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Abstract This paper considers the coordinated formation

pattern control of multiple marine surface vehicles in the

presence of model uncertainty and time-varying ocean

disturbances induced wind, waves and ocean currents.

Leaderless and leader-follower formation controllers

depending on the information of neighboring vehicles are

devised based on a backstepping technique. Neural net-

works together with adaptive filtering methods are

employed to extract the low frequency content of the model

uncertainty and ocean disturbances. The results are further

extended to the formation pattern control with unmatched

time-varying ocean currents. An observer is developed to

precisely identify the time-varying ocean currents. Then,

observer-based leaderless and leader-follower formation

controllers are proposed. For both cases, the stability

properties of the multi-vehicle systems are established via

Lyapunov analysis, and the formation tracking errors

converge to an adjustable neighborhood of origin. An

advantage of this design is that it results in adaptive for-

mation controllers with guaranteed low frequency control

signals, which facilitates practical implementations. An

example is given to show the performance of the proposed

methods.

Keywords Distributed control � Formation control �
Neural networks � Marine surface vehicles � Time-varying

ocean current

1 Introduction

In recent years, cooperative control of multiple vehicles

has drawn significant attention [1, 2]. Applications of

multi-vehicle systems can be found everywhere; in space,

in the air, on land and at sea. Examples include formation

flight of satellites, coordinated control of aerial vehicles,

formation control of mobile robots and cooperative control

of marine vehicles. Obviously, multi-vehicle systems

enable individuals to collaborate with each other to per-

form difficult tasks, providing enhanced effectiveness and

efficiency than a single one.

During the past decade, there has been considerable

attention drawn to formation control of multiple marine

surface vehicles (MSVs). Various approaches have been

proposed, ranging from virtual structure framework [3],

behavioral approach [4], leader-follower mechanisms [5–

7], to synchronized path following framework [8]. Appar-

ently, these control strategies only result in low-level

cooperative behaviors. However, to execute more chal-

lenging missions, it requires the use of multiple vehicles

working together to achieve a collective objective [1, 2, 9–

11]. For example, a group of MSVs is required to achieve

coverage in a sensor network, where the coverage center

can be only known by a portion of vehicles for security

reasons. They exchange their knowledge by communicat-

ing with a subset of nearby vehicles, in order to achieve the

coverage. Obviously, such motion control scenario cannot

be completed by those formation control strategies men-

tioned above.

A major constraint in a networked system is that the

information flow can be severely restricted either for

security reasons or for limited communication range. This

situation is getting worse when a large lumber of vehicles

are involved in the network. Consequently, centralized

Z. Peng (&) � D. Wang � H. Wang � W. Wang

School of Marine Engineering, Dalian Maritime University,

Dalian 116026, People’s Republic of China

e-mail: zhouhuapeng@gmail.com

123

Neural Comput & Applic (2014) 25:1771–1783

DOI 10.1007/s00521-014-1668-z



controllers based on the information gathered by all agents

are generally impractically to implement. Therefore, dis-

tributed control strategies based on neighborhood infor-

mation have been widely explored in the literature [10–24].

These results are elegant. However, note that the agents are

usually modeled as first-order systems [10–13], second-

order systems [14–17], high-order systems [18] and general

linear systems [19–23], which may not be adequate to

describe the practical dynamics of MSVs as they undergo

maneuvers in hazardous sea environment. Hopefully, the

results shed some light onto the formation control of

multiple MSVs discussed in this paper.

MSV possesses a lot of uncertainty in its dynamics such

as payload variations, unmodeled hydrodynamics and time-

varying ocean disturbances induced by wind, waves and

ocean currents [25]. To deal with this problem, adaptive

control methods have been suggested [26–32]. In [26], a

projection-based adaptive controller is developed for ship

with parametric uncertainty and unknown ocean distur-

bances. In [27], adaptive update laws are devised to esti-

mate the unknown model parameters and bounded

disturbances. In [26, 27], the uncertainty is assumed to be

parametric. By designing the neural adaptive controllers,

references [28–32] investigated the control problem of

surface vehicles with unmodeled dynamics and ocean

disturbances. It is well known that the ocean disturbances

including wind, waves and ocean currents not only contain

low frequency content, but also high frequency content. In

particular, the adaptive methods given in [26–32] try to

learn the vehicle uncertainty at arbitrary accuracy. How-

ever, from a practical perspective, only low frequency

content can be compensated since the high frequency

content is surely outside the bandwidth of actuators [33].

Therefore, it is of practical importance to derive an adap-

tive controller capable of extracting the low frequency

content of ocean uncertainty.

Motivated by the above observations, this paper con-

siders the coordinated formation pattern control of net-

worked MSVs subject to dynamical uncertainty and ocean

disturbances induced by wind, waves and ocean currents.

In the leaderless case, the objective is to drive a group of

MSVs to shape a relative formation pattern via local

interactions. As for the leader-follower case, the objective

is to force a group of MSVs to maintain a relative forma-

tion pattern with respect to a target point. Especially, only a

subset of follower vehicles has access to the reference

point. Neural networks, adaptive filtering and backstepping

techniques are used to devise the formation controllers.

Lyapunov analysis demonstrates that all signals in the

closed-loop systems are uniformly ultimately bounded, and

the formation tracking errors can be reduced as desired. An

extension to the unmatched time-varying ocean currents is

further studied. An observer is developed to identify the

time-varying ocean currents at the kinematic level. An

example is provided to show the performance of the pro-

posed schemes. The main advantages are twofolds. First,

the proposed scheme results in adaptive formation pattern

controllers with guaranteed low frequency control signals,

which facilitate practical implementations. Second, the

time-varying ocean currents can be identified accurately

and a relative formation pattern can be reached under the

time-varying ocean currents.

In this paper, a practical design method, by combining

neural networks, adaptive filtering and backstepping tech-

niques, is proposed for formation pattern control of MSVs

under hazardous sea environment. The comparisons with

the exiting results are listed as below. In contrast to the

formation controllers proposed in [3–8], the developed

controllers hold a distributed nature in the sense that only

neighboring information is used for feedback design.

Compared with the adaptive controllers for marine vehicles

in [26–32], the proposed adaptive controllers are able to

capture the low frequency content of vehicle uncertainty

and ocean disturbances. Finally, it is worth mentioning that

the ocean currents at the vehicle kinematics are assumed to

be constant in [34, 35], while this paper is the first trial to

deal with the time-varying ocean currents.

This paper is organized as follows. Section 2 intro-

duces some preliminaries and formulates the control

problem. The leaderless and leader-follower formation

controller designs are given in Sect. 3, both with rig-

orous stability analysis. The results are further extended

to the formation pattern control in the presence of time-

varying ocean currents in Sect. 4. Section 5 gives an

example for illustrating the theoretical results. Section 6

concludes this paper.

Notations jj � jj, jj � jjF and trð�Þ denote the Euclidean

norm, Frobenius norm and trace of a matrix, respectively.

kminð�Þ, kmaxð�Þ denote the smallest and biggest eigenvalue

of a square matrix, respectively. The Kronecker product is

denoted by �. IN is an identity matrix of dimension N.

diagfA1; . . .;ANg denotes a block-diagonal matrix with the

elements Ai; i ¼ 1; . . .;N; on its diagonal; here, Ai can be a

scalar or a matrix.

2 Preliminaries and problem formulation

2.1 Preliminaries

2.1.1 Graph theory

Consider a system consisting of N vehicles and a leader. Each

vehicle is assumed to know its own state and has access to the

state information from a subset of the vehicle group called

the neighbor set denoted by N i � f1; . . .;Ng n fig. If each
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vehicle is considered as a node, the neighbor relation can be

described by a graph G ¼ fV; Eg, where V ¼ fn1; . . .; nNg is

a node set and E ¼ fðni; njÞ 2 V � Vg is an edge set with the

element ðni; njÞ that describes the communication from node

i to node j. Further, define the adjacency matrix A ¼ ½aij� 2
R

N�N with the diagonal entries aii ¼ 0; and the non-diagonal

entries aij ¼ 1, if ðnj; niÞ 2 E; aij ¼ 0, otherwise. Define the

Laplacian matrix L ¼ ½lij� with lij ¼ �aij, if j 6¼ i, and

lij ¼
PN

k¼1 aik, otherwise. If aij ¼ aji 8i; j; then, the graph G
is undirected. If there is a path between any two nodes of an

undirected network, then the graph G is connected. Finally,

define a diagonal matrix B ¼ diagfb1; . . .; bNg to be a leader

adjacency matrix, where bi [ 0 if and only if the ith vehicle

is a neighbor of the leader; otherwise, bi ¼ 0. For conve-

nience, let H ¼ Lþ B. The following lemmas play an

important role in design and analysis of the proposed for-

mation controllers.

Lemma 1 [10] Let the graph G be undirected and con-

nected, and at least, one vehicle has access to the leader.

Then, the matrix H is positive definite.

Lemma 2 Let the graph G be undirected and connected;

then, there exist a positive definite matrix P such that

zT Lz ¼ sT Ps, where z ¼ ½z1; . . .; zN �T; s ¼ ½s1; . . .; sN �T;
si ¼

PN
j¼1 aijðzi � zjÞ.

Proof The proof details can be found in [12], and thus,

omitted here for brief.

Lemma 3 [37] Let the graph G be undirected and

connected. Then, k2ðLÞkx� 1� AveðxÞk� xT Lx where

k2ðLÞ denotes the smallest nonzero eigenvalue of L, x ¼
½x1; . . .; xN �T 2 R

n and AveðxÞ ¼
PN

i¼1 xi.

2.1.2 Projection operator

Definition 1 [38] Assume that an unknown h	 2 R
n

exists kh	k� h	M with h	M [ 0 and let h be denoted by its

estimation. Then, the projection operator Proj : Rn ! R
n is

defined as

ProjðyÞ, y� /0ðhÞ/0TðhÞy
k/0ðhÞk2

/ðhÞ; if /ðhÞ
 0 and /0ðhÞy\0;

y; otherwise;

8
><

>:

ð1Þ

where / : Rn ! R is a continuously differentiable convex

function

/ðhÞ ¼ hTh� #2

2eh#þ e2
h

; ð2Þ

where # and eh are positive constants with # ¼ h	M .

/0ðhÞ ¼ o/=oh.

Given hð0Þ�#, the projection operator takes the fol-

lowing properties

khðtÞk� hM; 8 t
 0;

k~hk� ~hM; 8 t
 0;

~hT½ProjðyÞ � y� � 0;

ð3Þ

where ~h ¼ h� h	, hM ¼ #þ eh, ~hM ¼ 2#þ eh;
Moreover, the definition of the projection operator can

be generalized to matrices as ProjðYÞ, where H 2 R
n�m

and Y 2 R
n�m. In this case, it follows from the property (3)

that

tr½ðH�H	ÞTðProjðYÞ � YÞ�� 0;H	 2 R
n�m; ð4Þ

where H	 denotes the true value of H.

2.2 Problem formulation

2.2.1 Vehicle model

To describe the motion of MSV, two reference frames are

used, a local earth-fixed frame and a body-fixed frame, as

depicted in Fig. 1. The components gi ¼ ½xi; yi;wi� are the

northeast positions ðxi; yiÞ of the vehicle relative to the

earth-fixed frame and the yaw angle wi relative to the north.

The components of the velocity vector mir ¼ ½uir; vir; ri�T
are the surge and sway velocities relative to ocean currents

ðuir; virÞ and the yaw rate ri. Here, the fluid is assumed to

be irrotational. Consider a group of N MSVs governed by

the following model [25] with kinematics

_gi ¼ RðwiÞmir þ VicðtÞ; ð5Þ

and kinetics

Mi _mir þ CiðmirÞmir þ DiðmirÞmir þ giðgi; mirÞ ¼ si þ sienðtÞ;
ð6Þ

where

RðwiÞ ¼
cos wi � sin wi 0

sin wi cos wi 0

0 0 1

2

6
4

3

7
5; ð7Þ

where Mi ¼ MT
i 2 R

3�3;CiðmirÞ 2 R
3�3;DiðmirÞ 2 R

3�3

denote the inertia matrix, coriolis/centripetal matrix and

damping matrix, respectively; giðgi; mirÞ ¼ ½giu; giv; gir�T 2
R

3 is unknown term including the restoring forces due to

gravity and buoyancy forces, and other unmodeled

dynamics; si ¼ ½siu; siv; sir�T 2 R
3 denotes the control

input; sienðtÞ ¼ ½sienuðtÞ; sienvðtÞ; sienrðtÞ�T 2 R
3 is the

resulting environmental force and moment vector due to

wind and waves. VicðtÞ ¼ ½tixðtÞ; tiyðtÞ; 0�T 2 R
3 is the

vector representing the time-varying ocean currents.
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Remark 1 In the literature, a variety of motion control

concepts has been proposed and validated on the vehicle

model, e.g., dynamic positioning [30], trajectory track-

ing [28, 31], mooring control [29], path following [8,

36]. In fact, this model represents a large number of

marine vehicles in practice. It is should be noted that

most vehicles are underactuated at high speeds and are

forced to maneuver in an energy-efficient manner.

However, this paper aims to shape a relative stationary

formation pattern at the sea surface. Therefore, low

speed operations are enabled and the vehicles consid-

ered are fully actuated.

2.2.2 Control objective

Definition 2 A desired geometric formation pattern is

defined as P ¼ fPig where Pi ¼ ½pix; piy; piw�T,

i ¼ 1; . . .;N, and pix; piy; piw are constants.

Without losing of generality, assume that
PN

i¼1 Pi ¼ ½0; 0; 0�T, i.e., the center of the geometric pat-

tern P is at the origin of the earth-fixed frame.

Remark 2 For simplicity, a static relative formation pat-

tern is considered here, i.e., _Pi ¼ 0.

Define Pij ¼ Pi � Pj. Then, the control objective is to

design a distributed control law ui to achieve the geometric

formation pattern P, i.e.,

lim
t!1
kgi � gj � Pijk� d1; i 6¼ j; ð8Þ

where d1 is a positive constant which can be made suffi-

ciently small.

In many instances, it is desirable that the formation

pattern center of MSVs arrives at a given reference point

gr 2 R
3. Then, the leader-follower formation pattern con-

trol is to achieve the formation pattern P with a desired

reference point gr, i.e.,

lim
t!1
kgi � gj � Pijk� d2; i 6¼ j; ð9Þ

lim
t!1

XN

i¼1

gi

N
� gr

�
�
�
�
�

�
�
�
�
�
� d3; ð10Þ

where d2 and d3 are positive constants which can be made

sufficiently small.

Remark 3 Inequality (9) means that the MSVs converge

to the formation pattern P with bounded errors. Inequality

(10) indicates that the center of the formation pattern

nearly converges to the desired reference point gr.

The following assumptions are made in the following

controller design.

Assumption 1 The network G is undirected and

connected.

Assumption 2 [33] A nonlinear function fiðvi; tÞ can be

approximated by a neural network as

fiðvi; tÞ ¼ WT
i ðtÞuiðviÞ þ eiðviÞ; 8vi 2 D; ð11Þ

where WiðtÞ is an unknown time-varying matrix satisfying

kWiðtÞkF �WiM and k _WikF �Wd
iM with WiM 2 R;Wd

iM 2 R

positive constants; uiðviÞ : D ! R
s is a known vector

function of the form uiðviÞ ¼ ½ui1ðviÞ;ui2ðviÞ; . . .;uisðviÞ�
T

satisfying kuik�uiM with uiM a positive constant, and D
is a compact set; eiðviÞ is the approximation error satisfying

keiðviÞk� eiM with eiM a positive constant.

Remark 4 In assumption 2, the requirement of constant

NN weight is relaxed by allowing for time-varying NN

weight such that time-varying disturbances can be incor-

porated into the NN approximation.

3 Coordinated formation pattern control

In this section, we first consider the vehicle model with

matched model uncertainty and matched ocean distur-

bances induced by wind and waves, i.e., VicðtÞ � 0. The

unmatched disturbance induced by ocean currents will be

addressed in the Sect. 4.

3.1 Leaderless formation pattern control

In the following, we show that how to use the neural net-

works, adaptive filtering and backstepping [39] techniques

to develop the distributed formation controller. The design

procedure is elaborated as follows.

Step 1. Define two variables

zi1 ¼ gi � Pi;

zi2 ¼ mir � ai1;

�

ð12Þ

where ai1 2 R
3 is a virtual control input. Take the time

derivative of zi1, and it follows that

Fig. 1 Reference frames: earth-fixed and body-fixed
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_zi1 ¼ Riai1 þ Rizi2; ð13Þ

where Ri ¼ RðwiÞ.
Then, a distributed kinematic virtual control law ai1

based on the local information is proposed as follows

ai1 ¼� Ki1RT
i si; ð14Þ

where Ki1 ¼ diagfki11; ki12; ki13g is a diagonal matrix with

ki11 2 R; ki12 2 R; ki13 2 R being positive constants; si is

defined as

si ¼
X

j2N i

aijðgi � gj � PijÞ: ð15Þ

where aij is defined in Sect. 2.1.1.

Substituting (14) into (13) yields

_zi1 ¼ �Ki1si þ Rizi2; ð16Þ

Let z1 ¼ ½zT
11; . . .; zT

N1�
T
, z2 ¼ ½zT

12; . . .; zT
N2�

T
, s ¼ ½sT

1 ; . . .;

sT
N �

T
, R ¼ diagfRðw1Þ; . . .;RðwNÞg, K1 ¼ diagfK11; . . .;

KN1g. Then, the N subsystem (13) with (16) can be

expressed as

_z1 ¼� K1sþRz2; ð17Þ

Consider a Lyapunov function candidate

V11 ¼
1

2
zT

1 ðL� I3Þz1; ð18Þ

whose time derivative along (17) is given by

_V11 ¼� sT K1sþ sTRz2: ð19Þ

Step 2. Taking the time derivative of zi2 yields

Mi _zi2 ¼� CiðmirÞmir � DiðmirÞmir � giðgi; mirÞ þ si

þ sienðtÞ �Mi _ai1:
ð20Þ

Then, consider the second Lyapunov function candidate

V12 ¼ V11 þ
1

2
zT

2 Mz2; ð21Þ

where M ¼ diagfM1; . . .;MNg. Its time derivative with

(20) is

_V12 ¼� sT K1sþ
XN

i¼1

fzT
i2ð�CiðmirÞmir � DiðmirÞmir

� giðgi; mirÞ þ si þ sienðtÞ �Mi _ai1 þ RT
i siÞg:

ð22Þ

The desired kinetic control law si is chosen as

si ¼ �Ki2zi2 � RT
i si þ fiðvi; tÞ; ð23Þ

where fiðvi; tÞ ¼ ½f u
i ð�Þ; f v

i ð�Þ; f r
i ð�Þ�

T ¼ Mi _ai1 þ CiðmirÞmir þ
DiðmirÞmir þ giðgi; mirÞ � sienðtÞ with vi ¼ ½1; gi; gj; mir; mjr�T,

j 2 N i ; f u
i ð�Þ; f v

i ð�Þ and f r
i ð�Þ denote the uncertainty in

surge, sway and yaw directions, respectively; Ki2 ¼
diagfki21; ki22; ki23g 2 R

3�3 with ki21 2 R; ki22 2 R; ki23 2
R being positive constants.

Note that without the explicit knowledge of

Ci;Di; gi;Mi; sienðtÞ, the controller given in (23) cannot be

available. Then, let fiðvi; tÞ be approximated by the NN in

(11).

In what follows, a practical kinetic control law is con-

structed as follows

si ¼ �Ki2zi2 � RT
i si þ sia; ð24Þ

where sia ¼ ½su
ia; s

v
ia; s

r
ia�

T
is an adaptive term designed as

sia ¼ ŴT
i ðtÞuiðviÞ: ð25Þ

ŴiðtÞ is an estimate of WiðtÞ that updated as

_̂
WiðtÞ ¼ CiW Projf�uiðviÞzT

i2 þ kW ½Ŵif ðtÞ � ŴiðtÞ�g;
ð26Þ

and Wif ðtÞ is a low-pass filter weight estimate of WiðtÞ
given by

_̂
Wif ðtÞ ¼ Cif ProjfŴiðtÞ � Ŵif ðtÞg; ð27Þ

where kW 2 R;CiW 2 R;Cif 2 R are positive constants.

Substituting the control law (24) into (22) yields

_V12 ¼� sT K1s� zT
2 K2z2 þ

XN

i¼1

zT
i2½ ~WT

i ðtÞuiðviÞ � ei�;

ð28Þ

where K2 ¼ diagfK12; . . .;KN2g and ~WiðtÞ ¼ ŴiðtÞ �WiðtÞ.
The first result of this paper is stated as follows.

Theorem 1 Consider a networked system consisting of N

MSVs governed by the dynamics (5, 6) with Assumptions

1 and 2 satisfied. Select the control law (24) with the

adaptive laws (26) and (27). Then, all the signals in the

closed-loop system are uniformly ultimately bounded

(UUB), and the formation pattern control errors gi � gj �
Pij satisfy (8) for some constant d1 which can be adjusted

to a small neighborhood of origin, provided that

kminðK2Þ[ 1=2: ð29Þ

Proof Consider the augmented Lyapunov function

candidate

V1 ¼V12 þ
1

2

XN

i¼1

tr ~WT
i C�1

iW
~Wi

� �
þ kW tr ~WT

if C
�1
if

~Wif

� �n o
;

ð30Þ

whose time derivative with (26, 27) and (28) is given

by
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_V1 ¼� sT K1s� zT
2 K2z2 þ

XN

i¼1

�zT
i2ei þ tr ~WT

i uiðviÞzT
i2

�		

þC�1
iW

_̂
Wi

io
þ kW tr ~WT

if C
�1
if

_̂
Wif

� �o
� tr ~WTC�1

W

��

þkW
~WT

f C�1
f

�
_W
i
;

ð31Þ

where ~W ¼ ½ ~WT
1 ; . . .; ~WT

N �
T
, _W ¼ ½ _WT

1 ; . . .; _WT
N �

T
, CW ¼

diagfC1W Is; . . .;CNW Isg, Cf ¼ diagfC1f Is; . . .;CNf Isg, ~Wif

¼ Ŵif �Wi:

After some manipulations, we have

_V1� � sT K1s� zT
2 K2z2 þ

XN

i¼1

�zT
i2ei þ tr ~WT

i uiðviÞzT
i2

�		

þkWð ~Wi � ~Wif Þ þ C�1
iW

_̂Wi

io
þ kW tr ~WT

if ð ~Wif

h

� ~Wi þ C�1
if

_̂
Wif

�io
� tr ~WTC�1

W

��

þkW
~WT

f C�1
f

�
_W
i
:

ð32Þ

The property of the projection operator (4) leads to

_V1� � sT K1s� zT
2 K2z2 � zT

2 e

� tr ~WTC�1
W þ kW

~WT
f C�1

f

� �
_W

h i
;

ð33Þ

where e ¼ ½eT
1 ; . . .; eT

N �
T:

According to Assumption 2, ei, Wi and _Wi are bounded.

Then, there exist positive constants eM 2 R;WM 2 R and

Wd
M 2 R such that kek� eM , kWkF �WM and k _Wk�Wd

M .

Using the projection properties in (3), we further obtain

that there exist positive constants ~WM 2 R such that

k ~WkF � ~WM and k ~Wf kF � ~WM . Using Young’s inequality

yields

jzT
2 ej � 1

2
kz2k2 þ 1

2
e2

M ;

�trð ~WTC�1
W

_WÞ � kmaxðC�1
W Þ ~WMWd

M ;

�trð ~WT
f C�1

f
_WÞ � kmaxðC�1

f Þ ~WMWd
M ;

8
>>><

>>>:

ð34Þ

which leads to

_V1� � kminðK1Þksk2 � ½kminðK2Þ � 1=2�kz2k2 þ �; ð35Þ

where

� ¼ 1

2
keMk2 þ ½kmaxðC�1

W Þ þ kWkmaxðC�1
f Þ� ~WMWd

M : ð36Þ

Note that either ksk[
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=kminðK1Þ

p
; or kz2k[

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�=½2kminðK2Þ � 1�

p
; renders _V1\0. It follows that s and

z2 are UUB [40]. Moreover, ksk is bounded by

ksk�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=kminðK1Þ

p
.

By Lemmas 2 and 3, we further obtain

1

2
k2ðLÞkz1 � 1� AveðzÞk2� sTðP� I3Þs; ð37Þ

which leads to

kzi � Aveðz1Þk� kz1 � 1� Aveðz1Þk�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kmaxðPÞ�

k2ðLÞkminðK1Þ

s

:

ð38Þ

Note that

kgi � gj � Pijk�kzi1 � Aveðz1Þk þ kzj1 � Aveðz1Þk;

which directly implies (8) with d1 taken as

d1 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kmaxðPÞ�

k2ðLÞkminðK1Þ

s

: ð39Þ

Note that by increasing Ki1, the tracking bound d1 can be

adjusted very small. This completes the proof. h

3.2 Leader-follower formation pattern control

In the preceding section, the position center of the forma-

tion is generally not explicit. In practice, it is demandable

for the group arrive at a reference point with a desired

formation pattern. To deal with this case, a distributed

leader-follower formation pattern controller is designed

based on neural networks, adaptive filtering and

backstepping.

Step 1. In this case, define

qi1 ¼ gi � Pi � gr;

qi2 ¼ mir � ai2:

�

ð40Þ

Taking time derivative of qi1 along (5) gives

_qi1 ¼ RðwiÞai2 þ Riqi2: ð41Þ

Since only a portion of vehicles has access to gr, the tra-

ditional centralized position tracking control cannot be

applied. Here, a distributed virtual control law ai2 based on

the information of neighboring vehicles is proposed as

follows

ai2 ¼� Ki1RT
i fi; ð42Þ

where Ki1 is defined the same as (14); fi is defined as

fi ¼
XN

j¼1

½aijðgi � gj � PijÞ þ biqi1�; ð43Þ

where bi is defined in Sect. 2.1.1.

Substituting (42) into (41) yields

_qi1 ¼� Ki1fi þ Riqi2: ð44Þ
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Let q1 ¼ ½qT
11; . . .; qT

N1�
T
, q2 ¼ ½qT

12; . . .; qT
N2�

T
, f ¼ ½fT

12; . . .;

fT
N2�

T
. Then, the N subsystem of (44) resulting from f ¼

ðH � I3Þq1 can be expressed by

_q1 ¼� K1ðH � I3Þq1 þRq2: ð45Þ

Step 2. Taking the time derivative of qi2, we have

Mi _qi2 ¼� CiðmirÞmir � DiðmirÞmir � giðgi; mirÞ þ si

þ sienðtÞ �Mi _ai1:
ð46Þ

Consider the following Lyapunov function candidate

V21 ¼
1

2
q1ðH � I3Þq1 þ

1

2
qT

2 Mq2; ð47Þ

whose time derivative along (45) and (46) satisfies

V21 ¼� fT K1fþ
XN

i¼1

n
qT

i2ð�CiðmirÞmir � DiðmirÞmir

� giðgi; mirÞ þ si þ sienðtÞ �Mi _ai1 þ RT
i fiÞ

o
:

ð48Þ

Similar to the leaderless case, a practical kinetic controller

is proposed as follows

si ¼ �Ki2qi2 � RT
i fi þ ŴT

i ðtÞuiðviÞ; ð49Þ

where ŴiðtÞ is updated as

_̂
WiðtÞ ¼ CiW Projf�uiðviÞqT

i2 þ kW ½Ŵif ðtÞ � ŴiðtÞ�g;
ð50Þ

and Wif ðtÞ is updated as (27); Ki2;CiW ; kW are defined the

same as in (26).

Substituting the control law (49) into (48) yields

_V21 ¼� fT K1f� qT
2 K2q2 þ

XN

i¼1

qT
i2½ ~WT

i ðtÞuiðviÞ � ei�:

ð51Þ

Now, we are ready to state the second result of this

paper.

Theorem 2 Consider a networked system consisting of N

MSVs governed by the dynamics in (5) (6) with Assump-

tions 1–2 satisfied, and at least, one MSV has access to gr.

Select the control law (49) with the adaptive laws (50) and

(27). Then, all the signals in the closed-loop system are

UUB, and the formation pattern control errors gi � gj � Pij

satisfy (9) for some constant d2 and the formation center

arrives at gr with bounded errors d3 given by (10), provided

that

kminðK2Þ[ 1=2: ð52Þ

Proof Consider the augmented Lyapunov function

candidate

V2 ¼V21 þ
1

2

XN

i¼1

n
tr ~WT

i C�1
iW

~Wi

� �
þ tr ~WT

if C
�1
if

~Wif

� �o

ð53Þ

Using the adaptive laws (50, 27) and the property of the

projection operator, one has

_V2� � fT K1f� qT
2 K2q2 � zT

2 e� tr ~WC�1
W

��

þkW
~Wf C

�1
f

�
_W
i
;

ð54Þ

Using the inequality

jqT
2 ej � 1

2
kq2k2 þ 1

2
e2

M ; ð55Þ

it follows that

_V2� � kminðK1Þkfk2 � ½kminðK2Þ � 1=2�kz2k2 þ �; ð56Þ

with � defined in (36).

Note that either kfk[
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=kminðK1Þ

p
; or

kq2k[
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�=½2kminðK2Þ � 1�

p
makes _V2\0. It follows that

f and q2 are UUB. Furthermore, kfk is bounded by

kfk�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

kminðK1Þ

r

: ð57Þ

Noting that f ¼ ðH � I3Þz1 and the fact H is positive def-

inite By Lemma 1, it follows that

kqi1k�kq1k�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

kminðHÞkminðK1Þ

r

; ð58Þ

implying (9) with d2 taken as

d2 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

kminðHÞkminðK1Þ

r

:

Also, note that

k
XN

i¼1

gi

N
� grk�

PN
i¼1 kqi1k

N
; ð59Þ

which leads to (9) with d3 taken as

d3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

kminðHÞkminðK1Þ

r

:

This completes the proof. h

Remark 5 By choosing appropriate parameters Cif , the

adaptive update laws (27) serve as low-pass filters. That is

to say, Ŵif only contain the low frequency content of Ŵi. In

addition, the adaptive laws (26) try to minimize the dif-

ference between Ŵi and Ŵif . As such, the low frequency

control signals are guaranteed.

Remark 6 Compared with adaptive control strategies for

marine vehicles in [5, 7, 26–32], the proposed control

Neural Comput & Applic (2014) 25:1771–1783 1777

123



method takes the following advantage. In [26], a pro-

jection-based adaptive controller is developed to deal

with the parametric model uncertainty and ocean distur-

bances. In [27], standard adaptive update laws are

devised to estimate the unknown model parameters and

ocean disturbances. In [5, 7, 28–32], neural adaptive

controllers are developed to handle parametric model

uncertainty, ocean disturbances and unmodeled dynamics.

In all aforementioned results, the proposed controllers try

to learn the uncertainty at arbitrary accuracy and did not

provide any means for regulating the learning bandwidth

of adaptive terms. However, the devised controllers are

able to capture the low frequency content of the uncer-

tainty and ocean disturbances, while preserve the stability

of whole system, which results in practical implement-

able formation controllers.

4 Coordinated formation pattern control under time-

varying ocean currents

This section addresses the formation pattern stability under

the time-varying ocean currents.

4.1 Identification of time-varying ocean currents

In the following, an observer is developed to precisely

identify the unknown time-varying ocean currents. The

observer is designed at the kinematic level and has a simple

structure. However, extra effort should be made to derive

the stability of the entire system by putting together the

observer and kinetic control law.

From (5), the position dynamics can be described by

_xi ¼ ui cosðwiÞ þ vi sinðwiÞ þ tixðtÞ;
_yi ¼ ui sinðwiÞ þ vi cosðwiÞ þ tiyðtÞ:

�

ð60Þ

Let t̂ixðtÞ and t̂iyðtÞ be the estimate of tixðtÞ and tiyðtÞ,
respectively, and then, a local observer is constructed as

follows

_̂xi ¼ ui cosðwiÞ þ vi sinðwiÞ þ t̂ixðtÞ � ji1~xi;

_̂yi ¼ ui sinðwiÞ þ vi cosðwiÞ þ t̂iyðtÞ � ji2~yi;

(

ð61Þ

where ~xi ¼ x̂i � xi and ~yi ¼ ŷi � yi are observing errors;

ji1 2 R and ji2 2 R are positive constants; t̂ixðtÞ and t̂iyðtÞ
are updated as

_̂tixðtÞ ¼ CixProjf�~xi þ kxðt̂ixf ðtÞ � t̂ixðtÞÞg;
_̂tiyðtÞ ¼ CiyProjf�~yi þ kyðt̂iyf ðtÞ � t̂iyðtÞÞg;

(

ð62Þ

where t̂ixf ðtÞ and t̂iyf ðtÞ are low-pass filter weight estimates

of t̂ixðtÞ and t̂iyðtÞ given by

_̂tixf ðtÞ ¼ Cixf Projft̂ixðtÞ � t̂ixf ðtÞg;
_̂tiyf ðtÞ ¼ Ciyf Projft̂iyðtÞ � t̂iyf ðtÞg;

(

ð63Þ

where kx 2 R; ky 2 R;Cix 2 R;Ciy 2 R;Cixf 2 R;Ciyf 2 R�
are positive constants. The resulting errors dynamics of ~xi

and ~yi can be described by

_~xi ¼ �ji1~xi þ ~tix;

_~yi ¼ �ji2~yi þ ~tiy:

(

ð64Þ

where ~tix ¼ t̂ix � tix, and ~tiy ¼ t̂iy � tiy:
The following lemma plays an important role in estab-

lishing the stability of the closed-loop system.

Lemma 4 For kinematic dynamics (60) with the observer

(61) and the adaptive laws (62, 63) guarantee that the error

signals ~xi, ~yi, ~tix, ~tiy are UUB.

Proof Consider the following Lyapunov function candidate

Vo ¼
XN

i¼1

n
~x2

i þ ~y2
i þ C�1

ix ~t2
ix þ C�1

iy ~t2
iy þ kxC

�1
ixf ~t2

ixf þ kyC
�1
iyf ~t2

iyf

o
;

where ~tixf ¼ t̂ixf � tix, and ~tiyf ¼ t̂iyf � tiy: Its time

derivative of which along (64) can be described by

_Vo¼
XN

i¼1

n
�ji1~x2

i �ji2~y2
i þ ~tixð~xiþC�1

ix
_̂tixÞþ kx~tixf C

�1
ixf

_̂tixf

þ ~tiyð~yiþC�1
iy

_̂tiyÞþ ky~tiyf C
�1
iyf

_̂tiyf � ~tixðC�1
ix þ kxC

�1
ixf Þtix

� ~tiyðC�1
iy þ kyC

�1
iyf Þtiy

o
: ð65Þ

Substituting the adaptive laws into (65) yields

_Vo ¼
XN

i¼1

n
� ji1~x2

i � ji2~y2
i � ~tixðC�1

ix þ kxC
�1
ixf Þ _tix

� ~tiyðC�1
iy þ kyC

�1
iyf Þ _tiy

o
:

ð66Þ

Let j1 ¼ diagfj11; . . .; jN1g, j2 ¼ diagfj12; . . .; jN2g,
Cx ¼ diagfC1x; . . .;CNxg, Cy ¼ diagfC1y; . . .;CNyg; Cxf ¼
diagfC1xf ; . . .;CNxf g, Cyf ¼ diagfC1yf ; . . .;CNyf g, ~x ¼
½~x1; . . .; ~xN �T, ~y ¼ ½~y1; . . .; ~yN �T, ~tx ¼ ½~t1x; . . .; ~tNx�T,

~ty ¼ ½~t1y; . . .; ~tNy�T, and it follows that

_Vo� � ~xTj1~x� ~yTj2~y� ð~tT
x C�1

x þ kx~tT
fxC
�1
xf Þ _tx

� ð~tT
y C�1

y þ ky~tT
fyC
�1
yf Þ _ty:

ð67Þ

The projection operation leads to the following bound

j � ð~tT
x C�1

x þ kx~tT
fxC
�1
xf Þ _txj � ½kmaxðC�1

x Þ þ kxkmaxðC�1
xf Þ�~txMtd

xM

j � ð~tT
y C�1

y þ ky~tT
fyC
�1
yf Þ _tyj � ½kmaxðC�1

y Þ þ kykmaxðC�1
yf Þ�~tyMtd

yM

where ~txM 2 R, ~tyM 2 R, td
xM 2 R, td

yM 2 R are positive

constants. Finally, one has
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_Vo� � kminðj1Þ~x2 � kminðj2Þ~y2 þ �o;

with �o ¼ ½kmaxðC�1
x Þþ kxkmaxðC�1

xf Þ�~txMtd
xM þ ½kmaxðC�1

y Þ
þkxkmaxðC�1

yf Þ�~tyMtd
yM . Note that ~x [

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�o=kminðj1Þ

p
and

~y [
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�o=kminðj1Þ

p
renders _Vo\0. It follows that ~x and ~y

are UUB. The projection operator ensures that the weights

t̂x and t̂y are contained in compact sets for all t, which

implies that ~tx and ~ty are UUB. The proof is complete. h

Remark 7 The advantage of using an observer rather than

using a direct adaptive control method to identify the ocean

currents lies in the fact that it separates the estimate loop

from the control loop, which enables an accurate and fast

learning. This will be demonstrated in the simulation part.

Remark 8 In [34], an observer is proposed to identify

constant ocean currents. In [35], a direct adaptive method is

employed to identify the constant ocean currents. This

paper, to our best knowledge, is the first trial to deal with

time-varying ocean currents.

4.2 Leaderless formation pattern control

In this case, taking the time derivative of qi1, one has

_zi1 ¼ Riai1 þ Rizi2 þ VicðtÞ: ð68Þ

Then, a distributed kinematic control law ai1 based on the

local information is proposed as follows

ai1 ¼� Ki1RT
i si � RT

i V̂icðtÞ: ð69Þ

where V̂ic ¼ ½t̂ix; t̂iy; 0�T:
In essence, the left controller design follows the back-

stepping technique, and thus, omitted here for brief. The

kinetic controller is directly taken as (24).

In summary, the leaderless formation controller under

time-varying ocean currents is constructed as follows.

Control laws:

si ¼ ŴT
i ðtÞuiðviÞ � Ki2zi2 � RT

i si;

ai1 ¼ �Ki1RT
i si � RT

i V̂icðtÞ;
_̂xi ¼ ui cosðwiÞ þ vi sinðwiÞ þ t̂ixðtÞ � ji1~xi;
_̂yi ¼ ui sinðwiÞ þ vi cosðwiÞ þ t̂iyðtÞ � ji2~yi;

8
>>>><

>>>>:

ð70Þ

Adaptive laws:

_̂
WiðtÞ¼CiW Projf�uiðviÞzT

i2þkW ½Ŵif ðtÞ�ŴiðtÞ�g;
_̂

Wif ðtÞ¼Cif ProjfŴiðtÞ�Ŵif ðtÞg;
_̂tixðtÞ¼CixProjf�~xiþkxðt̂ixf ðtÞ� t̂ixðtÞÞg;
_̂tiyðtÞ¼CiyProjf�~yiþkyðt̂iyf ðtÞ� t̂iyðtÞÞg;
_̂tixf ðtÞ¼Cixf Projft̂ixðtÞ� t̂ixf ðtÞg;
_̂tiyf ðtÞ¼Ciyf Projft̂iyðtÞ� t̂iyf ðtÞg:

8
>>>>>>>>>><

>>>>>>>>>>:

ð71Þ

The resulting closed-loop network system can be described

by

_zi1 ¼ �Ki1si þ Riz2i � ~VicðtÞ;
Mi _zi2 ¼ �Ki2zi2 � RT

i si þ ~WT
i ðtÞuiðviÞ � ei;

_~xi ¼ �ji1~xi þ ~tix;

_~yi ¼ �ji2~yi þ ~tiy:

8
>>><

>>>:

ð72Þ

where ~VicðtÞ ¼ V̂icðtÞ � VicðtÞ:
It is the position to state the third result of this paper.

Theorem 3 Consider a networked system consisting of N

MSVs governed by the dynamics (5, 6) with Assumptions

1 and 2 satisfied. Select the control laws (70) with the

adaptive laws (71). Then, all signals in the closed-loop

system are UUB, and the formation pattern control errors

gi � gj � Pij satisfy (8) for some constant d1, provided that

kminðK1Þ[ 1=2; kminðK2Þ[ 1=2;

kminðj1Þ[ 1=2; kminðj2Þ[ 1=2:
ð73Þ

Proof Take the following Lyapunov function candidate

V3 ¼ V1 þ Vo; ð74Þ

whose time derivative along (72) and (71) can be put into

_V3 ¼ �sT K1s� zT
2 K2z2 � sT ~Vc � zT

2 e� tr½ð ~WTC�1
W

þ kW
~WT

f C�1
f Þ _W � � ~xTj1~x� ~yTj2~y� ð~tT

x C�1
x

þ kx~tT
fxC
�1
xf Þ _vx � ð~tT

y C�1
y þ ky~tT

fyC
�1
yf Þ _vy:

ð75Þ

Using Young’s inequality, it is easy to verify that

_V3� � ½kminðK1Þ � 1=2�ksk2 � ½kminðK2Þ � 1=2�kz2k2

� ½kminðj1Þ � 1=2�k~xk2 � ½kminðj2Þ � 1=2�k~yk2 þ �s;

with �s ¼ �þ �o.

Using (73) and noting that either ksk[
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�s=½kminðK1Þ � 1=2�

p
, or kz2k[

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�s=½kminðK2Þ � 1=2�

p
,

or k~xk[
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�s=½kminðj1Þ � 1=2�

p
, or k~yk[

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�s=½kminðj2Þ � 1=2�

p
renders _V3\0, it follows that s, z2,

~x, ~y are UUB. Using inequality (37), it follows that kz1 �

1� Aveðz1Þk�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kmaxðPÞ�s

k2ðLÞ½kminðK1Þ�1=2�

q
: Similarly, we can derive

that (8) is satisfied with d1 taken as

d1 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kmaxðPÞ�s

k2ðLÞ½kminðK1Þ � 1=2�

s

; ð76Þ

which can be reduced as desired. This completes the proof. h

4.3 Leader-follower formation pattern control

In this case, taking the time derivative of qi1 yields

_qi1 ¼ Riai2 þ Riqi2 þ VicðtÞ; ð77Þ
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Then, a distributed kinematic control law ai2 is proposed as

follows

ai2 ¼� Ki1RT
i fi � RT

i V̂icðtÞ; ð78Þ

Similarly, the leader-follower formation controller under

time-varying ocean currents is summarized as follows.

Control laws:

si ¼ ŴT
i ðtÞuiðviÞ � Ki2qi2 � RT

i fi;

ai2 ¼ �Ki1RT
i fi � RT

i V̂icðtÞ;
_̂xi ¼ ui cosðwiÞ þ vi sinðwiÞ þ t̂ixðtÞ � ji1~xi;

_̂yi ¼ ui sinðwiÞ þ vi cosðwiÞ þ t̂iyðtÞ � ji2~yi;

8
>>>><

>>>>:

ð79Þ

Adaptive laws:

_̂
WiðtÞ ¼ CiW Projf�uiðviÞqT

i2 þ kW ½Ŵif ðtÞ � ŴiðtÞ�g;
_̂Wif ðtÞ ¼ Cif ProjfŴiðtÞ � Ŵif ðtÞg;
_̂tixðtÞ ¼ CixProjf�~xi þ kxðt̂ixf ðtÞ � t̂ixðtÞÞg;
_̂tiyðtÞ ¼ CiyProjf�~yi þ kyðt̂iyf ðtÞ � t̂iyðtÞÞg;
_̂tixf ðtÞ ¼ Cixf Projft̂ixðtÞ � t̂ixf ðtÞg;
_̂tiyf ðtÞ ¼ Ciyf Projft̂iyðtÞ � t̂iyf ðtÞg:

8
>>>>>>>>>><

>>>>>>>>>>:

ð80Þ

The resulting closed-loop network system can be described

by

_qi1 ¼ �Ki1fi þ Riq2i � ~VicðtÞ;
Mi _qi2 ¼ �Ki2qi2 � RT

i fi þ ~WT
i ðtÞuiðviÞ � ei;

_~xi ¼ �ji1~xi þ ~tix;

_~yi ¼ �ji2~yi þ ~tiy:

8
>>><

>>>:

ð81Þ

The following theorem states the fourth result of this paper.

Theorem 4 Consider a networked system consisting of N

MSVs governed by the dynamics in (5, 6) with Assumptions

1–2 satisfied, and at least, one MSV has access to gr. Select

the control laws (79) with the adaptive laws (80). Then, all

the signals in the closed-loop system are UUB, and the

leader-follower formation pattern control errors satisfy (9)

for some constant d2 and the formation center arrives at gr

with bounded errors d3 given by (10), provided that

kminðK1Þ[ 1=2; kminðK2Þ[ 1=2

kminðj1Þ[ 1=2; kminðj2Þ[ 1=2:
ð82Þ

Proof Following the same steps as in proving the Theo-

rems 2 and 3, the stability of multi-vehicle systems can be

established by taking the Lyapunov candidate

V4 ¼ V2 þ Vo. The proof details are omitted here for brief.

5 An example

Consider a networked system that consists of five vehicles

whose model parameters can be found in Table 1 [36]. Let

the information topology among the five vehicles be given

by Fig. 2. We first consider the leader-follower formation

pattern control case without ocean currents. Next, we

consider the leader-follower formation pattern control

under time-varying ocean currents.

5.1 Case 1: leader-follower formation pattern control

In this case, the pattern controller given in Theorem 2 is

applied. The control parameters are selected as follows

Ki1 ¼ diagf0:2; 0:2; 0:2g;Ki2 ¼ diagf75; 22; 68:4g, CiW ¼
1000; Cif ¼ 2; kW ¼ 0:1. The NN activation function is

chosen as 1
1þe2x. The desired formation pattern is set to

P1 ¼ ½�0:7; 0; 0�T; P2 ¼ ½�0:7 cosð72�Þ; 0:7 sinð72�Þ; 0�T,

P3 ¼ ½�0:7 cosð72�Þ; �0:7 sinð72�Þ; 0�T, P4 ¼ ½0:7 cos

ð36�Þ; 0:7 sinð36�Þ; 0�T, P5 ¼ ½0:7 cosð36�Þ; �0:7 sinð36�Þ;
0�T:

Let the MSV 2 have access to a series of way-points

gr ¼ fð�1;�1; 0ÞT; ð0; 0; 45�ÞT; ð1; 1; 45�ÞT; ð2; 1; 0ÞT;
ð3; 1; 0ÞT; ð4; 1; 0ÞT; ð5; 0;�45�ÞT; ð6;�1;�45�ÞTg. Simu-

lation results are provided in Figs. 3, 4, 5 and 6. Figure 3

shows the entire formation geometries of the five MSVs

with information-exchange given by Fig. 2. It can be

observed that a star formation is well maintained. Figure 4

plots the uncertainty and outputs of NNs associated with

the MSV 1. It can be seen that only the low frequency

content of the uncertainty can be learned by NNs. Figure 5

shows the approximation profile under different frequen-

cies of disturbances. It reveals that the learning errors do

not increase as the frequency of uncertainty increase.

However, the high frequency content will be filtered by the

developed adaptive laws. Figure 6 shows the boundedness

and smoothness of control signals.

Table 1 Model parameters

Parameters Value

mi11 25.8

mi22 33.8

mi23 ¼ mi32 1.0115

ci13 ¼ �mi31 �33.8v–1.0115r

ci23 ¼ �mi32 25:8u

di11 0:72þ 1:33juj þ 5:87u2

di22 0:8896þ 36:5jvj þ 0:805jrj
di23 7:25þ 0:845jvj þ 3:45jrj
di32 0:0313þ 3:96jvj þ 0:130jrj
di33 1:90� 0:080jvj þ 0:75jrj
giu 0:0279uv2 þ 0:0342v2r

giv 0:0912u2vþ 0:0232ur

gir 0:0156ur2 þ 0:0278urv3
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5.2 Case 2: leader-follower formation pattern control

under time-varying ocean currents

We start with introducing an ocean current model for

simulation. The model for ocean currents in two dimen-

sions is characterized by its velocity VocðtÞ and earth-fixed

direction bcðtÞ. In the earth-fixed frame, the current model

is described by

txðtÞ ¼ VocðtÞ cos bcðtÞ; tyðtÞ ¼ VocðtÞ sin bcðtÞ: ð83Þ

For simulations, the ocean current speed VocðtÞ and direc-

tion bcðtÞ can be generated by using first-order Gauss-

Markov processes

_VocðtÞ þ .1VocðtÞ ¼ w1ðtÞ; _bcðtÞ þ .2bcðtÞ ¼ w2ðtÞ;
ð84Þ

where wi ði ¼ 1; 2Þ are zero-mean Gaussian white noise

processes and .i ði ¼ 1; 2Þ are constants. A saturating

element is used in the integration process to limit the

current speed to Vmin�VocðtÞ�Vmax with Vmin ¼ 0:18 and

Vmax ¼ 0:22. The direction of the current is fixed by

specifying a constant value for bc ¼ 45�: As for the model

introduction of ocean currents, the readers are referred to

[41]. In this case, the pattern controller given in Theorem 4

is applied the group. The control parameters are selected as

the same as above; others are chosen as Cix ¼ Ciy ¼
100;Cifx ¼ Cify ¼ 2; kx ¼ ky ¼ 0:1. The desired formation

center is set to gr ¼ fð2;�1; 0�ÞT; ð5; 1; 45�ÞTg: Simulation

results are shown in Figs. 7, 8, 9 and 10. Figure 7 shows

that the formation pattern cannot be stabilized due to the

time-varying ocean currents. By contrast, Fig. 8 demon-

strates the formation is well maintained by the proposed

observer-based formation controller. Figure 9 verifies that

the time-varying ocean currents can be identified accu-

rately by the proposed observer. Figure 10 demonstrates

the formation pattern transition from one to another under

time-varying ocean currents.

6 Conclusions

This paper considered the coordinated formation pattern

control of multiple marine surface vehicles in the presence

of dynamical uncertainty and ocean disturbances induced

by unknown wind, waves and ocean currents. Neural net-

works, adaptive filtering and backstepping techniques are

employed to develop the distributed formation pattern

Fig. 5 Approximation comparisons under different frequencies of

disturbances

Fig. 4 Approximation of NNs corresponding to MSV 1

Fig. 3 Formation trajectories

Fig. 2 Communication topology
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controllers, under which a stationary formation can be

reached for any undirected connected graphs. Lyapunov

stability analysis demonstrates that all signals in the closed-

loop systems are uniformly ultimately bounded. The main

advantage lies in the fact that the proposed control scheme

leads to adaptive formation pattern controllers with guar-

anteed low frequency control signals, which facilities the

practical implementations under hazardous sea environ-

ment. Simulation results showed the efficacy of the pro-

posed cooperative controllers. Future works include

extensions to distributed formation pattern control in the

presence of unmeasured velocities, input constraint, mea-

surement noises and communication delays. So far, these

problems have not been well addressed due to technical

obstacles.

Fig. 10 Formation transition

Fig. 6 Control effort in each direction corresponding to MSV 1

Fig. 7 Formation trajectories without observer (t = 120 s)

Fig. 8 Formation trajectories with observer (t = 120 s)

Fig. 9 Estimation of ocean currents (ev1x denotes the estimate of v1x;

ev1y denotes the estimate of v1y)
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