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Abstract In this paper, stochastic techniques have been

developed to solve the 2-dimensional Bratu equations with

the help of feed-forward artificial neural networks, opti-

mized with particle swarm optimization (PSO) and

sequential quadratic programming (SQP) algorithms. A

hybrid of the above two algorithms, referred to as the PSO-

SQP method is also studied. The original 2-dimensional

equations are solved by first transforming them into

equivalent one-dimensional boundary value problems

(BVPs). These are then modeled using neural networks.

The optimization problem for training the weights of the

network has been addressed using particle swarm tech-

niques for global search, integrated with an SQP method

for rapid local convergence. The methodology is evaluated

by applying on three different test cases of BVPs for the

Bratu equations. Monte Carlo simulations and extensive

analyses are carried out to validate the accuracy, conver-

gence and effectiveness of the schemes. A comparative

study of proposed results is made with available exact

solution, as well as, reported numerical results.

Keywords 2-Dimensional Bratu equations � Neural

networks � Particle swarm optimization � Nonlinear ODEs �
Memetic computing � Sequential quadratic programming

1 Introduction

Artificial intelligence techniques based on neural networks

optimized with efficient global and local search method-

ologies have been extensively used to solve variety of the

linear and nonlinear systems based on ordinary and partial

differential equations [1–5]. For example, stochastic solv-

ers based on neural networks optimized with evolutionary

computing and swarm intelligence algorithms have been

employed to solve the nonlinear oscillatory systems with

both stiff and non-stiff scenarios [6, 7], nonlinear magne-

tohydrodynamics (MHD) problems [8], fluid dynamics

problems based on nonlinear Jaffery–Hamel flow equations

[9], the nonlinear Schrodinger equations [10], one-dimen-

sional Bratu’s problems arise in fuel ignition model [11,

12], Troesch’s problem arising in the study of confinement

of a plasma column by radiation pressure [13, 14] and

nonlinear singular systems based on Lane Emden flower

equations [15]. A good a survey article is referred for

interested readers [16] that summarized the importance,

history, recent development and future progress of research

in this area. Applicability domain of these methods has

been extended to solve effectively the differential equa-

tions of fractional order as well [17, 18]. For instance, the

fractional Riccati differential equation and the Bagley–

Torvik fractional system [19, 20] are other significant

applications of such solvers. Recently, the evolutionary
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computing approach based on genetic algorithms (GAs)

and interior-point method (IPM) is applied to 2-dimen-

sional (2D) Bratu’s problems by transforming into equiv-

alent one-dimensional ordinary differential equation [21].

This study presents the extension of previous works by

applying the hybrid or memetic computing technique based

on artificial neural networks (ANN), particle swarm opti-

mization (PSO) and sequential quadratic programming

(SQP) algorithms to solve the transformed boundary value

problem (BVP) of 2D Bratu’s type equation.

The PSO algorithms since their introduction by Kennedy

and Eberhart [22] have been used extensively in diverse

fields as an alternate to genetic algorithms to get better

optimal results. PSO techniques belong to a class of global

optimization techniques which were developed on the basis

of mathematical modeling of bird and fish behavior. Discrete

and continuous versions of the algorithms have been devel-

oped along with many variants, and these are broadly used as

expert systems for constrained and unconstrained optimiza-

tion problems. A few examples in which PSO methods have

performed exceedingly well include mobile communication,

sensor networks, inventory control, multiprocessor schedul-

ing, controls, stock market prediction [23–26]. These opti-

mizers are good candidate to explore for finding the optimal

design parameter of neural networks model to difficult

nonlinear singular BVPs of differential equation.

In the present study, alternate stochastic numerical solu-

tion is developed for the transformed form of 2D Bratu’s

equation, whose generic n-dimensional form is given as:

Duþ leu ¼ 0; in X

u ¼ 0; on X

(
ð1Þ

Here D is the Laplacian operator, u represents the

solution to the equation, and l is a real number. Usually the

domain X is taken to be the unit interval [0, 1] in <, or the

unit square [0, 1]�[0, 1] in <2, or the unit cube [0, 1]�[0,

1]�[0, 1] in <3. In case X = B1 is the unit ball in <n, n [ 1,

the n-dimensional Bratu equation (1) is transformed into an

equivalent one-dimensional nonlinear BVP with singularity

at origin as follows [21, 27–29]:

u00ðrÞ þ n� 1

r
u0ðrÞ þ leuðrÞ ¼ 0; 0� r� 1

uð1Þ ¼ u0ð0Þ ¼ 0;

8<
: ð2Þ

Detailed derivation of this transformation is given in

[29]. 2D Bratu’s problem are derived from (2) by taking

n = 2 as:

u00ðrÞ þ 1

r
u0ðrÞ þ leuðrÞ ¼ 0; 0� r� 1

uð1Þ ¼ u0ð0Þ ¼ 0:

8<
: ð3Þ

Bratu problem (1–3) arises in the simplification of solid

fuel ignition models in the field of thermal combustion

theory. These problems have a long history, few famous

generalization are the ‘‘Liouville–Gelfand’’ or ‘‘Liouville–

Gelgand–Bratu’’ problem in recognition of the great

French mathematicians Liouville and Gelfand [30–32]. The

problem comes up extensively in various physical prob-

lems in applied science and engineering, such as chemical

reactor theory, nanotechnology, radiative heat transfer, and

the Chandrasekhar model for the expansion of the universe

[31–35]. Recent articles in which solutions of Bratu-type

equations have been given include the non-polynomial

spline method of Jalilian [36], the one-point pseudospectral

collocation method [37] of Boyd and the Lie-group

shooting method (LGSM) by Abbasbandy et al. [38.]

In this study, the strength of ANNs has been exploited

once again to develop an approximate mathematical model

for the Bratu-type BVP. The accuracy of the model is

subject to the tuning of the adjustable parameters, i.e., the

weights of the ANNs. A swarm intelligence technique

based on the PSO algorithm, the SQP method and a hybrid

scheme PSO-SQP are used for the training of the weights

of the ANNs. The viability and reliability of this method

has been validated by a large number of independent runs

of the algorithms along with their detailed statistical ana-

lysis. Comparison of the results is made with the reported

exact and numerical solution.

2 Neural network modeling

In this section, a detailed description of modeling of BVPs

of Bratu-type equations using ANNs is presented. We also

formulate an unsupervised fitness function for the network.

2.1 Mathematical model

An approximate mathematical model for the Bratu

equations is developed with the help of feed-forward

ANNs by exploiting its strength of universal function

approximation capability. It is well known that the

solution u(r) to the equation and its kth derivative u(k)

can be modeled by the following continuous neural

network mapping [1, 5, 21]:

ûðrÞ ¼
Xm

i¼1

aif ðwir þ biÞ;

uðkÞðrÞ ¼
Xm

i¼1

aif
ðkÞðwir þ biÞ;

8>>>><
>>>>:

ð4Þ

Here ai, wi and bi are the adaptive (real-valued) network

parameters, and m is the number of neurons in the network.

f is the activation function normally taken as log-sigmoid

function for hidden layers and linear function is used for

the output layers:

1724 Neural Comput & Applic (2014) 25:1723–1739

123



uðtÞ ¼ 1

1þ e�t
; for the hidden layers

uðtÞ ¼ t; for the output layer

8<
: ð5Þ

Using the log-sigmoid function as given above in Eq.

(4), the updated form of the solution u(r) to Eq. (3), and its

first (u0) and second (u00) derivatives, respectively, are

written as:

ûðrÞ ¼
Xm

i¼1

ai

1

1þ e� wirþbið Þ

� �

û0ðrÞ ¼
Xm

i¼1

aiwi

e� wirþbið Þ

1þ e� wirþbið Þð Þ2

 !

û00ðrÞ ¼
Xm

i¼1

aiw
2
i

2e�2 wirþbið Þ

1þ e� wirþbið Þð Þ2
� e� wirþbið Þ

1þ e� wirþbið Þð Þ2

 !

8>>>>>>>>>><
>>>>>>>>>>:

ð6Þ

The arbitrary combination of the networks given in

above set of equations is used to develop the approximate

model of the second-order differential equations, in-par-

ticularly, Eq. (3).

2.2 Fitness function

The fitness function for the Bratu equations in terms of the

unsupervised error function e is defined as the sum of the

mean squared errors:

e ¼ e1 þ e2; ð7Þ

and the error e1 associated with the differential equations is

formulated as:

e1 ¼
1

K þ 1

XK

k¼0

û00k þ
1

r
û0k þ leûk

� �2

; r 2 ð0; 1Þ

k ¼ 1=h; ûk ¼ ûðrkÞ; rk ¼ kh

8><
>: ð8Þ

Here the interval r [ (0, 1) is divided into K steps r [
(r0 = 0, r1, r2, …, rk = 1) with step size h, and

ûðrÞ; û0 and û00 are the outputs of the neural networks as

given by the set of Eq. (6).

Similarly, the error e2 due to the boundary conditions

can be written as:

e2 ¼
1

2
ûKð Þ2þ û00

� �2
� �

ð9Þ

It can be seen that for weights ai, wi and bi for which the

functions e1 and e2 approach zero, the value of the unsu-

pervised error e also approaches 0. The ANN thus

approximates the solution u(r) of Eq. (3) with û(r) as given

by (6). The architecture of the network is presented

graphically in Fig. 1 and will be referred to as a differential

equation artificial neural network (DE-ANN).

3 Learning procedures

In this section, we give a brief introduction to the PSO and

SQP algorithms, which are used to train the weights of the

DE-ANN. The procedure for execution of the algorithms

along with their parameter settings is described stepwise.

Swarm intelligence techniques often referred to as

particle swarm optimization (PSO) algorithms were

originated from the work of Kennedy and Eberhart [22].

In the standard working of PSO method, each candidate

solution to an optimization problem is taken as a par-

ticle in the search space. The exploration exploitation of

the entire search space is made with a population of

particles referred to as a ‘‘swarm.’’ All particles of the

swarm have their own values of fitness according to the

problem specific objectives. The particles of the swarm

are initialized randomly; the position and velocity of

every particle are updated in each flight, according to

the previous best local pLB (t - 1) and global pGB

(t - 1) positions of that particle. The generic updating

formulae for particle velocity and position in the stan-

dard continuous PSO are written as:

vðtÞ ¼ xvðt � 1Þ þ c1rd1 pLB t � 1ð Þ � x t � 1ð Þð Þ
þ c2rd2 pGB t � 1ð Þ � x t � 1ð Þð Þ;

xðtÞ ¼ xðt � 1Þ þ vðtÞ;

8><
>:

ð10Þ

where the vector x represents a particle of the swarm X,

consist of sufficient number of particles, v is the velocity

vector for the particle, x is the inertia weight (linearly

decreasing over the course of the search between 0 and

1), c1 and c2 are the local and global social acceleration

constants, respectively, and rd1 and rd2 are random

vectors with values between 0 and 1. The elements of

velocity are bounded as vi [ [-vmax, vmax], where vmax is

the maximum velocity. If the velocity exceeds the limits,

it will be reset to the respective lower or upper bound.

The global learning capabilities of the PSO is exploited

for finding the optimal results along with the combina-

tion with local search techniques based of efficient

sequential quadratic programming (SQP) technique for

further fine-tuning of results.

The SQP methods belong to a class of nonlinear pro-

gramming techniques suited well for constrained optimi-

zation problems. Their importance and significance is well

established on the basis of efficiency, accuracy and per-

centage of successful solutions to a large number of test

problems. A broad introduction and review of mathemati-

cal programming techniques for large-scale numerical

optimization is given by Nocedal and Wright [39]. A good

source of reference material on SQL algorithms can be

found in [40, 41]. The SQP methods have been used by
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many researchers in diverse areas of applied science and

engineering. A few recently published articles can be seen

in [42, 43].

Keeping in view the strengths of the PSO and SQP

algorithms, our intention is to use these schemes along with

their hybrid approach referred to as PSO-SQP, for training

the weights of the DE-ANN. The generic flow diagram of

the process of the hybrid PSO-SQP technique is shown

graphically in Fig. 2, while the necessary detailed proce-

dural steps are given as follows:

Step 1 Initialization: Initialize the swarm consists of

particles generated randomly using bounded real

values. Each particle has as many elements as the

number of unknown adaptive parameters of the

DE-ANN. The parameters are initialized as per

settings given in Table 1, and then the execution

of the algorithm is started.

Step 2 Fitness evaluation: Calculate fitness values for

each particle using the fitness function given in

(7) and subsequently the Eqs. (8) and (9).

(a)

(b)

Fig. 1 Neural networks

architecture for nonlinear

singular system given in (3).

a For error function e1

associated with differential

equation, b for error function e1

associated with differential

equation
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Step 3 Termination criteria: Terminate the algorithm if

any of following criterion is satisfied:

• Fitness value less than a pre-specified toler-

ance is achieved, e.g., e B 10-16.

• Maximum number of cycles is executed.

If any of the above criteria is met, then go to

step 5.

Step 4 Renewal: Update the velocity and position of the

particles using the Eq. (10), and go to step 2 for

the next execution cycle, i.e., flight.

Step 5 Refinement: MATLAB built-in function (FMINCON

with algorithm SQP) is used for running the SQP

method for fine-tuning of the results. Following

procedural is adapted for SQP algorithm:

(a) Initialization: The best fitted particle from

the PSO technique is taken as the start point

or initial weight vector for the SQP algo-

rithm: bounds and other declarations for

program and tool initialization are given in

Table 1.

(b) Evaluation of fitness: Calculate the value of

fitness function, e, as given in (7) and

subsequently the Eqs. (8) and (9).

(c) Termination criteria: Terminate the iterative

process of updating the weights of ANNs, if

any of the following criteria fulfilled

• Predefined total number of iterations

completed.

• Any value for function tolerance (Tol-

Fun), maximum function evaluation

(MaxFunEvals), X-tolerance (TolX),

or constraints tolerance (TolCon) is

achieved as defined in Table 2.

If termination criterion fulfilled, then go

to step 6.

(d) Updating of weights: Step increment in

SQP procedure is made and go to step 5(c).

Step 6 Storage: Store the values of the best global

individual along with its fitness and time taken

for this runs of the algorithm.

Step 7 Statistical analysis: Repeat steps 1–6 for a

sufficiently large number of independent runs of

the algorithm in order to have reliable results for

subsequent statistical analysis.

4 Simulation and results

In this section, we present the results of simulations of the

designed methodology applied to the nonlinear Bratu

problem with singularity at origin for the three variants

corresponding to different values of l. The Bratu equation

(3) has either zero, one or two solutions depending on

whether l[lc, l = lc, or l\lc, respectively, where lc

represents the critical value of the coefficient l (lc = 2

[27–29]). Results for the three cases l = 0.5, 1 and 2 are

given here and compared with the exact solution. A sta-

tistical analysis is also provided in each case.

4.1 Bratu equation for l = 0.5

Consider the BVP of the form (3), given in this case as:

[21]

u00ðrÞ þ 1

r
u0ðrÞ þ 0:5euðrÞ ¼ 0; 0� r� 1

uð1Þ ¼ u0ð0Þ ¼ 0

8<
: ð11Þ

The exact solution of the above problem is given as:

[21]

Initialized 
Parameters

Initial Swarm with randomly 
Taken Position and Velocity

Fitness 
Evaluations

Termination 
Criteria

Present 
Better than LB

LB= Present

Present
Better than GB

GB= Present

Update Velocity 
and Position

Global best 
Particle

Refinement
SQP Algorithm

Best Individual

Stop

Start

No

Yes

No

No

Yes

Yes

Fig. 2 Generic flow diagram of the hybrid PSO-SQP algorithm
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uðrÞ ¼ log
16 7þ 4

ffiffiffi
3
p� �

7þ 4
ffiffiffi
3
p
þ r2

� �2

 !
ð12Þ

To solve this case of the Bratu equation using the pro-

posed DE-ANN algorithm, we take 10 neurons in each

hidden layer of the ANN, which results in 30 weights (ai,

wi and bi). The training set is taken from inputs r [ (0, 1)

with a step of h = 0.1, i.e., a total of 11 grid points in the

entire domain. The fitness function e for this problem is

formulated using Eqs. (7), (8) and (9) as:

e ¼ 1

11

X10

k¼0

û00k þ
1

r
û0k þ 0:5eûk

� �2

þ 1

2
û10ð Þ2þ û00

� �2
� �

ð13Þ

The optimization of weights of the DE-ANN is car-

ried out using the PSO, SQP and PSO-SQP algorithms

for one hundred independent runs using the parameter

settings as given in Table 1. One set of weights learned

by the PSO, the SQP and the hybrid PSO-SQP methods

with fitness values of 1.2417 9 10-08, 1.3753 9 10-13,

and 2.6895 9 10-12, respectively, are tabulated in

Appendix Table 10. The solution obtained using first

equation of set (6) and weights given in Table 10 for the

11 input points in r [ (0, 1) with a step size of 0.1 is

given in Table 2. The exact solution and reported results

[21] of GA, IPA and GA-IPA to the problem are also

tabulated in Table 2 for the same inputs. The maximum

value of the absolute error (AE) is defined as absolute

deviation from the exact solution and its values for

PSO, SQP and PSO-SQP techniques are 4.37 9 10-06,

2.53 9 10-07 and 2.31 9 10-07, respectively, while for

reported GA, IPA and GA-IPA, these are 6.15 9 10-05,

7.56 9 10-07 and 5.55 9 10-07, respectively. It is seen

that the generally the accuracy of the present methods is

superior to the reported results.

The accuracy and convergence of the proposed algo-

rithms is examined by calculating the values of mean

absolute error (MAE) and fitness achieved (FA) based on

one hundred independent runs. Results are shown graphi-

cally in Fig. 3 on a semi-log scale in order to elaborate

small differences in values. In Fig. 3a, c, the values of the

fitness function e and MAE are plotted, respectively, for

each algorithm against the number of independent runs of

the algorithms. The runs are renumbered so that FA and

MAE are plotted in ascending order in Fig. 3b, d. The

values of fitness function e as given in (13) for the PSO

algorithm lie in the range 10-05–10-08, while for both SQP

and PSO-SQP it lies in the range 10-08–10-13. Similarly,

the values of MAE are of the order of 10-03–10-06 for the

PSO technique, while for both SQP and PSO-SQP schemes

it lies in the range 10-05–10-08. It is seen that there is no

noticeable difference between SQP and PSO-SQP for this

variant of BVP (3) and relatively better than that of PSO

algorithm.

The statistical analysis of the results for each solver is

now performed using the mean and standard deviation

(STD) along with the minimum (MIN) and maximum

(MAX) values of the absolute error. The results are tabu-

lated in Table 3 along with reported results of GA-IPA for

inputs between 0 and 1 with a step size of 0.2. It is seen that

the mean value lies in the range 10-04–10-05 for the PSO

technique, while for both SQP and PSO-SQP algorithms it

lies between 10-05 and 10-08. It is also observed that there

is no noticeable difference in the values of the statistical

parameters for the SQP and PSO-SQP present and reported

GA-IPA methods; however, the results of the hybrid PSO-

SQP scheme are generally more accurate than those of the

SQP technique. Also these are much better than the solu-

tions given by the PSO algorithm. Moreover, the reported

results of GA given in [21] are generally inferior to the

result proposed PSO algorithm.

Table 1 Parameter settings for PSO and SQP techniques

PSO SQP

Parameters Setting Parameters Setting

Swarm size 160 Start point Best particle of PSO

Particle size 30 No. of variable 30

Flights 2,000 Iteration 1,000

c1 Linear decreasing (2.5–0.5) Maximum function evaluations (MaxFunEvals) 50,000

c2 Linear increasing (0.5–2. 5) Function tolerance (TolFun) 10-18

x Linearly decreasing (0.9–0.4) Nonlinear constraints tolerance(TolCon) 10-18

vmax 02 Derivative approximate Finite forward difference

Population span (-50, 50) X-Tolerance (TolX) 10-12

Velocity span (-2, 2) Bounds (-50, 50)
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4.2 Bratu equation for l = 1.0

The nonlinear BVP of the form (3) for l = 1.0 is given as:

[21]

u00ðrÞ þ 1

r
u0ðrÞ þ euðrÞ ¼ 0; 0� r� 1

uð1Þ ¼ u0ð0Þ ¼ 0

8<
: ð14Þ

The exact solution of the above equation is given as:

[21]

uðrÞ ¼ log
8 3þ 2

ffiffiffi
2
p� �

3þ 2
ffiffiffi
2
p
þ r2

� �2

 !
ð15Þ

The given problem (14) is solved using the same

methodology as applied for the case l = 0.5; however, the

fitness function e formulated in this case is:

e ¼ 1

11

X10

k¼0

û00k þ
1

r
û0k þ eûk

� �2

þ 1

2
û10ð Þ2þ û00

� �2
� �

ð16Þ

Again optimization of the weights of the DE-ANN is

carried out with PSO, SQP, and PSO-SQP algorithms for a

hundred independent runs. A set of trained weights is given

in Appendix Table 11 for the three techniques with fitness

values of 2.8207 9 10-09, 1.2113 9 10-11 and 3.1141 9

10-11, respectively. The solution to problem (14) is now

determined using these weights for inputs r [ (0, 1) with a

step size of 0.1, and results are presented in Table 4 along

with reported and exact solution. The maximum values of

the AE for proposed PSO, SQP and PSO-SQP methods are

1.34 9 10-05, 4.91 9 10-08 and 2.43 9 10-07, respec-

tively, while for reported GA, IPA and GA-IPA [21], these

values are 1.94 9 10-04, 6.38 9 10-07 and 2.03 9 10-07,

respectively. Generally the proposed results are relatively

better than that of the reported results.

The values of the MAE and fitness function e as given in

Eq. (16) are computed for the 100 independent runs for the

three techniques, and results are plotted in Fig. 4. The

value of e lies in the range 10-05–10-08, 10-02–10-13 and

10-09–10-13 for the PSO, SQP and PSO-SQP methods,

respectively. Similarly, the value of MAE for the three

respective algorithms lies in the range 10-03–10-05, 1000–

10-08 and 10-04–10-08. It is observed that for some

independent runs the results of the SQP algorithm are not

convergent, while the PSO and PSO-SQP methods

remained convergent for all runs. As far as accuracy is

concerned, the values of MAE for the convergent cases of

the SQP and PSO-SQP algorithms are better than those of

the PSO algorithm. Generally, the hybrid approach PSO-

SQP provides the most accurate and convergent results for

this case of the Bratu equation.

The accuracy of the proposed algorithms is analyzed

further on the basis of the statistical parameters calculatedT
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for 100 independent runs of each solver. The results are

presented in Table 5 for inputs 0–1 with a step size of 0.2.

The reported results [21] of statistical analysis for hybrid

approach GA-IPA are also tabulated in Table 5 for the

same results. It can be seen that the values for MIN, MAX,

mean and STD of the AE are lowest for the hybrid

approach PSO-SQP. The mean values of the AE calculated

for PSO, SQP and PSO-SQP algorithms lie in the range

10-04–10-05, 10-02–10-03 and 10-05–10-08, respectively.

The results of the SQP method get deteriorated due to

convergence problems observed in a few runs, this is

because the SQP technique is a local search method and

therefore more probable to getting stuck in some local

minimum. The PSO-SQP technique stands out as the most

accurate and convergent of the three proposed schemes,

and generally its results are in good agreement with

reported GA-IPA technique.

4.3 Bratu equation for l = 2.0

The singular BVP of nonlinear Bratu equation (3) is given

for this case as: [21]

u00ðrÞ þ 1

r
u0ðrÞ þ 2euðrÞ ¼ 0; 0� r� 1

uð1Þ ¼ u0ð0Þ ¼ 0

8<
: ð17Þ

The exact solution to the above equation is given as:

[21]

uðrÞ ¼ ln
4

1þ r2ð Þ2

 !
ð18Þ

Equation (17) is solved following the procedure outlined

above for the two cases; however, the fitness function e in

this case is formulated as:

e ¼ 1

11

X10

k¼0

û00k þ
1

r
û0k þ 2eûk

� �2

þ 1

2
û10ð Þ2þ û00

� �2
� �

ð19Þ

Optimal weights for the DE-ANN are learned using the

PSO, SQP and PSO-SQP algorithms for one hundred

independent runs. One set of weights is tabulated in

Appendix Table 12 for the three algorithms. The values of

the unsupervised error (19) are 1.8234 9 10-06,
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Fig. 3 The results for 100 independent runs of the algorithms for the Bratu equation for l = 0.5, a, c unarranged values of FA and MAE,

respectively, b, d rearranged in ascending order of FA and MA values, respectively
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1.8791 9 10-10 and 1.5703 9 10-10, respectively, for the

three proposed methods. The solution to equation (17) is

approximated using weights in Table 12 for inputs r [ (0,

1) with a step size of 0.1, and results are presented in

Table 6 along with the reported results. The maximum

values of the AE for the proposed PSO, SQP and PSO-SQP

algorithms are 3.16 9 10-02, 7.90 9 10-05 and

3.18 9 10-04, respectively, while the reported GA, IPA

and GA-IPA methods, these results are 1.19 9 10-01,

5.89 9 10-04 and 2.82 9 10-04, respectively.

The values of MAE and FA as given in expression

(19) are also computed for 100 independent runs for the

three proposed algorithms, and results shown graphically

in Fig. 5. It can be seen that the value of e achieved lies

in the range 10-04–10-06, 10-00–10-12 and 10-08–10-12

for the PSO, SQP and PSO-SQP methods, respectively,

while the values of MAE lies in the range 10-04–10-06,

10-00–10-12 and 10-08–10-12, for the three respective

algorithms. A few runs of the SQP method diverge in

this case also, while both the PSO and PSO-SQP algo-

rithms remain consistently convergent, the hybrid

scheme being the most accurate.

The accuracy of the PSO, SQP and PSO-SQP solvers is

further investigated based on statistical analysis for the 100

independent runs. The results of mean, STD, MIN and

MAX values of the AE are given in Table 7 for inputs 0–1

with a step size of 0.2. The reported result for hybrid

approach GA-IPA is also given in the table for the same

inputs. It is seen that the values of MIN, MAX, mean and

STD of the AE are generally lowest for the PSO-SQP

hybrid technique. Mean values of the AE for PSO, SQP and

PSO-SQP algorithms lie in the range 10-01–10-03, 10-01–

10-02 and 10-03–10-06, respectively. The MIN values of

the AE for SQP and PSO-SQP methods are better than that

of the PSO algorithm. Moreover, the values of statistical

parameters of the proposed scheme PSO-SQP match closed

with the reported results of GA-IPA.

5 Comparative analyses of the solvers

In this section, a comparative analysis is presented for the

numerical computations carried out in the last section

based on values of the MAE, global mean absolute error

(GMAE), mean fitness achieved (MFA), convergence rate

and computational time taken for each algorithm.

The reliability and effectiveness of the proposed solvers

have been analyzed by computing the values of MAE and

FA for 100 independent runs of each algorithm. The

accuracy and convergence of the results based on values of

MAE B 10-03, 10-04, 10-05 and 10-06 are provided in

Table 8. Percentage acceptability of the solution û(r) for

the three cases: l = 0.5, 1.0 and 2.0 are also given in the

table. It is seen that acceptability of the results based on

MAE B 10-04 for the case of l = 1.0 is[90 % for all the

proposed schemes. It is also observed that with increase in

the value of the coefficient l the problem becomes stiffer

and the accuracy decreases. Reliable solutions are still

provided by SQP and PSO-SQP methods even for the case

l = 2.0, i.e., when l is close to its critical value; the

accuracy of the solution, however, degrades close to the

critical value.

Table 3 Results of statistical analysis for Bratu equation for the case l = 0.5

Values Results Method The values of |u(r) - û(r)| for inputs ‘‘r’’

0.0 0.2 0.4 0.6 0.8 1.0

MIN Present PSO 2.3931 9 10-06 1.7761 9 10-06 7.3548 9 10-07 5.1248 9 10-07 9.6512 9 10-08 1.4502 9 10-07

SQP 1.3164 9 10-07 9.8641 9 10-08 6.7338 9 10-08 3.8394 9 10-09 1.1050 9 10-08 1.9818 9 10-11

PSO-SQP 2.3133 9 10-07 9.9003 9 10-08 7.1534 9 10-08 5.4016 9 10-09 4.9389 9 10-09 6.7869 9 10-12

Reported GA-IPA 5.9702 9 10-08 8.0747 9 10-09 8.9684 9 10-10 1.7443 9 10-08 1.7376 9 10-09 5.2409 9 10-12

MAX Present PSO 1.7317 9 10-03 1.5237 9 10-03 9.1294 9 10-04 3.7419 9 10-04 2.2017 9 10-04 2.8661 9 10-04

SQP 5.6375 9 10-05 3.9082 9 10-05 1.5958 9 10-05 7.5385 9 10-06 5.6737 9 10-06 1.6539 9 10-06

PSO-SQP 4.9699 9 10-05 2.1432 9 10-05 1.3545 9 10-05 7.2996 9 10-06 3.4741 9 10-06 2.0528 9 10-06

Reported GA-IPA 3.6165 9 10-05 1.8703 9 10-05 8.5487 9 10-06 7.0653 9 10-06 2.6151 9 10-06 2.9205 9 10-07

Mean Present PSO 3.5258 9 10-04 2.5685 9 10-04 1.3278 9 10-04 6.4071 9 10-05 3.3837 9 10-05 2.0749 9 10-05

SQP 1.0033 9 10-05 5.1390 9 10-06 2.4053 9 10-06 1.9168 9 10-06 7.4070 9 10-07 6.8769 9 10-08

PSO-SQP 1.0513 9 10-05 5.0289 9 10-06 2.6649 9 10-06 1.9060 9 10-06 7.4570 9 10-07 5.5929 9 10-08

Reported GA-IPA 1.1355 9 10-05 5.7481 9 10-06 2.6971 9 10-06 2.1849 9 10-06 8.0696 9 10-07 9.8603 9 10-09

STD Present PSO 3.4726 9 10-04 2.9689 9 10-04 1.6934 9 10-04 7.1321 9 10-05 4.0146 9 10-05 4.1652 9 10-05

SQP 8.1517 9 10-06 4.8419 9 10-06 2.1052 9 10-06 1.4176 9 10-06 7.0135 9 10-07 2.2911 9 10-07

PSO-SQP 9.8650 9 10-06 4.6520 9 10-06 2.6019 9 10-06 1.7165 9 10-06 7.2149 9 10-07 2.3535 9 10-07

Reported GA-IPA 8.7696 9 10-06 4.6012 9 10-06 2.0817 9 10-06 1.7112 9 10-06 6.5277 9 10-07 3.5349 9 10-08
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The values of the fitness function e as given in Eqs.

(13), (16) and (19) are also calculated for 100 inde-

pendent runs using weights optimized by the PSO, SQP

and PSO-SQP algorithms. Results for the solvers are

given in Table 8 based on values of FA or the unsu-

pervised error e B 10-03, 10-05, 10-07 and 10-09. It is

seen that the PSO-SQP algorithm gives consistently

better and convergent results as compared to the other

techniques. The rate of convergence decreases with

increase in the value of the coefficient l, especially

when it is near its critical value.

Two additional performance factors GMAE and MFA

are introduced here in order to better compare the results of

the proposed solvers:

GMAE ¼ 1

R

XR

j¼1

1

p

XP

i¼1

jui � û
j
i

 ! ! !

MFA ¼ 1

R

XR

j¼1

e j

 !
8>>>>><
>>>>>:

ð20Þ

Here P and R are integers, representing the total number

of grid points, and the total number of independent runs of

the solver, respectively. ui denotes the exact solution of the

Bratu equation for the ith input, û
j
i is the approximate

solution for the ith input and the jth independent run, and ej

represents the fitness achieved for the jth run of the algo-

rithm. In-depth evaluation of the performance of the

algorithms is analyzed by these operators because smaller

the values of GMAE and MF obtained by the algorithms

mean that consistently accurate and convergent results are

determined by the algorithm.

In our experimentation, we have taken 11 inputs or

grid point, i.e., P = 11 and 100 independent runs, i.e.,

R = 100. The values of the GMAE and MFA are com-

puted for the Bratu Problems for l = 0.5, 1.0 and 2.0 for

the three proposed methods. The proposed results are

provided in Table 9 along with the values of the

respective standard deviations (STD). The reported

results of GA, IPA and GA-IPA are also embedded in

the same table for both global performance operators. It

is evident that results of the PSO-SQP hybrid approach

are the best when compared to the PSO and SQP

methods. Divergence is observed for a few runs of the

SQP technique, and this has a significant impact on

values of GMAE and MFA. The solution û(r) by the

PSO-SQP hybrid approach matches with the exact

solution u(r) with an accuracy of up to 9, 8, and 5 places

of decimal for the l = 0.5, 1.0 and 2.0 cases, respec-

tively. Whereas comparing with the reported results, it is

observed that proposed PSO results are consistently

better than that of GAs for all three variants of Bratu

problem, while the results for both hybrid approachesT
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Fig. 4 The results for 100 independent runs of the algorithms for the Bratu equation for the case l = 1.0, a, c unarranged values of FA and

MAE, respectively, b, d rearranged in ascending order of FA and MAE values, respectively

Table 5 Results of statistical analysis for Bratu equation for the case l = 1.0

Values Results Method The values of |u(r) - û(r)| at different inputs

r = 0.0 r = 0.2 r = 0.4 r = 0.6 r = 0.8 r = 1.0

MIN Present PSO 3.2667 9 10-06 2.8270 9 10-06 5.0908 9 10-07 1.8653 9 10-06 3.7419 9 10-07 7.8398 9 10-08

SQP 4.3381 9 10-08 9.3382 9 10-09 2.1763 9 10-08 5.3433 9 10-09 7.0641 9 10-09 3.6494 9 10-11

PSO-SQP 1.6282 9 10-07 8.7389 9 10-08 9.4888 9 10-09 1.0336 9 10-09 1.8894 9 10-08 7.6198 9 10-11

Reported GA-IPA 5.2717 9 10-08 1.9111 9 10-08 2.1108 9 10-09 1.4094 9 10-08 1.3454 9 10-08 7.6877 9 10-12

MAX Present PSO 2.6142 9 10-03 1.8181 9 10-03 7.9888 9 10-04 4.4919 9 10-04 3.0688 9 10-04 1.5075 9 10-04

SQP 5.5784 9 10?00 2.7598 9 10?00 1.6288 9 10?00 9.3354 9 10-01 4.5691 9 10-01 3.4859 9 10-01

PSO-SQP 3.2576 9 10-04 1.5646 9 10-04 9.5847 9 10-05 5.5280 9 10-05 2.5164 9 10-05 3.0950 9 10-06

Reported GA-IPA 4.5748 9 10-05 2.4065 9 10-05 1.2106 9 10-05 1.0012 9 10-05 3.6815 9 10-06 7.9060 9 10-08

MEAN Present PSO 6.0529 9 10-04 3.6810 9 10-04 1.9008 9 10-04 1.2911 9 10-04 6.8861 9 10-05 2.6410 9 10-05

SQP 1.6563 9 10-01 8.4952 9 10-02 5.2456 9 10-02 3.2043 9 10-02 1.6403 9 10-02 3.5052 9 10-03

PSO-SQP 1.4748 9 10-05 7.0362 9 10-06 4.3207 9 10-06 2.6839 9 10-06 1.1176 9 10-06 8.7145 9 10-08

Reported GA-IPA 8.7919 9 10-06 4.1689 9 10-06 2.5828 9 10-06 1.6417 9 10-06 6.5676 9 10-07 5.7928 9 10-09

STD Present PSO 4.5368 9 10-04 2.9543 9 10-04 1.4751 9 10-04 1.0359 9 10-04 5.9743 9 10-05 2.9600 9 10-05

SQP 9.1050 9 10-01 4.5214 9 10-01 2.7094 9 10-01 1.6063 9 10-01 8.0985 9 10-02 3.4858 9 10-02

PSO-SQP 3.3870 9 10-05 1.6399 9 10-05 9.8797 9 10-06 5.9101 9 10-06 2.6100 9 10-06 3.6048 9 10-07

Reported GA-IPA 1.0230 9 10-05 5.1223 9 10-06 2.8765 9 10-06 2.0861 9 10-06 8.1067 9 10-07 1.3193 9 10-08
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matched closed and better than other single algorithms

used for optimization.

The computational complexity of the proposed algo-

rithms is examined on the basis of average time taken

for their execution, along with the values of STD. We

have made the computational time analysis based on 100

independent runs of each solver, and results are given in

Table 9 for the mean execution time (MET) and its

STD. It is observed that the computational time taken by

the PSO-SQP method is a bit longer than that taken by

the PSO and SQP techniques, but on the other hand it

has an invariable performance advantage in terms of

accuracy and reliability. The computational time taken

by proposed PSO, SQP and PSO-SQP is relatively less

than that of reported results [21] for GA, IPA and GA-

IPA, while obtaining the results with almost same level

of accuracy and convergence. This analysis is carried

out on a Dell Precision 390 Workstation, with

Intel(R) Core(TM) 2 CPU 6000@2.40 GHz, 2.00 GB

RAM, and running MATLAB version 2011a.

6 Conclusions

The nonlinear 2-dimensional Bratu equation has been

solved alternately and effectively using DE-ANNs opti-

mized with PSO, SQP and PSO-SQP algorithms, after the

original problem is transformed into an equivalent one-

dimensional nonlinear BVP with singularity at origin.

Comparison of the results with exact solutions shows

that the PSO-SQP method gives an absolute error in the

range 10-07–10-10, 10-07–10-10 and 10-04–10-06 for

the cases l = 0.5, 1.0 and 2.0, respectively. In general

the PSO-SQP hybrid scheme gave not only the most

accurate from PSO and SQP but also relatively better

than that of reported numerical results of GA, IPA and

GA-IPAs.

The reliability and effectiveness of the proposed

artificial intelligence techniques were validated by a

large number of independent runs of the algorithms

and their statistical analysis. The PSO-SQP method

provided convergence in all independent runs for all

three cases.

Comparative analysis of the three proposed algo-

rithms showed that the PSO-SQP technique invariably

provided the best mean fitness values and also the

minimum value of the global mean absolute error for all

problem cases, but it had a slightly longer computa-

tional time. The SQP technique provides results with

comparative accuracy, but convergence is a problem.

The results of the PSO algorithm converge for all

problem cases, and the accuracy attained is lower than

of the other two approaches.T
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Fig. 5 The results for 100 independent runs of the algorithms for the Bratu equation for the case l = 2.0, a, c unarranged values of FA and

MAE, respectively, b, d rearranged in ascending order of FA and MAE values, respectively

Table 7 Results of statistical analysis for the Bratu equation for the case l = 2

Mode Result Method The values of |u(r) - û(r)| at inputs

r = 0.0 r = 0.2 r = 0.4 r = 0.6 r = 0.8 r = 1.0

MIN Present PSO 3.1644 9 10-02 2.8916 9 10-02 2.2647 9 10-02 1.4757 9 10-02 6.9142 9 10-03 2.6287 9 10-05

SQP 7.9030 9 10-05 6.2781 9 10-05 4.6502 9 10-05 2.8102 9 10-05 1.0837 9 10-05 1.4000 9 10-07

PSO-SQP 2.7613 9 10-04 2.9778 9 10-04 2.3482 9 10-04 1.5356 9 10-04 7.2689 9 10-05 5.3990 9 10-09

Reported GA-IPA 2.8192 9 10-04 2.6208 9 10-04 2.0618 9 10-04 1.3436 9 10-04 6.3182 9 10-05 1.0834 9 10-08

MAX Present PSO 2.2435 9 10-01 2.0611 9 10-01 1.6448 9 10-01 1.1115 9 10-01 5.6770 9 10-02 1.0430 9 10-02

SQP 3.9156 9 10?00 2.5305 9 10?00 1.9007 9 10?00 1.4673 9 10?00 1.0929 9 10?00 6.9601 9 10-01

PSO-SQP 2.1909 9 10-02 2.0013 9 10-02 1.5659 9 10-02 1.0168 9 10-02 4.7427 9 10-03 3.8055 9 10-05

Reported GA-IPA 2.3849 9 10-02 2.1773 9 10-02 1.7032 9 10-02 1.1058 9 10-02 5.1574 9 10-03 3.0502 9 10-05

MEAN Present PSO 1.2493 9 10-01 1.1485 9 10-01 9.0999 9 10-02 6.0563 9 10-02 2.9944 9 10-02 3.0177 9 10-03

SQP 1.7400 9 10-01 1.3766 9 10-01 1.1165 9 10-01 8.4003 9 10-02 5.5999 9 10-02 2.8862 9 10-02

PSO-SQP 8.1968 9 10-03 7.5476 9 10-03 5.9205 9 10-03 3.8491 9 10-03 1.7994 9 10-03 7.3180 9 10-06

Reported GA-IPA 5.5033 9 10-03 5.0718 9 10-03 3.9787 9 10-03 2.5866 9 10-03 1.2086 9 10-03 3.5608 9 10-06

STD Present PSO 3.9262 9 10-02 3.6164 9 10-02 2.9000 9 10-02 1.9728 9 10-02 1.0243 9 10-02 1.9726 9 10-03

SQP 6.4638 9 10-01 4.9099 9 10-01 4.0057 9 10-01 3.0835 9 10-01 2.1561 9 10-01 1.2679 9 10-01

PSO-SQP 4.5553 9 10-03 4.1766 9 10-03 3.2727 9 10-03 2.1263 9 10-03 9.9327 9 10-04 7.7895 9 10-06

Reported GA-IPA 3.7403 9 10-03 3.4287 9 10-03 2.6862 9 10-03 1.7451 9 10-03 8.1490 9 10-04 4.8212 9 10-06
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Comparison of the given solution based on global per-

formance operators shows the results due to PSO is rela-

tively better than GA, while the hybrid approach PSO-SQP

achieve same level of accuracy and convergence as GA-

IPA but with relatively lower in computational complexity.

Other optimization techniques, such as ant/bee colony

optimization, genetic programming, differential evolution

can also be applied in order to solve the BVPs for Bratu-

type equations; this can be a topic of further research on the

subject.

Appendix

One set of design parameter of DE-ANN optimized with

PSO, SQP and PSO-SQP are tabulated in Tables 10, 11 and

12 in case of Bratu equation given in problems 1, 2 and 3,

respectively. The weights given in the appendix are pro-

vided in term of real number up to 14 decimal points in

order to exactly reproduced the results given in the main

body of manuscript and avoid unnecessary rounding of

error problems.

Table 8 The accuracy and

convergence of the results
l DENN with % Convergence rate on MAE % Convergence rate on FA

B10-03 B10-04 B10-05 B10-06 B10-03 B10-05 B10-07 B10-09

0.5 PSO 100 098 061 008 100 095 011 000

SQP 096 096 096 095 096 096 096 085

PSO-SQP 100 100 100 100 100 100 100 094

1.0 PSO 100 073 009 000 100 053 000 000

SQP 093 093 092 088 093 093 090 046

PSO-SQP 100 100 100 100 100 100 100 085

2.0 PSO 000 000 000 000 083 000 000 000

SQP 076 053 015 001 094 088 058 005

PSO-SQP 098 087 051 016 100 100 091 021

Table 9 The comparative analysis of the results

l Present Reported

Method MET (s) GMAE MFA Method GMAE MFA

Values STD Values STD Values STD Values Values

0.5 PSO 189.62 01.41 1.3977E-04 1.4969E-04 1.0823E-06 1.8768E-06 GA 5.2776E-04 8.1764E-06

SQP 061.64 20.23 3.2246E-06 2.7311E-06 8.1281E-10 1.4769E-09 IPA 3.5447E-06 9.9468E-10

PSO-SQP 253.66 22.82 3.3020E-06 3.0501E-06 8.0752E-10 1.0707E-09 GA-IPA 3.6193E-06 1.0033E-09

1.0 PSO 192.22 02.28 2.2337E-04 1.6819E-04 2.5448E-06 3.6554E-06 GA 4.9151E-04 6.0596E-06

SQP 067.88 22.37 5.5788E-02 2.9179E-01 2.3573E-03 2.3505E-02 IPA 1.3545E-02 2.3134E-03

PSO-SQP 258.05 21.42 4.7218E-06 1.0663E-05 1.1925E-09 2.6939E-09 GA-IPA 2.8288E-06 7.6463E-10

2.0 PSO 200.54 17.96 7.1605E-02 2.2981E-02 5.0675E-05 5.1661E-05 GA 1.1213E-01 1.3666E-04

SQP 070.89 24.93 9.8289E-02 3.5599E-01 1.9818E-02 9.9705E-02 IPA 2.0813E-02 2.5183E-05

PSO-SQP 276.60 28.80 4.6127E-03 2.5528E-03 5.7273E-09 7.2995E-09 GA-IPA 3.0988E-03 1.9371E-09
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