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Abstract The Muskingum model is the most widely used
and efficient method for flood routing in hydrologic engi-
neering; however, the applications of this model still suffer
from a lack of an efficient method for parameter estima-
tion. Thus, in this paper, we present a hybrid particle
swarm optimization (HPSO) to estimate the Muskingum
model parameters by employing PSO hybridized with
Nelder—Mead simplex method. The HPSO algorithm does
not require initial values for each parameter, which helps to
avoid the subjective estimation usually found in traditional
estimation methods and to decrease the computation for
global optimum search of the parameter values. We have
carried out a set of simulation experiments to test the
proposed model when applied to a Muskingum model, and
we compared the results with eight superior methods. The
results show that our scheme can improve the search
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accuracy and the convergence speed of Muskingum model
for flood routing; that is, it has higher precision and faster
convergence compared with other techniques.
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1 Introduction

Flood routing is a fundamental step in disaster manage-
ments; thus, we carry out intensive research in this area and
we figure out that flood routing procedures can be classified
into two types: hydrologic methods and hydraulic ones.
Hydrologic methods employ the basic principle of conti-
nuity and the relationship between the discharge and the
temporary storage dedicated for the excess volumes of
water during the flooding periods. On the other hand,
hydraulic methods employ approximate solutions for
gradually varied and unsteady flow in open channels, based
on either the convection-diffusion equations or the one-
dimensional Saint-Venant equations.

Compared with hydrologic techniques, the hydraulic
methods usually present a more accurate description of the
flood wave profile, whereas these methods are restricted to
particular applications because of their higher requirements
for computing technologies. In fact, the hydrologic routing
approaches are relatively easy to execute and give fairly
precise results. Among all the hydrologic models used for
flood routing, the Muskingum model is the most widely
used in view of its simplicity.

Muskingum model was designed for the first time by
McCarthy for flood control and management in the Mus-
kingum River, Ohio. According to a large group of water
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resources engineers, the Muskingum model is a very
valuable tool for flood forecasting and disaster manage-
ment. But they indicate that the most difficult task is to
estimate parameters of employing the Muskingum model
because these parameters can not be graphically derived
from historical inflow or outflow hydrography.

In the past years, some researchers adopted many opti-
mization methods to optimize the parameters of the Mus-
kingum model. In 1997, Mohan [1] used genetic algorithm
to estimate these parameters and verified its performance in
comparison with another method proposed by Yoon and
Padmanabhan [2]. After a while, Geem [3] introduced the
Broydene-Fletchere-Goldfarbe-Shanno (BFGS) method,
which searches the solution area based on gradients to
estimate the Muskingum parameters. Later, another
remarkable approach was proposed by Chen [4] where he
applied Gray-encoded accelerating genetic algorithm
(GAGA) to optimize these parameters. In 2009, Chu [5]
applied PSO to estimate the parameters from another per-
spective. Afterward, Luo [6] utilized an immune clonal
selection algorithm (ICSA) for the same task. In 2011,
Barati [7] used Nelder-Mead simplex method (NMSM) to
estimate these parameters. At the same time, Xu et al. [§]
adopted differential evolution to estimate these parameters.
BFGS and NMSM belong to local optimization algorithms,
while the rest ones of the aforementioned methods belong
to global optimization algorithms.

PSO is a swarm intelligence algorithm based on the
imitation of social interaction and creatures’ communica-
tion such as bird flocks and fish schools [9]. PSO shares
many similarities with swarm intelligence optimization
algorithms and has been proved to be an effective
approach, which can tackle a variety of difficult optimi-
zation problems. In [10], an improved cooperative PSO
was applied to train the feedforward neural network. In
2012, Ghosh [11] proposed an inertia-adaptive PSO with
particle mobility factor to optimize the global optimization
problems. Meanwhile, Wang [12] used a converging linear
PSO to train support vector data descriptors. Then, Jia [13]
combined multi-objective PSO with Pareto-optimal solu-
tions to solve the batch processes problem. Another
important application for PSO was proposed by Lee [14]
using a hybrid GA-PSO for network decomposition. In
addition, PSO was applied to the optimization of fuzzy
controllers [15]. Recently, Altun [16] solved the problem
of cost optimization of mixed feeds by a PSO.

In recent years, there are many excellent variants of PSO
have been designed, e.g., comprehensive learning PSO
[17], DMS-PSO [18-20], adaptive PSO [27], orthogonal
learning PSO [28], PSO with an aging leader and chal-
lengers [29], cooperatively coevolving PSO [30], distance-
based locally informed PSO [31], quantum-based PSO
[32], and parallel hybrid PSO [33]. In this paper, we

@ Springer

combine the PSO with the NMSM to optimize the
parameters of the Muskingum model.

The remainder of our work is organized as follows. We
discuss the background of Muskingum models in Sect. 2.
We then describe the main principles of the PSO and the
NMSM and present a hybrid PSO in Sect. 3. Section 4
consists of experimental results and analyses. Section 5
provides the conclusions of the paper.

2 Muskingum models

In this section, we introduce the Muskingum model in
order to describe the flood routing. Using the continuity
equations [4], we introduce the flow conditions with two
different locations on the same river as follows:

dw
-2 (1)
W = k(xI + (1 - x)Q), (2)

In the two equations above, I denotes the inflow discharges
and Q denotes the outflow discharges, W denotes the
storage volume, k and x represent the model parameters,
and ¢ denotes the time.

To forecast a flood wave, we have deduced the fol-
lowing routing equation Eq. (3) by combining the Eqgs. (1)
and (2):

0(i)=cll(i)+c(i—1)+c30(i—1), i=2,--,n,
(3)

where I(i) and Q(i) describe the observed inflow discharge
and the observed outflow discharge, respectively, at a time
interval #;, n is the maximum time point in all time; and cy,
¢y, and c3 are constant values and must satisfy the fol-
lowing three equations [34]:

0.54t — kx
= - 4
Tk ket 05410 “)
0.54t + kx
— el 5
Tk kx+ 0541 ®)
k — kx — 0.54¢
— e 6
S Tk — ke + 0541 ©)
where At is the time step.
From Eqgs. (4-6), we can obtain Egs. (7) and (8):
k=2, (7)
c1+
crtc C1
= + s
. 2(C2 + C3) c1—1 (8)

We apply the following fitness function so as to estimate
these parameters efficiently,
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n—1

min f(k,x) =Y |(kx — 0.540)I(i + 1) — (kx + 0.541)I(i)

i=1

F 0>+ 1) + [—k(1 —x) +0.5410()|
9)

3 Hybrid particle swarm optimization algorithm

In this section, first, we introduce the standard PSO algo-
rithm, followed by an explanation of the NMSM. Finally,
our new hybrid PSO (HPSO) algorithm is presented.

3.1 Particle swarm optimization algorithm
3.1.1 The fundamental principle of PSO

Based on its unique search mechanism, PSO algorithm
randomly initializes the particle swarm within the feasible
solution space and velocity space in the first place. Put in
another way, the initial position and velocity of the particle
can be determined. The position can be subsequently
adopted as to characterize the problem solution. For
instance, the position and velocity of the particle in the i
place within a d-dimensional search space can be expressed
as  X; = [xi1, X2, Xig) and  Vy= [vi1,via, 0, vidl,
respectively. The best position of each particle at the time ¢,
ie., (pbest), P;i = [pi1,pi2, - ,Pia), and the best known
position of swarm, i.e., (gbest)P,, can be ascertained
through evaluating the objective function of each particle.
The velocity and position of each particle can be updated
using the following equations:

Vl‘_j(l‘+ 1) = (L)V,‘_’,'(Z) “+c1r b’l}/ *X,‘J‘(l)] + C27'2Ll7gj *Xi‘j(l)]
(10)

xij(t+ 1) =xi;(t) +vijt+1),j=1,2,---.d (11)

Here, w is the inertia weight factor, @ is a linearly
decreasing, which changes from 0.9 to 0.4. ¢; and ¢, are
positive acceleration constants, n; and n, refer to random
numbers uniformly distributed between 0 and 1. In addi-
tion, the migration of particles can be appropriately limited
if we make some settings to the particles? velocity range,
i.e., [Vmin, Vmax) and their position interval, i.e., [Xmin, Xmax)-

As can be seen from the above equations, updating the
velocity of particles has to go through three stages.

Firstly, the effect of the current velocity of the particle
gets reflected. By taking the current status of particles into
consideration, the algorithm can strike a balance between
its global and local search ability;

Secondly, the effect of the cognition modal can be
checked. In actuality, this is the very impact of the memory
of the particle itself, which enables the particle to do global
search in order to avoid local optimum;

Effects of swarm
x,,@t+1)

/
/ O]
Py ® ! A
/
\ v, (t+ D/
\ / Effects of selfmemory
S /
\ 'd
\ /! 7 - _'V,_,-(l)

-
—
- -
- -

X, (t)

Effects of current velocity

Fig. 1 The process of position update with one particle

Thirdly, the effect of the social modal can be seen. In
other words, the impact of the swarm information dem-
onstrates the information sharing among particles. Under
the combined effects of these three stages, the particle is
able to use the information sharing mechanism according
to historical experience and constantly adjusts its position
in order to find a better solution [35].

The above-mentioned way of updating particle posi-
tions in every generation in PSO algorithm is described
in Fig. 1.

PSO algorithm has two versions, namely the global
version and the local version. In the global version, the two
extreme values of particle tracking are the best location of
the particle and that of the whole population. In the local
version, the particle only tracks its own optimal position.
Instead of tracking the best position of the population, the
particle tracks the best location of all the particles in the
topology field, whose equation of updating its velocity can
be seen as follows:

vij(t 4+ 1) = wvi(1) + errilpij — xij(0)] + caralpry — xi(1)]

(12)
Here, P; = [p11,P12; - - -, Pra4] is the best location in the local
field. A global version PSO algorithm is adopted in the
present paper.

3.1.2 The flow of PSO algorithm

The process of basic PSO algorithm is as follows.

Step 1  Initialize randomly the position and velocity of each
particle in the population. If the search space is d-
dimensional, each particle contains d variables.

Step 2 Evaluate all the particles in the population and

store their current positions and fitness values in
their pbest. The positions and fitness values of
individuals with optimal fitness values in pbest
stored in gbest.

@ Springer



1788

Neural Comput & Applic (2014) 25:1785-1799

Step 3 Update the position and velocity of each particle
in accordance with Egs. (10) and (11),
respectively.

Evaluate all the particles in the population.
Compare the current fitness value of each particle
in the whole population with the fitness value of
its pbest. If the current fitness value is superior,
use the particles current position and fitness value
to update its pbest.

Compare the fitness values of all the and pbest,
gbest and update gbest.

If the termination criterion is met, output gbest
and the fitness value. Meanwhile, stop updating
the algorithm. Otherwise, go to Step 3.

Step 4
Step 5

Step 6

Step 7

3.1.3 Features of PSO algorithm

To sum up, PSO algorithm has the following advantages.

1. The algorithm has wide universality and does not rely
on the information of the problem.

2. It uses swarm search and has memory capacity, which
can retain the optimal information of local individuals
and the global population.

3. [Its principle is simple and easy to implement.

4. Using cooperative search, it utilizes the local informa-
tion of individuals and global information of swarm to
guide the search.

There is no denying that PSO algorithm has some short-
comings, to be more detailed,

1. Tts local search ability is poor with low accuracy.

2. The algorithm cannot guarantee that the global optimal
solution can be searched, which is highly likely to fall
into local optimum.

3. The performance of the searching algorithm is, to some
extent, dependent on the parameters.

4. The theory behind the algorithm is yet to be improved,
in particular, the principle guiding the algorithm design
is missing [36].

3.2 Nelder-Mead simplex method
3.2.1 Basic principle of NMSM

Nelder—-Mead simplex method (NMSM),also known as
variable polyhedron search method, is a traditional direct
unconstrained optimization algorithm. The advantages of
NMSM lie in its low computational complexity, fast search
speed, and strong local search ability [37]. The basic ideas
of NMSM are as follows: In the N-dimensional space, a

@ Springer

polyhedron is composed of N + 1 vertexes. Then, the fit-
ness value of each vertex is calculated, and therefore, the
vertexes with the best value, the sub-optimal value, and the
worst value can be identified. Furthermore, through strat-
egies of reflection, expansion, shrink, and contraction, a
vertex with a better value gets found to replace the worst
vertex. Ultimately, a new polyhedron can be generated. By
repeating this iteration, an optimal or close-to-optimal
solution will be found. NMSM starts with a randomly
generated initial simplex and takes the following steps to
constantly change the shape of simplex: First, find the
vertex with the maximum value of the objective function
W, the vertex with the minimum value B, and the one with
the second largest value N,,, respectively; Second, calculate
the values of C, the centroid of vertexes which totals D,
except for Vertex W, and further the value of reflection
point of C on the part of W. If the objective function value
at the location of R is smaller than that located at B, one
outward expansion in the same direction needs to be exe-
cuted; otherwise, if fz is greater than the function value of
N,,, execute one inward contraction in the direction
accordingly. When detecting the trough, the method exe-
cutes one inward contraction in all directions. This can help
the whole simplex get close to the lowest point and proceed
to the next iteration [39].

3.2.2 Flow of NMSM

The NMSM [38] was proposed by John Nelder and Roger
Mead (1965) to obtain a minimization of a value for an
fitness function in a many dimensional space. NMSM was
applied for solving the optimization problems since it can
obtain an accurate value for fitness functions. Let f(x)
denotes the fitness function, and x; denotes the group of
points in the current simplex, i € {1,...,N + 1}. NMSM
procedure has the following steps:

Step 1:  The inequality group

(Order) J) <flr) < - <fla) < - <flavs)
must be satisfied for the N + 1 vertices.
Step 2: First, calculate the reflection point xz of the
(Reflect) simplex by xg =X + a(X — xy41), (> 0),
N
here, x =1 > is the centroid of the n best
i=1
points then compute fr=f(xg). If
f1 <fr <fn, accept the reflected point xg
and end the iteration.
Step 3:  If fr <fi1, compute the expansion point xz of
(Expand) the simplex by xg =X+ fi(xg — X),(f > 1

and f > o). Calculate fr = f(xg). If f£ <[,
accept xg and end the iteration; if fg > fg,
accept xz and end the iteration.
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Step 4:
(Contract)

Step 5:
(Shrink)

If fr >fy, execute a contraction operation
between X and the better of xz and x,.;. a.
Outside  contraction: If fy <fr<fui1,
compute the outside contraction point x¢ by
xc =%+ 7p(xr—%), (0<y<l). Calculate
fo =f(xc). If fc <fr, accept xc and end the
iteration; otherwise, continue with Step 5. b.
Inside contraction: If fg > fy1, compute the
inside  contraction  point  xcc by
Xce =% — (X — xy41)- Calculate
fec =flxce). I fec<fr, accept xcc and
end the iteration; or else continue with Step 5.
Compute the N points by
vi=x1+o(x—x)0<a<l). Also
calculate  f(v;), i=2,---,N+ 1. The
unordered vertices of the simplex at the
next iteration comprise of xi,vy,--
Furthermore, go to Step 1.

*y VN41-

3.3 Hybrid particle swarm optimization (HPSO)

algorithm

3.3.1 Feasibility analysis of hybrid algorithm

1.

Organic integration of the mechanism: NMSM is a
deterministic method for optimization while PSO is an
algorithm based on random distribution. The organic
integration of NMSM and PSO not only enriches the
searching behavior in the optimization process, but
also improves the search ability and efficiency of
HPSO in a bid to obtain high-quality solutions [37].
Good combination of operation: compared with other
swarm intelligence algorithms, HPSO is higher in
search efficiency and faster in outlining the shape of
the objective function, which provides a good initial
point for NMSM and gives full play to the powerful
local search ability of NMSM. Thereby, NMSM and
PSO can be organically combined.

Wide applicability: PSO and NMSM do not require
derivation or other auxiliary information. The embed-
ding of NMSM in PSO does not limit but instead,
enhances the applicability of HPSO algorithm.
Characteristics of parallel computing: Both PSO and
NMSM have the feature of parallel computing; hence,
it is very suitable to combine the two methods.

3.3.2 Hybrid strategy

Based on PSO process, NMSM that constitutes of HPSO
algorithm is introduced to improve the local fine-tuning of

algorithms and increase PSO algorithm’s probability to
converge the global optimal solution. In each iteration,
PSO algorithm is first used to perform the global optimi-
zation, followed by simplex method to conduct the local
search of some elite particles among the particle swarm in
the domain featuring good solutions find out a better
solution [39]. Specifically,

1.

PSO algorithm: as PSO algorithm has the powerful
global search ability, it is easy to for the particle swarm
to search the surrounding area with the global optimal
solution after PSO operation. Based on this, NMSM is
utilized to perform the local search so as to obtain
optimal solution with higher precision.

NMSM: P (population size) swarm particles optimized
by PSO in each iteration are sorted according to their
fitness value. The first S selected particles with the best
fitness value constitute the NMSM graphics with S
vertexes. (S — 1) vertexes X;,Xp,---,Xs—1 with the
best response get selected from S vertexes, and the
centroid of S — 1 vertexes X, is calculated. The rest
vertexes X, pass through the centroid X.. X’S scalability
mapping generates X vertexes to constitute a new
NMSM graphics. S new particles are generated with
the repeated method above. Fitness value of each
updated particle is calculated, from which particles
with the best response is selected to replace the best
individuals in the original swarm, and constitute the
next generation with the rest individuals in the original
swarm. The elite individuals in the population, after
repeated iterations with the simplex method, find out
an approximate optimal position. In addition, the
search accuracy of the algorithm and the probability
to find out the optimal solution sooner can be
increased. In general, S , the number of individuals,
should not be too large. The ratio of S and (S/P)
between 10 % and 20 % is appropriate. Due to the fast
convergence speed of PSO in the early evolution, the
NMSM with small probability is conducted for local
search to find out the optimal solution, in order to
lower the amount of calculation and improve the
computational efficiency. In the late evolution, when
swarm enters the development stage of the local
search, the NMSM optimization search with large
probability is adopted. Following this idea, an adaptive
strategy model based on the evolution stages is given
in the following section [37]. The evolutionary process
is divided into three stages:

The first stage: 7 € [0,71] : T} = aT
The second stage:t € [T1,T»] : T» = (1 —a)T
The third stage:t € [T2, 7]
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Table 1 Probability called of NMSM in different stages

T [0, 7] (T1,T] (T, T
P 0.05 0.10 0.15

T is the maximum evolution algebra, 7 is evolution
algebra, and the value of a is usually set as 0.382. p, the
probability of NMSM used in each stage, can be seen in
Table 1.

3.3.3 Characteristics of hybrid algorithm

Based on the framework of PSO, hybrid algorithm intro-
duces the NMSM to perform repeated simplex search and
iteration on some elite particles in the swarm. Character-
istics of this method are as follows:

1. Due to its own defects of the inherent mode, every
search algorithm with single structure and mechanism
is generally difficult to realize highly efficient optimi-
zation, and so is PSO algorithm. HPSO algorithm is
better in optimization performance than single PSO
algorithm and another optimization method.

2. PSO, an algorithm based on random search, has a
strong ability of global optimization but gradually slow
convergence speed in later algorithm stage. NMSM, a
deterministic and descent method, has a superior local
search ability. Using the polyhedral reflection, expan-
sion, compression, and other properties, it is able to
quickly find out the local optimal solution. The two
algorithms complement each other, and therefore, their
combination is conducive to the improvement of the
global and local search ability and efficiency.

3. NMSM is simple featuring low complexity, and fast
speed [37]. Probability in stage is used to perform
simplex iteration and update on some elite particles in
the swarm, with a limited number of particles
involved. Therefore, the hybrid algorithm combining
NMSM algorithm and PSO algorithm does not require
much computation.

3.3.4 Flow of HPSO

Based on the previous work, the process of HPSO is
described as follows:

Step 1 assign values parameters of HPSO, including
population size of particle swarm P,
compressibility factor K, acceleration factor
®1,¢,, probability P of NMSM, and the
maximum algebra T required for evolution

computation;

@ Springer

Step 2 initialize population, generate initial velocity and
position of particles, and calculate particles’
fitness value according to the evaluation function;
set the present position of particle as pbest, and
the best position of the initial group as gbest;
update the velocity and position of each particle
and evaluate the particles fitness value;

sort the particle swarm according to the fitness
value; for the first S elite particles, use NMSM
with the possibility P to perform repeated
iterations and updates on the first § selected
excellent individuals; calculate the fitness value
of each updated particle; replace the best
individuals of the original swarm with the
particle with the best response, and ultimately,
constitute the next negation with the remaining
individuals of the original group;

compare the fitness value of new individuals and
their pbest fitness value; if the fitness value of the
particle is better than pbest fitness value, set pbest
as the new position;

compare the fitness value of new individuals with
that of gbest; if the fitness value of the particle is
better than gbest fitness value, set gbestas the
new position;

if the evolution computation of the particle
swarm achieves the allowed maximum algebra
T or the evaluation value is less than the set
accuracy, output the optimal result gbest and
iteration ends. Otherwise, if T =t + 1, search
continues from step 4.

Step 3
Step 4

Step 5

Step 6

Step 7

Step 8

From the above, we can see that PSO searches the
approximate space of the optimal solution located, then it
gives the solution to NMSM for further depth search. The
roles of the two algorithms are different; the most impor-
tant role of HPSO is to strengthen the division and the
cooperation through the merging and the recombination
between PSO and NMSM [39]. In a word, PSO performs
an exploration while using NMSM for an exploitation to
make HPSO search the optimal solution very precisely and
faster.

4 Experiments and result analyses
4.1 simulation results of real example

The Muskingum model investigated in our paper is from
Ref. [40], where the model was in the south canal between
Chenggou river and Linqging river in China, and the time
interval At = 12 h. The detailed information can be found
in Ref. [41].
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The parameters k and x are required in this model, and
the significance of these parameters can be clearly seen in
Egs. (4-6).

The parameters k and x play an important role in the
Muskingum model. In our study, k& and x are optimized
with respect to the same criterion, termed the sum of the
least residual absolute value, and the form of the fitness
function is shown in Eq. (9).

To facilitate the experiments, we used matlab2012a to
program a m-file for implementing the algorithms on a PC
with a 32-bit windows 7 operating system, a 2GB RAM,

and a CPU of Pentium Dual-core with 2.7 GHz. The
standard errors have been measured for 30 independent
runs. For all the intelligence algorithms, the two parameters
are set as follows: population size N, = 20, the maximum
number of iterations Max;r = 1,000. These parameters of
HPSO, CLPSO, DMS-PSO, and PSO used are set the same:
the acceleration constants ¢; = 2.1, ¢, = 2.1; the inertia
weight factor w is a linearly decreasing, which changes
from 0.9 to 0.4. These parameters of SaDE, DPSDE, and
DE used are set the same: constriction factor F, = 0.5,
crossover rate P, = 0.6, These parameters of GAGA,

Fig. 2 The comparison of
fitness values between HPSO 2281793 1, 50
and other methods 7 2148514 m 2207325 2143099
2096318 203,544 206.0293 2025527
200 1920793 194.7413
185.7115 184 4075 187.0868
° 150
=
[
>
E -4
£
=
100 H
50 -
0 -
HPSO CLPSO DMS-PSO PSO  SaDE EPSDE DE  GAGA GGA NMSM NPM LRSM TM
Method
Table 2 A comparison of flood  Nfeghod EN k x AAE ARE (%)  Fitness SD
routing between different
methods HPSO 2,000 12.7800 —0.0930 6.8447 2.0151 185.7115 6.5320E—02
CLPSO 10,800 12.7889 —0.0681 7.1628 2.0187 184.4075 3.4987E—01
DMS-PSO 9,200 13.2508 —0.5244 7.0358 2.0460 209.6318 1.0773E401
PSO 12,000 12.9801 —0.6514 7.2463 2.1093 214.8514 1.2523E401
SaDE 1,400 13.4552 —0.0511 7.2302 2.1375 187.0868 3.0984E+00
EPSDE 4,200 14.1001 —0.3509 7.0983 2.0761 203.5440 1.5956E+01
DE 5,000 12.8011 —0.5007 7.1317 2.0734 206.0293 1.2925E+01
GAGA 31,200 13.2104 —0.9048 7.3471 2.1275 228.1793 4.0085E+-01
GGA 33,600 12.9876 —0.8612 7.2919 2.1136 224.3241 1.7916E+-01
BGA 43,800 14.7085 —0.6011 7.2390 2.1084 220.7325 1.0453E+4-01
NMSM - 12.4569 —0.1984 7.0001 2.0421 192.0793 6.3793E+4-00
NPM - 12.4471 —0.2616 7.1021 2.0811 194.7413 3.2002E+-00
LRSM - 11.7916 —0.3520 7.4119 2.1941 202.5527 1.0015E4-01
™ - 12.0000 0.1000 8.7407 2.6305 214.3099 3.3806E+01
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GGA, and BGA used are set the same: selection rate is
from Roulette, crossover rate P, = (0.8, mutation rate
P, =0.05.

We made a comparison between using our new pro-
posed model HPSO and another nine evolution algorithms
PSO [5], CLPSO [17], DMS-PSO [20], EPSDE [21, 22],
SaDE [23, 24], DE [8], GAGA [4], GGA [25] and BGA
[26], and the comparison results show that: for HPSO, the
average absolute error (AAE) is 6.8447, and the average

Table 3 Statistic data of description

Method Run Min Mean Max SD

HPSO 30 185.6915 1857115 185.9915 6.5320E—02
CLPSO 30 184.3140 184.4075 185.7166 3.4987E—01
DMS-PSO 30 185.6318 209.6318 215.6318 1.0773E+01
PSO 30 185.5521 214.8514 246.7514 1.2523E+01
SaDE 30 185.0868 187.0868 193.0868 3.0984E+00
EPSDE 30 185.5440 203.5440 228.5440 1.5956E+01
DE 30 185.0293 206.0293 226.0293 1.2925E+01
GAGA 30 185.1794 228.1793 278.1793 4.0085E+01
GGA 30 185.3251 224.3241 234.3251 1.7916E+01
BGA 30 184.8425 220.7325 230.7226 1.0453E+01
NMSM 30 185.0793 192.0793 203.0793 6.3793E+00
NPM 30 185.1246  194.7413  200.6557 3.2002E+00
LRSM 30 185.5040 202.5527 247.5528 1.0015E+01
™ 30 188.2015 214.3099 330.2966 3.3806E+01

Fig. 3 The comparison of
convergence between HPSO
and other methods

relative error (ARE) is 2.0151. For CLPSO, DMS-PSO,
and PSO, the AAE is 7.1628, 7.0358, 7.2463, and the ARE
is 2.0187, 2.0460, 2.1093, respectively. For SaDE, EDSDE,
and DE, the AAE is 7.2302, 7.0983, 7.1317, and the ARE
is 2.1375, 2.0761, 2.0734, respectively. For GAGA, GGA,
and BGA, the AAE is 7.3471, 7.2919, 7.2390, and the ARE
is 2.1275, 2.1136, 2.1084, respectively. The experimental
data for the model are listed in Table 1 in detail. These
results proved that HPSO has higher precision compared
with the above three different algorithms.

On the other hand, we also perform the same test on the
four conventional methods, and the test results are as fol-
lows: for NMSM [7], the AAE is 6.9878, and the ARE is
2.0570. For the nonlinear programming method (NPM)
[42], the AAE is 7.1021, and the ARE is 2.0811. For the
least residual square method (LRSM) [34], the AAE is
7.4119, and the ARE is 2.1941. And for test method (TM)
[34], the AAE is 8.7407, and the ARE is 2.6305. These
results also show that HPSO has higher precision compared
with these conventional methods, such as the NPM, the
LRSM, and the TM (Fig. 2).

It is shown in Tables 2, 3 and Fig. 2, the fitness value f
is 185.7115 for HPSO, it is the second best fitness value
among the 14 methods. The evaluation number (EN) of the
fitness function is 2000; it is the second smallest number in
terms of function evaluation among the 14 methods. From
Fig. 3, we can see that HPSO is second fastest method
among the 14 methods behind SaDE in terms of convergent
speed.

—=—HPSO
—e—CLPSO
—— DMS-PSO
—+—PSO
—+— SaDE
—<+—EPSDE
——DE

—— GAGA

——GGA
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Fig. 4 The simulation results of HPSO for 1960 flood routing
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Fig. 5 The simulation results of HPSO for 1961 flood routing

The experimental results of the HPSO for the example in
the practice are shown in Figs. 2, 3 and Tables 2, 3. In
terms of evaluation number of objective function, SaDE is
the best in 14 methods, HPSO ranked as the second best
method, behind SaDE and ahead of the other methods. In
terms of objective function value, CLPSO is the best in 14
methods, HPSO ranked as the second best method, behind
CLPSO and ahead of the other methods. In terms of error
and standard deviation, HPSO dominating it all the meth-
ods. We can conclude that the results obtained by our
proposed HPSO are satisfactory in terms of precision and
convergence.

Figure 4 gives the measured discharges and calculated
discharges for the Muskingum model by the HPSO for
1960. Figure 5 gives the measured discharges and calcu-
lated ones for the Muskingum model by the HPSO for
1961. Figure 6 gives the measured discharges and calcu-
lated ones for the Muskingum model by the HPSO for
1964.
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Fig. 6 The simulation results of HPSO for 1964 flood routing

From Table 2 and Figs. 2, 4, 5, and 6, we can see clearly
that the simulation results obtained with our HPSO are
satisfactory in terms of accuracy. The HPSO has been
proved to be an efficient method to minimize the fitness
function for the Muskingum model.

Tables 4, 5, and 6 show separately the comparisons of
the best corresponding computed outflows obtained from
various techniques such as TM, LRSM, NPM, NMSM,
BGA, GGA, GAGA, DE, EPSDE, SaDE, PSO, DMS-PSO,
CLPSO, and HPSO for 1960, 1961, and 1964. By com-
paring the results from the above three tables, HPSO out-
performs the other algorithms in the three different periods.

As seen in the experimental results, the HPSO ranks as
the first, first, first, second, second, second, respectively,
out of 14 advanced methods in terms of absolute error,
relative error, standard deviation, number of function
evaluation, fitness value, convergent speed. To sum up: the
overall performance of HPSO is very good.

4.2 Statistical results of p value

The Wilcoxon signed rank test was proposed by FWilco-
xon in 1945. When there is concrete numerical value for
the differences between the paired data of two groups, the
signed test only adopts the positive (R > 0) and negative
(R <0) information. Information of differences in e size is
not used. The Wilcoxon signed ranks test not only takes
into consideration the positive and negative signs but also
the differential size, so it has higher efficiency than the
signed test [44].
The steps of this method are as follows:

Step 1  calculate the d; value of every paired data, sort the
d; absolute value from small to large, and use the

mean rank if the d; value is equal.

@ Springer



1785-1799

Neural Comput & Applic (2014) 25

1794

LIE9OLL 8CS19LT 00SL'LLT 80C0'8LI CSI9LLY SYISOLL 60C6'LL] 0EPS8LI Tr8E8LI LS96'LLT 9LL89LI SYYeLLL 0€6E'LLT VILSELT S8l 91 cle
SO0 81 0s6v'e81 12ce9sl 0010°L8IT 6558°G81 98L6'¢81 L8YL981 LYS6°L81 99v9°L81 02167981 8LI6'V81 LLLL'S81 90€0°981 0000°6L1 €61 L91 00¢
0€10°'861 wor8Lol SIST661 €059°861 88¥0°00C  LL6L'861 0206861 8620661 ¥566'861 §€09'861 cece’'Lol L00T'861 L89S°L61 LS8T'S61 60¢ L91 88¢
666C'1€C  80TP'1EC 978eCeC  06SI'1€C  OEI8EET  €V69TEC  L6S9IET 1oee’Iec  COIv'IeT  06CI'IEC  80V6'0€C  LLO66°0ET Ivle’6cc  98Ti'6CC 0€¢ el 9LT
06£€°69C  9Y9£°69C 99¢9°0LT 10C6°69C  €196°'1LT  €€¥9°0LC  €SL6'69C  TCO8'69C  C8V869C  06L¥'69¢C 1260'69¢  STITO9C  T681'89C 1L68°99¢ 0LC 8¢C ¥9¢
98l vreEl9le 6LETLIE I8Sy'Sle  €CLO6le  LTSL'LIE  Levl9l€  €€09°SIE  8EVL'SIE  69TP'SIE  96vESlE  LOSE'SIE  6£68¢€lE ILS8ElE 0re ¥9¢ (44
€8e6vLE  LOVYOLE LLBOPLE  €86I'ILE  SOICBLE  LEVP'BLE  V66STLE  660€0LE  L8680LE  8YOT'ILE  TSOS'ELE  6L8Y'TLE  TO98°69¢  6TVI'SLE S9¢ €le 0ove
90¢8'ery  v008 Sty 999¢ vy 69IL8EY  9Cvy9vy  10SS'Lyy  8PSTOVY  9cec’Ley  8E8O'8EY  Lve®BEy  LOoLI'Chy  0TSOOvy  8006'LEV [LS8 611 (44 re¢ 8¢¢
60Y9°9LY  €88LOLY €999°9Ly  TE8TILY ICLOLLY  TEEO'LLY  SLEVOLY  SLOTOLY  L99TILY 188C°9LY  006¥'9LY IL6E9LY 1201'9Ly 1LS89LY 08% 691 91T
8SET'E8Y  SSTIO8Y 8001°6LY  96VE'SLY  LL8Y'T8Y  TOSY'98Y  8YT8I9LY  €008°CLY T1E8°ELy  696S'SLY  €ITTI8Y  O0TOL'8LY  €T6VILY  VILS 96V €81 8Ly ¥0T
8BILVYY  LLI6TYY 999 vvy  veel'eby  €€96'6Ey  LSLI'OVY  LLEC'LYY [611°0Sy  ceov'ovy  TLOO'6YY  L8OSOVY  96L9°Lvy  6980'ISY  VILS IvY 594 0¢s ol
§S0TT8e  ¥196°08¢ P1C9C8c  0Thbe'S8¢  T6I8'6LE  PYEOS'6LE  PISTY8E  9CTI'98¢  8EY9'C8E [08T°68¢  66¥E'€8E  0OITTY8E  9I€C98¢  6CTVI'6LE SLE Ley 081
S8YTE9¢ Ieo1'e9e 98L1'€9€  GILEE9E  8996'C9¢  0EV0'€9E  PEOT'EI9E  098E'€9E 129€°€9¢ 9ILE'€9E  SLIEE9E IPPee9e  9005°€9¢  LS8T'E9E 8ve 89¢ 891
SLeleLe  8ppleLe 99cr'eLe  8IVI'ELE  8SOL'ELE  LBSY'ELE  LBST'ELE 110T'eLe  €91TeLe  LTEL'ELE  L6VO'ELE  96LO'CLE  LOTBCLE  VILSTLE 65¢ £9¢ 9¢1
69vL'88¢  6099°88¢ ITIV'68¢  ¥¥80'68c  €SP8'68E  CELI'68E  VITT'68E  6V8T'68E  ¥69C'68E  €6S0°68¢  L969°88¢  SPP8'88E 11088 LSBT'L8E €8¢ Le 44!
Y961°C0r  L9SET0Y 866'€0r  LI09TOF  SSO9°€Or  I8E8°10F  SELEVOY  908%'SOP  8LO6I'SOY  COISHOP  86S9°COF  OLSH'€Oy  8I99°¢0v  6CrI'L6E 90v G8¢ el
YreToly  ev9L°61y 819661y L6S08I¥  808I'Icy  0TTY'OCY 199981y S8¥8°LI¥  CT6SO'8Iy  ¥690°81¥  ¥889'8Iv  CL6EBIY  CIITLIY  VILS61Y 9y 98¢ 0clI
LTy evy  v6LO'EYY WOrLyyy YLy LLEGVYY  T889'EWY  OLELVPY  LYTTSYY  8660°SYY  9SS9VRYy  LSTOEVY  STO0VRY  6£98'Ehy LSBT OVY 8 € 801
8E86'Y9Y  00EY SOV 0ETESOY  96¥6'€9%  ¥68L'99F  BEIY'99F  YOOSHOr  98LL'E9Y  LYO6'€9Y  19S6'€oY 9LV ¥9Y  S6TTYOY  09V1°€9%  6TP1'S9Y L9Y ey 96
CTL8T08Y  6S89°T8Y €60L°LLY  068L'CLY  LILI'O8Y  T80T'E8Y  LBOO'SLY  SICL'ILY  TY6STLY  0986'CLY  TE9S8LY  LOSSOLY  LOLV'VLY 1LS8°067 [4ii4 891 78
$9€9°€87  8SOL'V8Y 0cre'08y  €L6V'08Y  ¥8YO'I8Y  LLOL'E8Y  9¥S9'08% 198C°6LY 1S€9°6LY  69C9°08y  YLTI'E8Y [LSOT8Y  T660°C8Y 1LS8°067 €LY 81¢ <L
9se9'ery  686LTHY 6OLY'EVY  6VPOOry  6LTIOVY  S86E0VY  869¢SYY  €TOTLYY  YLOL'OVY 12099%y  v688¥hy  SOL9'SHY 98018y eVIL'IVY 844 90§ 09
€0S0°C6E  96TT 6L 8CI0'68¢  8CLS88E  $SO0'68¢  ¥S90C6E  TLTL'88E  8YCT'L8E  6L09'L8E  60CTL'88E  CCOS'I6E  8TIC'06E  060¥°06€  6CV100% c6¢ (434 8v
Le10eve  90SL'TYE STe0’lve  SP8TEve  910¥'8ee (92401%3 1e9¢7cre IVL6'TYE  OPI8TYE  06EC’eEre  6SL9'tVE  PSLSeve  6L9S'SYE 98T OvE £€ve L1y 9¢
1€26'C8C  8SISTI8C S668°C8C  SLLEO8T  6TYT6LT  906£°6LC  68L6VEC  POSI'L8C  SI6S98C  LETE98T ISIE¥8C  SSET'S8C  TPBY'LEC  98TH08C Le 67 ¥C
$600°6CC  6CCL9TT 61€1'IEC  61€0°SEC  €61€LTC  VISE'STC  LOSY'EEC  LVBL'OEC  OLE6'SEC  8ELVEC  CTLE®OEC  0STOCEC  6l6TSEC  €VILOTT 6CC 69¢ cl
0000°80C  0000°80C 0000°80C  0000°80C  000080C  0000°80C  000080C  0000°80C  0000°80C  0000°80C  0000°80C  0000°80C  0000°80C  0000°80CT 80¢C L61 0
Osd
OSdH OSd'TO -SINA OSd ddsdd qaes qa VOVD vOD vDd IWSINN WdN ST WL

@\ msv ?\ msv )

(s/ (U)MOPINO PANOY MOPINO mopguyp Qu],

0961 10} SPOYIOW JURISJJIP YIIM MOPINO paje[nofed jo uosuedwod y  dqe],

pringer

A's



1795

Neural Comput & Applic (2014) 25:1785-1799

0LTTTLL 0616°ILL  8YO6CLL  9SSSCLL  0S8EELT  ¥OESCLL  8COLCLT  69T8CLL  6S6LCLL  9TCSTLL  CTOCOCLL  99S0CLL  LIVSILL 6C¥IOLL 8LI 4! 9¢e
€168°861 <COEI'L6T  1998'661 8Cr6'661 LLSO'00C OI¥0°861 T8C6'661 686L°00C TLLSO0C 0678661 CCII'861 0CE8'L6I 9TC9861 VILSTOI €61 L91 143
0565°9¢C  LTC99cT ¢€611'8CC v166'9CC 010S6CC 9000°8CC  LISY'LTT IvyE'LTT BYLE'LTT €CV6'9TC 9SLEOTT 98Y9'9CC  S6TS'STC  EvIL'ETT 1474 8l [483
60ST°69C S6CY'69C LOV6'0LT 6619°69C CYESTLT SLS6'0LT €€91°0LC 18S56'69C LTIO0LT LOLS'69C 18S0°69C 1007°69C 68C0'89C 98TH'99¢C ILC 0ce 00¢
POST'LIE 60VL8IE 9L90°61E 680691€ VISP ITE L6LY'OTE IV8LLIE 696L°91¢ 0CSO'LIE LIO6OIE 6VOV'LIC VIOI'8IE 908C'SIE 98T LI 8I¢ £9¢ 88¢
6L91°CLE T98TVLE L6EOVLE 0€99°1LE 8B09'9LE 6S86'SLE 0ETOTLE LISEILE S6LITLE 6SLIILE 0609°CLE 8LOV'ELE LEBTOLE TLSY'ELE 89¢ 0ce 9LT
§T86’ITy 89Te'eCy IeeSecy OvLv'ITy 8OVL'STY LSEE'STy LYOETCy S8VI'ICYy VOV Ich viev'Ich STIv ey 1661°¢cy 169¢°0cy LS8 €Ch ocy 6LE ¥9¢
LTIT6SY TITy' ey v6LE 09y  8LOG'LSY TELLCOY 168¥'€9F 68V6'8Sy COCI'LSY S96C°LSy  TICTLOBSY T10€1'09v C981'19% CEIS'LSY  0000°S9¥y 19v (Y44 (44
€LI9cor Vv8CLY6Y VvyeTcor VILL'I6Y LOBIVOY S66CS6Y cvSETor Seol'l6y TOo¥'I6y €ST8I6Y vocTtor €0l6'cor 665 16v CVIL96Y (314 LLY (024
r0E60S  9950°90S €€1E°60S 8IS8OIS 0C96°LOS LTSO90S 06¥C0IS 8EIOTIS 0C9STIS SLELOIS 8S61'80S 6VEE'L0S €S61°0IS  6CI'10S ¥0S Sos 8CC
PO0¥'81S  989L8IS 98TS'6IS 9SESBIS 0689°0CS E€V8L'6IS 61v68IS T1€L98IS €evL'8IS VIISBIS VI9EBIS TECO8IS CLTSLIS 6CTHILIS 0cs 98y 9I¢
LSETIVS  LYETTIYS S866'1¥S  SOTE' IS €CI8TYS 6VI0TPS €665 1VS €061 IPS  €6ISIYPS 96T IYS 00V0'IvS 99ITIYS L60SOVS EVIL6ES (USY 91¢ 0T
LIY8°09S 09¥9°09S 9€19'19¢ TTYI'I9S +STTTCIS  6TPe 198  LBEETIS  LS6ET19S  1T8ETI9S 00IT'19S 16S9°09S LIVL09S 109¢€°09S [LS88SS 99¢ 8¢S <ol
CLOTOLS €SES8LS 8SSO'LLS 000%'SLS OVIL8LS S9ST6LS 6090°9LS SLLL'VLS TLOTI'SLS LESY'SLS O0TTOOLS 8I99'LLS €€60'SLS 98T 08S 8¢ 9¢¢ 081
89YTT6S  €666°C6S  L68ETOS TLTOH16S 1€€8T6S TIEL'€6S LOITCOS SCO916S LO66L'T6S 06V6'16S 6187C6S 990LC6S 866166 TLSBCOS 68 68¢S 891
CIL6'TOS  PSIV'E6S 96S8C6S ITILTOS S656°C6S LIOE'€6S 189LTC6S L60STOS LSLSTOS T€ELTOS SO91°€6S 00LTC6S 0TLOTOS 98TV 16S Y65 L6S 9¢1
LE6S68S  €L0T'06S 899€°68S  60¥C'68S LO6IV'68S  SH00°06S 898T'68S 8LI6'88S  TOHVO'68S 669T'68S 0LE68S €096'68S LISS68S VILS16S 88¢ L6S 144!
LTST'V8S  TYTEv8S  S68L'EBS  SELO'E8S BPECE8S  C966'¢8C 8C68'E8S  8CTYEVS  CEvB'E8S VIO66'E8S LSOTVES O6LYCV8S ELSEV8S LSBT S8S I8¢ S6S (4!
EITTOLS  TOVO'OLS TYL8'SLS 969L'CLS 0088'SLS TLVYO'OLS ¥SO8'SLS 8STY'SLS 9TTS'SLS 9908°SLS  PEISOLS  LOSOOLS CIVTOLS EVILBLS €LS L8S 0cl
88C8'89C CTI69'69S 1I8EBIS €86C'89S  €OVE'8IS 006C°69S 1¥CE8IS  6€88°LIS  0966'L9S €Eve'89S  6681°69S 0IVE'69S 0106895 [LS8'ILS 98 €86 801
8YES09S  ¥COI'19S  S966'6SS 00TI'09S  €0SL'6SS 08197096 +€90°09S  €68L°6SS 88S8°6SS LLST'09S 1608095 0998°09S ¥ISL09S 0000°€9S 1399 LLS 96
6CLI'8YS €¥88'8YS T09S'LYS 8699°LYS OLOE'LYS O0O€EE8YS VLIOLYS 669CLYS 18SELYS o6VIL'LYS +LOS'8YS S68S'8YS 910V'8YS  6THI'ISS evs L9S 78
LIET'SES  PPO8'SES  SLYYveS 8LTOVES TrHITYES GC8BI'CES LIVPSVES BYITYES €90EVES 6ELOPES  LEOV'SEC  TETCSES 90T SeS 6T 8eS 2149 9¢¢ L
L8CO'LIS 8YO9'LIS T991°91C 8TCSOIS 0CTEICIS €LT8IIS 869E€ 9IS BILIOIS 8ILIOIS VILSOIS OPSCLIS TLSCLIS [189F'LIS 6CrI'0CS els evs 09
YLSTO8Y  €66088y €CI0S8Y SOP0'S8Y  €¥99 18y 8086987 IVIO S8y SCO0V8Y 69CE W8y  ICSI'S8Y  ICLO'L8Y  €vve'L8F STI9O8Y LSBT E6V o6t ges 8
6ILS YWY OCSL'SYy I8SSCvy  €69v'evy OCvT Ivy C9te’cry SI80'chy 889STHy 9L69THY 69LS'Cvy  SOLT'SYY  68ET'SYhY  cev9'Shy 98T ISy 1444 Sos 9¢
8CPE'08c 8I08'6LE LOES'LLE SYP8'6LE BILLYLE 18ST'LLE 8V68'8LE 889C'6LE OVYTO6LE 6LI6'6LE PO8S08E LOVO'6LE 9EhPC8E 98TV '8¢ 8¢ w9y ¥C
§9€8°00€ 100T°€6CT 80O0S'L6C €€LS€OE  190€°16C LIST'06C 9THI'TOE TLOS'SOE 9S8EPOE 8YIV'E0E OVEL'86T 9YPCI'96C [119T°S0€ 6CY1'88C 00¢ 68¢ 4!
0000°8CC  0000°8¢C 0000°8CC 0000°8CC 0000°8CC 0000°8CC 0000°8CC 0000°8CC 0000°8CC 0000°8CC 0000°8CC 0000°8CC  0000°8CC  0000°8CC 8CC 19¢ 0
OSd
OSdH OSdTO -SINA OSd  HdSdd d4des q4d VOVD VDD vDd  INSKN INAN INSY'T AL

@\ mSv s/ msv (C))

(s/ (W) MOPINO PAINOY  MOPINQ  MOPU]  duiL],

1961 10} SPOYIQW JUIRJIP YIIM MOPINO paje[nofed jo uosuedwod Y § dqe],

pringer

A



1785-1799

Neural Comput & Applic (2014) 25

1796

ovvrTece TLY0'eETT €69L°€TT €LTYETT 88LLETT £65T°€CT 7808°¢€TT 0LS0¥CT 9€66°€CT §T08°€TC 91€€’€TT LTESETT 9705°€TT 1LS8°1TC 87T 91T TLe
0v¥T9Te TLy0'9TT £69L'9TC €LT8'9TT 88LL9TT £657°9CC 7808'9CC 0LS0°LTT 9€66'9CC §208'97C 91€€°97C LTES9TT 9705'9CC 1LS8%CC [4%4 61T 09¢
0901°1€C 9TLY0ET LSYL'TET 1108°1€C TELL'TET 00¥1°1€T 0¥8LTET YLLOTET 9700°CET TILLTET L90T'1€T SLYY'1€T €66€ €T 98C¥'6CC SeT (144 8¥e
9LBT 1T S097" 1+C €0TS YT 9906°0%¢C °961°THC TEVO'1HT €SST'IVT S¥98°0¥C 96£6°0%C LS06°0%C $690°' 1T £886'0C L88Y'0¥T 6Tr1I¥T we 9T 9¢€
6L56°L9T §T9L'69C €€01°99C OTLT"€9C TS€6'89C 81L9°0LT TeEEY9T YorL19C Y01+°C9¢C L10£°€9C 0Tss'99¢ ¥911°59¢ 8LY1'€9C ILS8 VLT Y4 we 43
Y19¢°L0€ 1€6570€ €CI6TIE €820°STE 8YT60 CTIv810E 8118°¢IE 909°LTE 16€9°91¢ ITLLYTE LILT'60€ 8809°11¢€ 89¢LElE 98Th'€6T 6LT ¥6C (453
8€0C°0cE 109L'1¢¢ 6LE1°0EE £€99¢°9¢¢e 0160ve€ L120vee €788°LTE S06¥'STe 6501°9¢¢ 88C9ce 86L9'8C¢ LTS9'LTe €E6LYCE 6crleee eve 09¢ 00¢
Y666'LLE €818'8LE €908°LLE 10S6°SLE weLeLe LSS8'6LE 6769°9LE 8TSY'SLE CTCLL'SLE 886'SLE L6TT'LLE YL999LE 6C8TSLE [LS8'6LE L8E ove 88¢
6607°66€ 891C°66€ L0SO"00% TTEO6'66E 019T°00% S0T9°66¢ 0$86°66€ 6691°00% 1€C1°00% 0S06°66€ 8077 '66€ LSE9°66€ 1SS¥°66€ 1LS8°L6E €0y L8E 9LT
08¢y eIy €LOLTIY 0€00°STY LOSESTY 9878 V1Y ELOTETY SECTSIY ¥8L09TY €098°S1¥ 9ELTSIY 809L €Y 8607 71t 0TS vivy 6T 1°60% €y S6¢ ¥9C
Y6 Ve £8€9°vEY 18T5°9¢y £900°9¢t 6L8T LEY L669°SEY 88CC9tr 80vS9ty YTV 9y 9Tr6'SEY cIe6vey 60S€°SEY OTELVEY LS8TIEY LEY 00t [4%4
SIST09% 8T68°6SY £799'19% ¥¥LO 19V Y98%'C9%  ¥€96'09% LETET9Y 9596 19% 1505°19% 6v10'19% 6660°09% YLLY'09% €S18°6SY EVIL'9SY Ly Y44 ove
6799°€8% £9€57€8Y 0¥06' 8% 6S1T¥8Y LTOL'S8Y 6LES V8T ST0S ¥81 0TLS¥87  9SSS 8y YOLT ¥8% wrseEsy 8Y6L €81 9960°€8% 0000°18% L6v 1854 8¢C
£95T°60S ¥L20°60S 91€9°01¢ 96L0°01S 9S6€T1S ¥010°01S 9T1E01S 9TTs oIS 10L¥°01S LSTO01S 0€0T°60S 0TrS 60 0826'80S 621717905 LIS LLY 91T
£97€'8ES 0LEL'6ES TELY'LES 9TILYES SE0TOYS 9EL60YS 9923339 9T6L'EES 661€VES 1SY8veES 86V1'LES 6611°9¢S SI8T¥ES VILSTYS (949 108 ¥0T
€9VI'8LS TYES'LLS 189L°6LS T8S6'6LS ¥S8L'6LS 0T81°8LS 8768°6LS 8699°08S €TLY'08S SI88°6LS 91TH'8LS 1SY0°6LS 6096'8LS TLS8ELS ¥9S 9s¢ 61
1929°665 690L°109 T8E9°L6S ISET'Y6S 6150°109 006209 8LTS'S6S 1LTST6S 0L6T €65 608T¥6S SYL6'L6S 86€£796S 8556'€6S LS8T'LO9 S09 S9¢ 081
SE19'919 988T°919 000L919 ¥8TY'L19 S9¥6'S19 9988°C19 °9ET°LI9 6LTYL19 S10S°LT19 6CIY'LI9 8916919 EIVILI9 1€89°L19 [LS8'ST9 L19 629 891
§ST0°'S19 6268°S19 LB6L'ET9 6099°CI19 868719 1200919 9801°¢€19 0668°119 880C°CI9 LYEL'TI9 BLIT'¥I9 SI89°€19 °686°CI9 0000619 L09 €19 9¢1
99€L°CC9 18€0'¥C9 LL6S0T9 €CET619 8058°1C9 0TT6°€C9 SYOL'619 9026'L19 ILLE8T9 8TST619 6688129 86€L°0C9 0LT6'619 LS8T'6T9 019 609 14!
LTSI'LT9 1€96'819 Y819 6S68°€19 CITysI9 1961819 99vT¥19 902sCI9 ¥196°C19 60119 8C€6'919 ¥989°G19 €6LEST9 YILSST9 909 S+9 (43
1T1L798S 6LSL'E8S 190€°68S 6Y91 765 TrETY8S TE¥8°18S €11¥'26S £569'965 0965°S6S ¥S9T 165 SE0T68S 0€6€°16S 6056765 LS8TILS 08$ €79 0zt
S108°L0S 127690 1968°L0S 6£26°60S 1169°50S 801L°S0S 6260°60S LTTF 0TS ¥CLOOIS 8888°60S £6£9'80S 060T°60S IPLLOTS 621717908 S99 gy 801
T6LSELY 801S°ELY €598°CLY YI19°€LY 1986 1Ly ¥ITLTLY LSOEELY 6V8¥'ELY  08EVELY 12e9eLy YI6L' €LY 8LEL'ELY 090¥' LY TLS8 VLY LLY 661 96
66CE 67 88y 671 SLOT'8YY 0Tr8 871 VL3S LYY 81981 8719'81 LBES8YY 1LSS 8%Y €088'8Y1 ey ory £20T 617 129L° 6% VILSISY (a4 oLy 78
OLYY'1ey 10cT1ey ¥620°1¢Y ST’ 1EY €200y 68LY 0ty 819¢ Iy 8YSe'IEy  TESIEY 0e6'1eY 6SSL'IEY 8918'IEY €L8STEY TLS8TEY (444 Sy L
SE6SETY  0SOSVIY 6LLOTTY 0066°01% Wwriciy  yIcoviy EISTIIY ESY00TY  ¥ESE0IY 0880°T1¥ B0ElY €TCTCY ¥696' 111 0000°61% (U4 1ey 09
0L€9°€8¢E 11ETY8E PEETTI8E €ITL'T8E £66£°08¢ 1€08°C8¢ 6S05°18¢ 86€8°08¢ ¥800°18¢ 6CC8'18¢ G8ESE8E 1618°C8¢ Y65 €8¢ 98T 68¢ 68¢ Iey 8Y
0ELY OvE 9Y6T9vE 6120°Ste 79¢9°9%¢ 6leleve €0e9 Ve SSLO'SYE 010v'9v¢ 868C91¢ 89L9°91¢ 6£v6'9vE 0198°9%¢ 9¢6T'8YE 0000°6¥€ (423 00¥ 9¢
9¥91°90¢ YyLL'SOE 9L0€'S0€ 609690 196¥°€0¢ 099€¥0€ £68790¢ $6L6'90¢ 6008'90¢ 8€L6'90¢ 0¥CL'90¢ £198'90¢ 86£T80¢ 6CY1L0E S6C IS¢ ¥C
8EI¥'C9C §9€8°19¢C ¥SL8 19T Y0EL€9T 8¥S8°65C SSSY09¢C 2086°C9¢ LST6'€9C 8189'€9C 9STL€9T £€60°€9C 896¢£°€9C LESYYIT 98C¥'C9C §9¢ 90¢ 4!
0000¥CC 0000+CT 0000+CC 0000+CC 0000¥¢C 0000+CCT 0000+CC 0000¥¢C 0000+CT 0000+CT 0000¥CC 0000+ 0000+CC 0000¥CC e 65T 0
0osd
OSdH 0Sd'1D -SIWd 0Osd dasdd gqes qa VOVD VDD vod IWSINN AN INSY'T WL

(s/ qut) (s/ qut) ()

(s/ ¢t) mopno pamoy MOINO mopug Quirg,

96T 10} SPOYIOW JUIIJIP YIIM MOPINO PAJE[NI[ed Jo uosuedwod v 9 dqe],

pringer

A's



Neural Comput & Applic (2014) 25:1785-1799

1797

Table 7 Results of the Wilcoxon signed ranks test

Comparison R* R~ p value
HPSO versus CLPSO 0 465 9.31323E—10
HPSO versus DMS-PSO 450 15 1.16415E—07
HPSO versus PSO 459 6 1.21072E—-08
HPSO versus SaDE 234 231 0.492127506
HPSO versus EPSDE 399 66 0.000127527
HPSO versus DE 444 21 3.13856E—07
HPSO versus GAGA 387 78 0.000411564
HPSO versus GGA 450 15 1.08033E—07
HPSO versus BGA 420 45 3.72529E—-09
HPSO versus HMSM 462 1.45854E—-05
HPSO versus NPM 459 6 3.72529E—-09
HPSO versus LRSM 452 13 1.30385E—08
HPSO versus TM 465 0 9.31323E—10
Step 2 recover the positive and negative number after the

numbered rank, gain positive rank sum R* and
negative rank sum R™, and select the smaller one
from R™ and R~ as the statistic 7 value of the
Wilcoxon signed ranks test.

Step 3 calculate p value and draw conclusions.

In this experiment, each algorithm independently runs
30 times. HPSO algorithm is compared with other 13
algorithms, respectively, to test their performance
differences.

In this study, R" and R~ are defined as follows:

Rt = Z rank(d;) +%Zm”k(di)

d,’ >0 d,‘:()

(13)

_ 1
R = v rank(di)—i—idzzorank(di) (14)

d; <0
Here, R™ indicates that the value of HPSO is better than
that of the other algorithm, whereas R~ refers to the
opposite scenario; and d; = 0 indicates that two algorithms
have the same test results.

P value is the probability of the observation results of
the sample and the more extreme results when the null
hypothesis is true. If the p value is extremely small, it
means that the probability of the conditions when the null
hypothesis is true is very low. If such conditions take place,
we have reason to refuse the null hypothesis according to
the small probability principle. The smaller p value, we
have the more adequate reason to refuse the null hypoth-
esis. In conclusion, the smaller p value, the more signifi-
cant the results are.

In Table 7, while comparing HPSO with CLPSO, we set
the null hypothesis HO as HPSO better than CLPSO, and

the alternative hypothesis H1 as HPSO not better than
CLPSO. When comparing HPSO with other algorithms,
respectively, the hypothesis is opposite, namely the null
hypothesis HO indicates that HPSO is not better than the
other algorithm, whereas the alternative hypothesis H1
indicates that HPSO outperforms the other algorithm.
Therefore, one-side test should be used. During the analysis
with SPSS software, the significance value of the accuracy
(one-side) is selected, with 0.05 chosen as the significance
level in this study. According to Table 7, by comparison of
HPSO and CLPSO, p value is far less than 0.05, so we
reject HO and accept H1 that CLPSO outperforms HPSO.
Comparing HPSO with SaDE, we accept HO, with the
p value higher than 0.05, suggesting that HPSO is not
better than SaDE. While comparing HPSO with the other
11 algorithms, the p value is found far less than 0.05 all the
time, so we accept H1 that HPSO is better than the other 11
algorithms, and the differences are statistically significant.
HPSO is thus proven very effective.

5 Conclusion

In our paper, we have developed a new hybrid PSO
(HPSO) heuristic algorithm so as to estimate the
parameters of the Muskingum model. HPSO has better
possessing capabilities than the GAs and is much easier
to implement. We have conducted intensive experiments
to compare the key performance of our presented algo-
rithm with other superior estimation methods. The HPSO
has the advantage that it does not require assumptions of
the initial values of the model parameters compared with
conventional methods. Furthermore, the results demon-
strate that HPSO can achieve a higher degree of accuracy
and faster convergent speed to estimate the Muskingum
model parameters, which leads to accurate predictions of
outflow and guarantees the effectiveness of outflow
forecasting. It is worth to mention that no derivative is
required by the HPSO method; moreover, HPSO will
produce a better solution via making full use of advan-
tages of HPSO and NMSM. In a word, HPSO is an
effective and feasible parameter estimation method for
Muskingum model, and it can be widely applied in the
field of hydrology and hydraulics.
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