There is no denying that PSO algorithm has some short-

comings, to be more detailed,

1. Its local search ability is poor with low accuracy.

2. The algorithm cannot guarantee that the global optimal

solution can be searched, which is highly likely to fall

into local optimum.

3. The performance of the searching algorithm is, to some

extent, dependent on the parameters.

4. The theory behind the algorithm is yet to be improved,

in particular, the principle guiding the algorithm design

is missing [36].

3.2 Nelder–Mead simplex method

3.2.1 Basic principle of NMSM

Nelder–Mead simplex method (NMSM),also known as

variable polyhedron search method, is a traditional direct

unconstrained optimization algorithm. The advantages of

NMSM lie in its low computational complexity, fast search

speed, and strong local search ability [37]. The basic ideas

of NMSM are as follows: In the N-dimensional space, a

polyhedron is composed of N þ 1 vertexes. Then, the fit-

ness value of each vertex is calculated, and therefore, the

vertexes with the best value, the sub-optimal value, and the

worst value can be identified. Furthermore, through strat-

egies of reflection, expansion, shrink, and contraction, a

vertex with a better value gets found to replace the worst

vertex. Ultimately, a new polyhedron can be generated. By

repeating this iteration, an optimal or close-to-optimal

solution will be found. NMSM starts with a randomly

generated initial simplex and takes the following steps to

constantly change the shape of simplex: First, find the

vertex with the maximum value of the objective function

W , the vertex with the minimum value B, and the one with

the second largest value Nw, respectively; Second, calculate

the values of C, the centroid of vertexes which totals D,

except for Vertex W , and further the value of reflection

point of C on the part of W . If the objective function value

at the location of R is smaller than that located at B, one

outward expansion in the same direction needs to be exe-

cuted; otherwise, if fR is greater than the function value of

Nw, execute one inward contraction in the direction

accordingly. When detecting the trough, the method exe-

cutes one inward contraction in all directions. This can help

the whole simplex get close to the lowest point and proceed

to the next iteration [39].

3.2.2 Flow of NMSM

The NMSM [38] was proposed by John Nelder and Roger

Mead (1965) to obtain a minimization of a value for an

fitness function in a many dimensional space. NMSM was

applied for solving the optimization problems since it can

obtain an accurate value for fitness functions. Let f ðxÞ
denotes the fitness function, and xi denotes the group of

points in the current simplex, i 2 f1; . . .;N þ 1g. NMSM

procedure has the following steps:

Step 1:

(Order)

The inequality group

f ðx1Þ� f ðx2Þ� � � � � f ðxiÞ� � � � � f ðxNþ1Þ
must be satisfied for the N þ 1 vertices.

Step 2:

(Reflect)

First, calculate the reflection point xR of the

simplex by xR ¼ xþ aðx� xNþ1Þ; ða [ 0Þ,

here, x ¼ 1
N

PN

i¼1

is the centroid of the n best

points then compute fR ¼ f ðxRÞ. If

f1� fR� fN , accept the reflected point xR

and end the iteration.

Step 3:

(Expand)

If fR\f1, compute the expansion point xE of

the simplex by xE ¼ xþ bðxR � xÞ,(b [ 1

and b [ a). Calculate fE ¼ f ðxEÞ. If fE\fR,

accept xE and end the iteration; if fE� fR,

accept xR and end the iteration.
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Step 4:

(Contract)

If fR� fN , execute a contraction operation

between x and the better of xR and xnþ1. a.

Outside contraction: If fN � fR\fnþ1,

compute the outside contraction point xC by

xC ¼ xþ cðxR � xÞ, (0\c\1). Calculate

fC ¼ f ðxCÞ. If fC\fR, accept xC and end the

iteration; otherwise, continue with Step 5. b.

Inside contraction: If fR� fNþ1, compute the

inside contraction point xCC by

xCC ¼ x� cðx� xNþ1Þ. Calculate

fCC ¼ f ðxCCÞ. If fCC\fR, accept xCC and

end the iteration; or else continue with Step 5.

Step 5:

(Shrink)

Compute the N points by

vi ¼ x1 þ rðxi � x1Þ(0\r\1). Also

calculate f ðviÞ, i ¼ 2; � � � ;N þ 1. The

unordered vertices of the simplex at the

next iteration comprise of x1; v2; � � � ; vNþ1.

Furthermore, go to Step 1.

3.3 Hybrid particle swarm optimization (HPSO)

algorithm

3.3.1 Feasibility analysis of hybrid algorithm

1. Organic integration of the mechanism: NMSM is a

deterministic method for optimization while PSO is an

algorithm based on random distribution. The organic

integration of NMSM and PSO not only enriches the

searching behavior in the optimization process, but

also improves the search ability and efficiency of

HPSO in a bid to obtain high-quality solutions [37].

2. Good combination of operation: compared with other

swarm intelligence algorithms, HPSO is higher in

search efficiency and faster in outlining the shape of

the objective function, which provides a good initial

point for NMSM and gives full play to the powerful

local search ability of NMSM. Thereby, NMSM and

PSO can be organically combined.

3. Wide applicability: PSO and NMSM do not require

derivation or other auxiliary information. The embed-

ding of NMSM in PSO does not limit but instead,

enhances the applicability of HPSO algorithm.

4. Characteristics of parallel computing: Both PSO and

NMSM have the feature of parallel computing; hence,

it is very suitable to combine the two methods.

3.3.2 Hybrid strategy

Based on PSO process, NMSM that constitutes of HPSO

algorithm is introduced to improve the local fine-tuning of

algorithms and increase PSO algorithm’s probability to

converge the global optimal solution. In each iteration,

PSO algorithm is first used to perform the global optimi-

zation, followed by simplex method to conduct the local

search of some elite particles among the particle swarm in

the domain featuring good solutions find out a better

solution [39]. Specifically,

1. PSO algorithm: as PSO algorithm has the powerful

global search ability, it is easy to for the particle swarm

to search the surrounding area with the global optimal

solution after PSO operation. Based on this, NMSM is

utilized to perform the local search so as to obtain

optimal solution with higher precision.

2. NMSM: P (population size) swarm particles optimized

by PSO in each iteration are sorted according to their

fitness value. The first S selected particles with the best

fitness value constitute the NMSM graphics with S

vertexes. ðS� 1Þ vertexes X1;X2; � � � ;XS�1 with the

best response get selected from S vertexes, and the

centroid of S� 1 vertexes Xc is calculated. The rest

vertexes Xs pass through the centroid Xc: X
0
S scalability

mapping generates X vertexes to constitute a new

NMSM graphics. S new particles are generated with

the repeated method above. Fitness value of each

updated particle is calculated, from which particles

with the best response is selected to replace the best

individuals in the original swarm, and constitute the

next generation with the rest individuals in the original

swarm. The elite individuals in the population, after

repeated iterations with the simplex method, find out

an approximate optimal position. In addition, the

search accuracy of the algorithm and the probability

to find out the optimal solution sooner can be

increased. In general, S , the number of individuals,

should not be too large. The ratio of S and ðS=PÞ
between 10 % and 20 % is appropriate. Due to the fast

convergence speed of PSO in the early evolution, the

NMSM with small probability is conducted for local

search to find out the optimal solution, in order to

lower the amount of calculation and improve the

computational efficiency. In the late evolution, when

swarm enters the development stage of the local

search, the NMSM optimization search with large

probability is adopted. Following this idea, an adaptive

strategy model based on the evolution stages is given

in the following section [37]. The evolutionary process

is divided into three stages:

The first stage: s 2 ½0; T1� : T1 ¼ aT

The second stage:s 2 ½T1; T2� : T2 ¼ ð1� aÞT
The third stage:s 2 ½T2; T �
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T is the maximum evolution algebra, s is evolution

algebra, and the value of a is usually set as 0.382. p, the

probability of NMSM used in each stage, can be seen in

Table 1.

3.3.3 Characteristics of hybrid algorithm

Based on the framework of PSO, hybrid algorithm intro-

duces the NMSM to perform repeated simplex search and

iteration on some elite particles in the swarm. Character-

istics of this method are as follows:

1. Due to its own defects of the inherent mode, every

search algorithm with single structure and mechanism

is generally difficult to realize highly efficient optimi-

zation, and so is PSO algorithm. HPSO algorithm is

better in optimization performance than single PSO

algorithm and another optimization method.

2. PSO, an algorithm based on random search, has a

strong ability of global optimization but gradually slow

convergence speed in later algorithm stage. NMSM, a

deterministic and descent method, has a superior local

search ability. Using the polyhedral reflection, expan-

sion, compression, and other properties, it is able to

quickly find out the local optimal solution. The two

algorithms complement each other, and therefore, their

combination is conducive to the improvement of the

global and local search ability and efficiency.

3. NMSM is simple featuring low complexity, and fast

speed [37]. Probability in stage is used to perform

simplex iteration and update on some elite particles in

the swarm, with a limited number of particles

involved. Therefore, the hybrid algorithm combining

NMSM algorithm and PSO algorithm does not require

much computation.

3.3.4 Flow of HPSO

Based on the previous work, the process of HPSO is

described as follows:

Step 1 assign values parameters of HPSO, including

population size of particle swarm P,

compressibility factor K, acceleration factor

u1;u2, probability P of NMSM, and the

maximum algebra T required for evolution

computation;

Step 2 initialize population, generate initial velocity and

position of particles, and calculate particles’

fitness value according to the evaluation function;

Step 3 set the present position of particle as pbest, and

the best position of the initial group as gbest;

Step 4 update the velocity and position of each particle

and evaluate the particles fitness value;

Step 5 sort the particle swarm according to the fitness

value; for the first S elite particles, use NMSM

with the possibility P to perform repeated

iterations and updates on the first S selected

excellent individuals; calculate the fitness value

of each updated particle; replace the best

individuals of the original swarm with the

particle with the best response, and ultimately,

constitute the next negation with the remaining

individuals of the original group;

Step 6 compare the fitness value of new individuals and

their pbest fitness value; if the fitness value of the

particle is better than pbest fitness value, set pbest

as the new position;

Step 7 compare the fitness value of new individuals with

that of gbest; if the fitness value of the particle is

better than gbest fitness value, set gbestas the

new position;

Step 8 if the evolution computation of the particle

swarm achieves the allowed maximum algebra

T or the evaluation value is less than the set

accuracy, output the optimal result gbest and

iteration ends. Otherwise, if s ¼ sþ 1, search

continues from step 4.

From the above, we can see that PSO searches the

approximate space of the optimal solution located, then it

gives the solution to NMSM for further depth search. The

roles of the two algorithms are different; the most impor-

tant role of HPSO is to strengthen the division and the

cooperation through the merging and the recombination

between PSO and NMSM [39]. In a word, PSO performs

an exploration while using NMSM for an exploitation to

make HPSO search the optimal solution very precisely and

faster.

4 Experiments and result analyses

4.1 simulation results of real example

The Muskingum model investigated in our paper is from

Ref. [40], where the model was in the south canal between

Chenggou river and Linqing river in China, and the time

interval Dt = 12 h. The detailed information can be found

in Ref. [41].

Table 1 Probability called of NMSM in different stages

s ½0;T1� ðT1;T2� ðT2;T �
P 0.05 0.10 0.15

1790 Neural Comput & Applic (2014) 25:1785–1799
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The parameters k and x are required in this model, and

the significance of these parameters can be clearly seen in

Eqs. (4–6).

The parameters k and x play an important role in the

Muskingum model. In our study, k and x are optimized

with respect to the same criterion, termed the sum of the

least residual absolute value, and the form of the fitness

function is shown in Eq. (9).

To facilitate the experiments, we used matlab2012a to

program a m-file for implementing the algorithms on a PC

with a 32-bit windows 7 operating system, a 2GB RAM,

and a CPU of Pentium Dual-core with 2.7 GHz. The

standard errors have been measured for 30 independent

runs. For all the intelligence algorithms, the two parameters

are set as follows: population size Np ¼ 20, the maximum

number of iterations MaxIT = 1,000. These parameters of

HPSO, CLPSO, DMS-PSO, and PSO used are set the same:

the acceleration constants c1 ¼ 2:1, c2 ¼ 2:1; the inertia

weight factor x is a linearly decreasing, which changes

from 0.9 to 0.4. These parameters of SaDE, DPSDE, and

DE used are set the same: constriction factor Fc ¼ 0:5,

crossover rate Pc ¼ 0:6, These parameters of GAGA,

Fig. 2 The comparison of

fitness values between HPSO

and other methods

Table 2 A comparison of flood

routing between different

methods

Method EN k x AAE ARE (%) Fitness SD

HPSO 2,000 12.7800 -0.0930 6.8447 2.0151 185.7115 6.5320E202

CLPSO 10,800 12.7889 -0.0681 7.1628 2.0187 184.4075 3.4987E-01

DMS-PSO 9,200 13.2508 -0.5244 7.0358 2.0460 209.6318 1.0773E?01

PSO 12,000 12.9801 -0.6514 7.2463 2.1093 214.8514 1.2523E?01

SaDE 1,400 13.4552 -0.0511 7.2302 2.1375 187.0868 3.0984E?00

EPSDE 4,200 14.1001 -0.3509 7.0983 2.0761 203.5440 1.5956E?01

DE 5,000 12.8011 -0.5007 7.1317 2.0734 206.0293 1.2925E?01

GAGA 31,200 13.2104 -0.9048 7.3471 2.1275 228.1793 4.0085E?01

GGA 33,600 12.9876 -0.8612 7.2919 2.1136 224.3241 1.7916E?01

BGA 43,800 14.7085 -0.6011 7.2390 2.1084 220.7325 1.0453E?01

NMSM – 12.4569 -0.1984 7.0001 2.0421 192.0793 6.3793E?00

NPM – 12.4471 -0.2616 7.1021 2.0811 194.7413 3.2002E?00

LRSM – 11.7916 -0.3520 7.4119 2.1941 202.5527 1.0015E?01

TM – 12.0000 0.1000 8.7407 2.6305 214.3099 3.3806E?01
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GGA, and BGA used are set the same: selection rate is

from Roulette, crossover rate Pc ¼ 0:8, mutation rate

Pm ¼ 0:05.

We made a comparison between using our new pro-

posed model HPSO and another nine evolution algorithms

PSO [5], CLPSO [17], DMS-PSO [20], EPSDE [21, 22],

SaDE [23, 24], DE [8], GAGA [4], GGA [25] and BGA

[26], and the comparison results show that: for HPSO, the

average absolute error (AAE) is 6.8447, and the average

relative error (ARE) is 2.0151. For CLPSO, DMS-PSO,

and PSO, the AAE is 7.1628, 7.0358, 7.2463, and the ARE

is 2.0187, 2.0460, 2.1093, respectively. For SaDE, EDSDE,

and DE, the AAE is 7.2302, 7.0983, 7.1317, and the ARE

is 2.1375, 2.0761, 2.0734, respectively. For GAGA, GGA,

and BGA, the AAE is 7.3471, 7.2919, 7.2390, and the ARE

is 2.1275, 2.1136, 2.1084, respectively. The experimental

data for the model are listed in Table 1 in detail. These

results proved that HPSO has higher precision compared

with the above three different algorithms.

On the other hand, we also perform the same test on the

four conventional methods, and the test results are as fol-

lows: for NMSM [7], the AAE is 6.9878, and the ARE is

2.0570. For the nonlinear programming method (NPM)

[42], the AAE is 7.1021, and the ARE is 2.0811. For the

least residual square method (LRSM) [34], the AAE is

7.4119, and the ARE is 2.1941. And for test method (TM)

[34], the AAE is 8.7407, and the ARE is 2.6305. These

results also show that HPSO has higher precision compared

with these conventional methods, such as the NPM, the

LRSM, and the TM (Fig. 2).

It is shown in Tables 2, 3 and Fig. 2, the fitness value f

is 185.7115 for HPSO, it is the second best fitness value

among the 14 methods. The evaluation number (EN) of the

fitness function is 2000; it is the second smallest number in

terms of function evaluation among the 14 methods. From

Fig. 3, we can see that HPSO is second fastest method

among the 14 methods behind SaDE in terms of convergent

speed.

Table 3 Statistic data of description

Method Run Min Mean Max SD

HPSO 30 185.6915 185.7115 185.9915 6.5320E-02

CLPSO 30 184.3140 184.4075 185.7166 3.4987E-01

DMS-PSO 30 185.6318 209.6318 215.6318 1.0773E?01

PSO 30 185.5521 214.8514 246.7514 1.2523E?01

SaDE 30 185.0868 187.0868 193.0868 3.0984E?00

EPSDE 30 185.5440 203.5440 228.5440 1.5956E?01

DE 30 185.0293 206.0293 226.0293 1.2925E?01

GAGA 30 185.1794 228.1793 278.1793 4.0085E?01

GGA 30 185.3251 224.3241 234.3251 1.7916E?01

BGA 30 184.8425 220.7325 230.7226 1.0453E?01

NMSM 30 185.0793 192.0793 203.0793 6.3793E?00

NPM 30 185.1246 194.7413 200.6557 3.2002E?00

LRSM 30 185.5040 202.5527 247.5528 1.0015E?01

TM 30 188.2015 214.3099 330.2966 3.3806E?01

Fig. 3 The comparison of

convergence between HPSO

and other methods
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The experimental results of the HPSO for the example in

the practice are shown in Figs. 2, 3 and Tables 2, 3. In

terms of evaluation number of objective function, SaDE is

the best in 14 methods, HPSO ranked as the second best

method, behind SaDE and ahead of the other methods. In

terms of objective function value, CLPSO is the best in 14

methods, HPSO ranked as the second best method, behind

CLPSO and ahead of the other methods. In terms of error

and standard deviation, HPSO dominating it all the meth-

ods. We can conclude that the results obtained by our

proposed HPSO are satisfactory in terms of precision and

convergence.

Figure 4 gives the measured discharges and calculated

discharges for the Muskingum model by the HPSO for

1960. Figure 5 gives the measured discharges and calcu-

lated ones for the Muskingum model by the HPSO for

1961. Figure 6 gives the measured discharges and calcu-

lated ones for the Muskingum model by the HPSO for

1964.

From Table 2 and Figs. 2, 4, 5, and 6, we can see clearly

that the simulation results obtained with our HPSO are

satisfactory in terms of accuracy. The HPSO has been

proved to be an efficient method to minimize the fitness

function for the Muskingum model.

Tables 4, 5, and 6 show separately the comparisons of

the best corresponding computed outflows obtained from

various techniques such as TM, LRSM, NPM, NMSM,

BGA, GGA, GAGA, DE, EPSDE, SaDE, PSO, DMS-PSO,

CLPSO, and HPSO for 1960, 1961, and 1964. By com-

paring the results from the above three tables, HPSO out-

performs the other algorithms in the three different periods.

As seen in the experimental results, the HPSO ranks as

the first, first, first, second, second, second, respectively,

out of 14 advanced methods in terms of absolute error,

relative error, standard deviation, number of function

evaluation, fitness value, convergent speed. To sum up: the

overall performance of HPSO is very good.

4.2 Statistical results of p value

The Wilcoxon signed rank test was proposed by FWilco-

xon in 1945. When there is concrete numerical value for

the differences between the paired data of two groups, the

signed test only adopts the positive (R [ 0) and negative

(R\0) information. Information of differences in e size is

not used. The Wilcoxon signed ranks test not only takes

into consideration the positive and negative signs but also

the differential size, so it has higher efficiency than the

signed test [44].

The steps of this method are as follows:

Step 1 calculate the di value of every paired data, sort the

di absolute value from small to large, and use the

mean rank if the di value is equal.

Fig. 4 The simulation results of HPSO for 1960 flood routing

Fig. 5 The simulation results of HPSO for 1961 flood routing

Fig. 6 The simulation results of HPSO for 1964 flood routing
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Step 2 recover the positive and negative number after the

numbered rank, gain positive rank sum Rþ and

negative rank sum R�, and select the smaller one

from Rþ and R� as the statistic T value of the

Wilcoxon signed ranks test.

Step 3 calculate p value and draw conclusions.

In this experiment, each algorithm independently runs

30 times. HPSO algorithm is compared with other 13

algorithms, respectively, to test their performance

differences.

In this study, Rþ and R� are defined as follows:

Rþ ¼
X

di [ 0

rankðdiÞ þ
1

2

X

di¼0

rankðdiÞ ð13Þ

R� ¼
X

di\0

rankðdiÞ þ
1

2

X

di¼0

rankðdiÞ ð14Þ

Here, Rþ indicates that the value of HPSO is better than

that of the other algorithm, whereas R� refers to the

opposite scenario; and di ¼ 0 indicates that two algorithms

have the same test results.

P value is the probability of the observation results of

the sample and the more extreme results when the null

hypothesis is true. If the p value is extremely small, it

means that the probability of the conditions when the null

hypothesis is true is very low. If such conditions take place,

we have reason to refuse the null hypothesis according to

the small probability principle. The smaller p value, we

have the more adequate reason to refuse the null hypoth-

esis. In conclusion, the smaller p value, the more signifi-

cant the results are.

In Table 7, while comparing HPSO with CLPSO, we set

the null hypothesis H0 as HPSO better than CLPSO, and

the alternative hypothesis H1 as HPSO not better than

CLPSO. When comparing HPSO with other algorithms,

respectively, the hypothesis is opposite, namely the null

hypothesis H0 indicates that HPSO is not better than the

other algorithm, whereas the alternative hypothesis H1

indicates that HPSO outperforms the other algorithm.

Therefore, one-side test should be used. During the analysis

with SPSS software, the significance value of the accuracy

(one-side) is selected, with 0.05 chosen as the significance

level in this study. According to Table 7, by comparison of

HPSO and CLPSO, p value is far less than 0.05, so we

reject H0 and accept H1 that CLPSO outperforms HPSO.

Comparing HPSO with SaDE, we accept H0, with the

p value higher than 0.05, suggesting that HPSO is not

better than SaDE. While comparing HPSO with the other

11 algorithms, the p value is found far less than 0.05 all the

time, so we accept H1 that HPSO is better than the other 11

algorithms, and the differences are statistically significant.

HPSO is thus proven very effective.

5 Conclusion

In our paper, we have developed a new hybrid PSO

(HPSO) heuristic algorithm so as to estimate the

parameters of the Muskingum model. HPSO has better

possessing capabilities than the GAs and is much easier

to implement. We have conducted intensive experiments

to compare the key performance of our presented algo-

rithm with other superior estimation methods. The HPSO

has the advantage that it does not require assumptions of

the initial values of the model parameters compared with

conventional methods. Furthermore, the results demon-

strate that HPSO can achieve a higher degree of accuracy

and faster convergent speed to estimate the Muskingum

model parameters, which leads to accurate predictions of

outflow and guarantees the effectiveness of outflow

forecasting. It is worth to mention that no derivative is

required by the HPSO method; moreover, HPSO will

produce a better solution via making full use of advan-

tages of HPSO and NMSM. In a word, HPSO is an

effective and feasible parameter estimation method for

Muskingum model, and it can be widely applied in the

field of hydrology and hydraulics.
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Table 7 Results of the Wilcoxon signed ranks test

Comparison Rþ R� p value

HPSO versus CLPSO 0 465 9.31323E-10

HPSO versus DMS-PSO 450 15 1.16415E-07

HPSO versus PSO 459 6 1.21072E-08

HPSO versus SaDE 234 231 0.492127506

HPSO versus EPSDE 399 66 0.000127527

HPSO versus DE 444 21 3.13856E-07

HPSO versus GAGA 387 78 0.000411564

HPSO versus GGA 450 15 1.08033E-07

HPSO versus BGA 420 45 3.72529E-09

HPSO versus HMSM 462 3 1.45854E-05

HPSO versus NPM 459 6 3.72529E-09

HPSO versus LRSM 452 13 1.30385E-08

HPSO versus TM 465 0 9.31323E-10
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