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Abstract One heuristic evolutionary algorithm recently

proposed is the gravitational search algorithm (GSA),

inspired by the gravitational forces between masses in

nature. This algorithm has demonstrated superior perfor-

mance among other well-known heuristic algorithms such

as particle swarm optimisation and genetic algorithm.

However, slow exploitation is a major weakness that might

result in degraded performance when dealing with real

engineering problems. Due to the cumulative effect of the

fitness function on mass in GSA, masses get heavier and

heavier over the course of iteration. This causes masses to

remain in close proximity and neutralise the gravitational

forces of each other in later iterations, preventing them

from rapidly exploiting the optimum. In this study, the best

mass is archived and utilised to accelerate the exploitation

phase, ameliorating this weakness. The proposed method is

tested on 25 unconstrained benchmark functions with six

different scales provided by CEC 2005. In addition, two

classical, constrained, engineering design problems,

namely welded beam and tension spring, are also employed

to investigate the efficiency of the proposed method in real

constrained problems. The results of benchmark and clas-

sical engineering problems demonstrate the performance of

the proposed method.

Keywords Optimisation � Heuristics � Evolutionary

algorithms � Exploration and exploitation � Constrained

optimisation

1 Introduction

In recent years, various heuristic evolutionary optimisation

algorithms have been developed mimicking natural phe-

nomena. Some of the most popular are particle swarm

optimisation (PSO) [1, 2], genetic algorithm (GA) [3],

differential evolution (DE) [4, 5], ant colony optimisation

(ACO) [6], and other, recent additions such as bio-geog-

raphy optimisation algorithm (BBO) [7, 8], grey wolf op-

timiser (GWO) [9], and Krill Herd (KH) algorithm [10,

11]. The gravitational search algorithm (GSA) has been

recently proposed by Rashedi et al. [12]. It has been shown

that this algorithm is able to provide promising results

compared with other well-known algorithms in this field.

The similarity between these evolutionary algorithms is

that they start the search process with an initial population

as a set of candidate solutions. This population is evolved

through a predefined number of steps with certain rules.

For instance, PSO uses the social behaviour of birds

flocking and GA utilises Darwin’s theory of evolution.

Regardless of structure, these algorithms basically divide

the search process into two main phases—exploration and

exploitation—to find the global optimum.

Exploration requires an algorithm to search the problem

space broadly, whereas exploitation needs the algorithm to

converge to the best solution from promising solutions

found in the exploration phase. The ultimate goal was to

find an efficient trade-off between exploitation and explo-

ration [13]. However, it is challenging to find a good bal-

ance due to the stochastic behaviour of evolutionary

algorithms [14]. Moreover, exploration and exploitation

conflict: emphasising one generally weakens the other one.

In the literature, merging optimisation algorithms is a

popular way to obtain a better balance between exploration

and exploration, as in the hybrids PSO–GA [15, 16], PSO–
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DE [17, 18], PSO–ACO [19, 20], KH–DE [21], and KH–

BBO [22]. In improving the exploitation phase, local

search [23, 24] and gradient descent [25, 26] have been

utilised. Both of these methods are able to improve per-

formance, but they bring additional computational cost.

Moreover, gradient descent methods are also ill-defined for

non-differentiable search spaces. Normally, in combining

two algorithms, the computational time is greater than for

either alone because both algorithms should be run either in

parallel or sequentially. Local search is also computation-

ally expensive itself. So these inevitable problems should

be considered, especially for real-world engineering prob-

lems. There are also other methods for improving the

performance of meta-heuristics: utilising chaotic maps

[27–29] and employing different evolutionary operators

[30, 31]. In this study, we try to enhance the exploitation of

GSA with an extremely low-cost method since it appears to

be the main drawback of this algorithm [32].

The search process in GSA slows as the number of

iterations increases. Due to the cumulative effect of the

fitness function on mass, masses get greater over the course

of iteration. This prevents them from rapidly exploiting the

best solutions in later iterations [33]. This problem has

been addressed directly or indirectly in previous work. In

2010, Sinaie solved the travelling salesman problem (TSP)

with GSA and neural networks (NN) sequentially, with the

exploration and exploitation phases accomplished by GSA

and NN, respectively [33]. Shaw et al. [34] used an

opposition-based learning to improve the convergence

speed of GSA. In 2011, GSA was employed as a global

search algorithm, accompanied by a combined multi-type

local improvement scheme as a local search operator [35].

A novel immune gravitation optimisation algorithm

(IGOA) was proposed by Zhang et al. [32] in 2012,

incorporating the characteristics of antibody diversity and

vaccination to solve the slow convergence. Hatamlou et al.

[36] developed a sequential method to solve clustering

problems. They used GSA for finding a near-optimal

solution and another heuristic method for improving the

solutions obtained by GSA. In 2011, Li and Zhou [37]

integrated social thinking and individual thinking of PSO

to GSA and employed to solve parameter identification of

hydraulic turbine governing system. However, there is no

deep investigation of the proposed method in the paper

especially on challenging benchmark problems.

All these studies show that GSA suffers from slow

exploitation. However, none of them investigate this

problem in detail. In addition, some of these studies

adopted problem-specific solutions for this problem. The

first author also has two publications [38, 39] on improving

the performance of GSA, in which the social thinking of

PSO was integrated with GSA in order to improve the

exploitation. However, we observed that the constants

proposed for balancing the effect of GSA and PSO in

search need to be tuned adaptively due to the loss of

exploration. In this work, the main reason for the slow

search process is further discussed in detail and a general,

low-cost solution is proposed, which utilises adaptive

coefficients to balance between exploration and exploita-

tion. In addition, we investigate the performance of both

improved GSA and GSA in solving constrained problems.

The rest of the paper is organised as follows: Section 2

presents a brief introduction to the GSA. Section 3 dis-

cusses the problem of slow exploitation and proposes a

method to overcome it. The experimental results for

benchmark and classical engineering design problems are

provided in Sects. 4 and 5, respectively. Finally, Section 6

concludes the work and suggests some directions for future

research.

2 Gravitational search algorithm

The basic physical theory from which GSA is inspired is

Newton’s law of universal gravitation. The GSA performs

search by employing a collection of agents (candidate

solutions) that have masses proportional to the value of a

fitness function. During iteration, the masses attract each

other by the gravity forces between them. The heavier the

mass, the bigger the attractive force. Therefore, the

heaviest mass, which is possibly close to the global opti-

mum, attracts the other masses in proportion to their

distances.

This algorithm is formulated as follows [12]:

Every mass has a position in search space as follows:

Xi ¼ x1
i ; . . .; xd

i ; . . .; xn
i

� �
; i ¼ 1; 2; . . .;N ð2:1Þ

where N is the number of masses, n is the dimension of the

problem, and xi
d is the position of the ith agent in the dth

dimension.

The algorithm starts by randomly placing all agents in a

search space. During all epochs, the gravitational force

from agent j on agent i at a specific time t is defined as

follows:

Fd
ij tð Þ ¼ G tð ÞMpi tð Þ �Maj tð Þ

Rij tð Þ þ e
xd

j tð Þ � xd
i tð Þ

� �
; ð2:2Þ

where Maj is the active gravitational mass related to agent j,

Mpi is the passive gravitational mass related to agent i,

G (t) is a gravitational constant at time t, e is a small

constant, and Rij (t) is the Euclidian distance between two

agents i and j. It is recognised that Eq. 2.2 is not a correct

expression of Newtonian gravitational forces, as has been

explored in the critique of Gauci et al. [40]. However, the

original formulation is retained here to allow direct com-

parison with the original GSA.
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In order to emphasise exploration in the first iterations

and exploitation in the final iterations, G has been designed

with an adaptive value so that it is increased over iterations.

In other words, G encourages the search agents to move

with big steps in the initial iterations, but they are con-

strained to move slowly in the final iterations.

The gravitational factor (G) and the Euclidian distance

between two agents i and j are calculated as follows:

G tð Þ ¼ G0 � exp �a� iter

maxiter

� �
; ð2:3Þ

Rij tð Þ ¼ Xi tð Þ; XjðtÞ2; ð2:4Þ

where a is the coefficient of decrease, G0 is the initial

gravitational constant, iter is the current iteration, and

maxiter is the maximum number of iterations.

In a problem space with dimension equal to d, the total

force that acts on agent i is calculated by the following

equation:

Fd
i tð Þ ¼

XN

j¼1;j 6¼i

randjF
d
ij tð Þ; ð2:5Þ

where randj is a random number in the interval [0,1]. The

random component has been included in this formula to

have a random movement step along the gravitational force

of each agent and the final resultant force. This helps to

have more diverse behaviours in moving the search agents.

Newton’s law of motion has also been utilised in this

algorithm, which states that the acceleration of a mass is

proportional to the applied force and inverse to its mass, so

the accelerations of all agents are calculated as follows:

ad
i tð Þ ¼ Fd

i tð Þ
Mii tð Þ ; ð2:6Þ

where d is the dimension of the problem, t is a specific

time, and Mii is the inertial mass of agent i.

The velocity and position of agents are calculated as

follows:

vd
i t þ 1ð Þ ¼ randi � vd

i tð Þ þ ad
i tð Þ; ð2:7Þ

xd
i t þ 1ð Þ ¼ xd

i tð Þ þ vd
i t þ 1ð Þ; ð2:8Þ

where d is the problem’s dimension and is a random

number in the interval [0,1].

As can be inferred from (2.7) and (2.8), the current

velocity of an agent is defined as a fraction of its last velocity

(0 � randi � 1) added to its acceleration. Only a (random)

fraction of the initial velocity has been used in order to pre-

vent the search agents from over-shooting the boundaries of

the search space. In addition, it is a random fraction in order

to promote diversity in the behaviour of GSA.

Furthermore, the current position of an agent is set to its

last position added to its current velocity. To correctly

apply Newton’s laws of motion, the velocity used should

be the average of the velocities at time t and t ? 1.

However, the original version of GSA used only the final

velocity, and this same simplified method is used in this

study to allow direct comparison.

Since agents’ masses are defined by their fitness evalu-

ation, the agent with heaviest mass is the fittest agent.

According to the above equations, the heaviest agent has

the highest attractive force and the slowest movement.

Since there is a direct relation between mass and the fitness

function, a normalisation method has been adopted to scale

masses as follows:

mi tð Þ ¼ fiti tð Þ � worst ðtÞ
best ðtÞ � worst ðtÞ ; ð2:9Þ

Mi tð Þ ¼ miðtÞ
PN

j¼1 mjðtÞ
; ð2:10Þ

where fiti (t) is the fitness value of the agent i at time t, best

(t) is the fittest agent at time t, and worst (t) is the weakest

agent at time t.

In the GSA, at first, all agents are initialised with ran-

dom values. During iteration, the velocities and positions

are defined by (2.7) and (2.8). Meanwhile, other parameters

such as the gravitational constant and masses are calculated

by (2.3) and (2.10). Finally, the GSA is terminated by

satisfying an end criterion.

3 Proposed method

In this section, the problem of slow exploitation is first

clarified in detail. Following this, a method is proposed for

overcoming the problem.

3.1 Slow exploitation

As mentioned earlier, there are two main, common char-

acteristics between all population-based algorithms with

evolutionary behaviour: an algorithm’s exploration of

search spaces and its exploitation of the most promising

solution. An algorithm should support these two vital

characteristics to guarantee a favourable optimisation

process.

In GSA, the gravitational constant (G) defines the speed

at which solutions change their location in solution space.

According to Eq. 2.2, a high value of G results in high

intensities of gravitational forces and resulting rapid

movement in earlier iterations. However, G is progres-

sively decreased according to Eq. 2.3, and this, combined

with the slow movement of increasingly heavy agents,

helps GSA during exploitation [12, 41]. So the exploitation

phase coincides with less intensity of attractive force and
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slow movement. Unfortunately, heavy masses with slow

movement and less intensity of attractive force signifi-

cantly degrade the speed of convergence as well. There-

fore, it seems that GSA suffers from slow search speed in

the exploitation phase originating from these factors.

Figure 1 shows a simple, one-dimensional problem

where the fitness function is y = x2. As may be seen in

this figure, the masses M1 and M3 are attracted by M2 at

iterations t ? 1 and t ? 2. However, these masses also

attract M2 and move it slightly away from the optimum.

So as particles approach an optimum, they are not nec-

essarily able to accelerate towards it, instead moving

towards the centre of mass of all the particles in the

neighbourhood. It is worth mentioning here that GSA has

no memory for saving the best solution obtained so far so

the best solution might be lost as the best mass is attracted

away by other less fit masses. All these problems motivate

us to develop the solution discussed in the following

section.

3.2 Improving the exploitation

The basic idea of the proposed method is to save and use

the location of the best mass to speed up the exploitation

phase. Figure 2 shows the effect of using the best solution

to accelerate movement of agents towards the global

optimum. As shown in this figure, the gbest element

applies an additional velocity component towards the last

known location for the best mass. In this way, the external

gbest ‘‘force’’ helps to prevent masses from stagnating in a

suboptimal situation. There are two benefits in this method:

accelerating the movement of particles towards the location

of the best mass, which may help them to surpass it and be

the best mass in the next iteration, as illustrated in Fig. 2b

and c and saving the best solution attained so far.

Equation 3.1 is proposed for mathematically modelling

the proposed method, as follows:

Vi t þ 1ð Þ ¼ rand� Vi tð Þ þ c01 � aci tð Þ þ c02
� gbest � Xi tð Þð Þ; ð3:1Þ
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Fig. 1 Movement behaviour of masses in GSA
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Fig. 2 Movement behaviour of masses in the proposed method
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where Vi (t) is the velocity of agent i at iteration t, c01 and c02
are accelerating coefficients, rand is a random number

between 0 and 1, aci (t) is the acceleration of agent i at

iteration t, and gbest is the position of the best solution

acquired so far. In Eq. 3.1, the first component

ðrand� ViðtÞ þ c01 � aciðtÞ þ c02Þ is the same as that of

GSA, in which the exploration of the masses is empha-

sised. The second component ðc02 � ðgbest � XiðtÞÞÞ is

responsible for attracting masses towards the best masses

obtained so far. The distance of each mass from the best

mass is calculated by gbest - Xi (t). The final force

towards the best mass is a random fraction the distance

defined by c02 that will be the final external force applied to

each mass.

In each iteration, the positions of agents are updated as

follows:

Xi t þ 1ð Þ ¼ Xi tð Þ þ Vi t þ 1ð Þ ð3:2Þ

In the proposed method, all agents are randomly initialised.

Then, gravitational force, gravitational constant and

resultant forces between them are calculated using (2.2),

(2.3) and (2.5), respectively. After that, the accelerations of

particles are defined as in (2.6). At each iteration, the best

solution obtained so far should be updated. After calcu-

lating the accelerations and updating the best solution, the

velocities of all agents can be calculated using (3.1).

Finally, the positions of agents are updated as (3.2). The

process terminates by satisfying an end criterion. The

general steps of the proposed method are represented in

Fig. 3.

A problem may arise in that this method could affect the

exploration phase as well, since it establishes a permanent

element of velocity updating. In order to prevent the new

updating velocity method from degrading the exploration

ability, we use adaptive values for c01 and c02 as shown in

Fig. 4. We adaptively decrease c01 and increase c02 so that

the masses tend to accelerate towards the best solution as

the algorithm reaches the exploitation phase. Since there is

no clear border between the exploration and exploitation

phases in evolutionary algorithms, the adaptive method is

the best option for allowing a gradual transition between

these two phases. In addition, this adaptive approach

emphasises exploration in the first iterations and exploita-

tion in the final iterations.

It is worth mentioning that the second part of Eq. 3.1,

c02 � ðgbest� XiðtÞÞ, is quite similar to the social compo-

nent of PSO, so the proposed method could be also con-

sidered as a hybrid of GSA and PSO. A high value of c01
biases towards GSA behaviour, while a high value of c02
emphasises the social component of PSO in performing the

search process. The adaptive method allows GSA to

explore the search space and a PSO-like exploitation of the

best solution discovered by GSA.

Some remarks on the proposed method and its advan-

tages are the following:

• The proposed method uses a memory (gbest) for saving

the best solution obtained so far, in contrast to the

unmodified GSA, so it is accessible at any time and will

not be lost.

• Each agent can observe the best solution (gbest) and

move towards it, so masses are provided with a sort of

social intelligence.

• The effect of gbest is emphasised in the exploitation

phase by adapting c01 and c02.

• The effect of gbest on agents is independent of their

masses and so can be considered as an external force

not subject to gravitational rules. This effectively

prevents particles from gathering together and having

extremely slow movement.

• The computational cost of this method is extremely

low.

Because of these features, the proposed method has the

potential to provide superior results compared to GSA. In

the following section, various benchmark functions are

employed to explore the effectiveness of the proposed

method in action.

Generate initial population
while (the end criterion is not satisfied)

Evaluate the fitness of all agents
Update G by equation (2.3) and gbest 
Calculate M using equation (2.10)
Calculate forces and accelerations using equations (2.5) and (2.6)
Update velocity and position by equation (3.1) and (3.2)

end while
return gbest

Fig. 3 General steps of the proposed method
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Fig. 4 Coefficients curves
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4 Experimental results and discussion

To evaluate the performance of the proposed method, termed

gbest-guided GSA (GGSA), 25 standard benchmark func-

tions, the CEC 2005 test functions, are employed in this sec-

tion [42]. These benchmark functions are the shifted, rotated,

expanded and combined variants of the classical functions, the

most challenging forms of the test functions. They can be

divided into three groups: unimodal, multimodal and com-

posite functions. Table 1 lists the functions, where Dim

indicates dimension of the function, Range is the boundary of

the function’s search space, and fmin is the minimum return

value of the function. We compare GGSA and GSA on

problems of six different dimensions to verify the perfor-

mance of both algorithms dealing with problems of different

scale. A detailed description of the benchmark functions is

available in the technical report by Suganthan et al. [42].

The GGSA and GSA have several parameters that were

defined as in Table 2.

Table 1 Benchmark functions

Benchmark functions Range Dim fmin

Unimodal functions

F1: Shifted sphere function [-100,100] 10,30 50, 100, 200, 300 -450

F2: Shifted Schwefel’s [-100,100] 10,30 50, 100, 200, 300 -450

F3: Shifted rotated high conditioned elliptic function [-100,100] 10,30 50, 100, 200, 300 -450

F4: Shifted Schwefel’s with noise in fitness [-100,100] 10,30 50, 100, 200, 300 -450

F5: Schwefel’s with global optimum on bounds [-100,100] 10,30 50, 100, 200, 300 -310

Multimodal functions

F6: Shifted Rosenbrock’s function [-100,100] 10,30 50, 100, 200, 300 390

F7: Shifted rotated Griewank’s function without bounds [0,600] 10,30 50, 100, 200, 300 -180

F8: Shifted rotated Ackley’s function with global optimum on bounds [-32,32] 10,30 50, 100, 200, 300 -140

F9: Shifted Rastrigin’s function [-5,5] 10,30 50, 100, 200, 300 -330

F10: Shifted rotated Rastrigin’s function [-5,5] 10,30 50, 100, 200, 300 -330

F11: Shifted rotated Weierstrass function [-0.5,0.5] 10,30 50, 100, 200, 300 90

F12: Schwefel’s [-100,100] 10,30 50, 100, 200, 300 -460

F13: Expanded extended Griewank’s plus Rosenbrock’s function (F8F2) [-3,1] 10,30 50, 100, 200, 300 -130

F14: Shifted rotated expanded Scaffer’s F6 [-100,100] 10,30 50, 100, 200, 300 -300

Composite functions

F15: Hybrid composition function [-5,5] 10,30 50, 100, 200, 300 120

F16: Rotated hybrid composition function [-5,5] 10,30 50, 100, 200, 300 120

F17: Rotated hybrid composition function with noise in fitness [-5,5] 10,30 50, 100, 200, 300 120

F18: Rotated hybrid composition function [-5,5] 10,30 50, 100, 200, 300 10

F19: Rotated hybrid composition function with a narrow basin for the global optimum [-5,5] 10,30 50, 100, 200, 300 10

F20: Rotated hybrid composition function with the global optimum on the bounds [-5,5] 10,30 50, 100, 200, 300 10

F21: Rotated hybrid composition function [-5,5] 10,30 50, 100, 200, 300 360

F22: Rotated hybrid composition function with high condition number matrix [-5,5] 10,30 50, 100, 200, 300 360

F23: Non-continuous rotated hybrid composition function [-5,5] 10,30 50, 100, 200, 300 360

F24: Rotated hybrid composition function [-5,5] 10,30 50, 100, 200, 300 260

F25: Rotated hybrid composition function without bounds [-2,5] 10,30 50, 100, 200, 300 260

Table 2 Initial parameters

Algorithm Parameter Value

GGSA Number of

particles

30 (dim = 10, 30, 50), 60 (dim = 100, 200,

300)

c01 (-2t3/T3) ? 2

c02 (2t3/T3)

G0 1

a 20

Max iterations 500

Stopping criteria Max iteration

GSA Number of

masses

30 (dim = 10, 30, 50), 60 (dim = 100, 200,

300)

G0 1

a 20

Max iterations 500

Stopping criteria Max iteration

T indicates the maximum number of interactions

t is the current iteration
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The experimental results are presented in Tables 3, 4, 5,

6, 7 and 8. The results are averaged over 30 independent

runs, and the best results are indicated in bold type. The

average (AVE) and standard deviation (STD) of the best

solution obtained in the last iteration are reported in the

form of AVE ± STD. Note that the source codes of the

GGSA algorithm can be found in http://www.alimirjalili.

com/Projects.html.

According to Derrac et al. [43], to improve the evalua-

tion of evolutionary algorithms’ performance, statistical

tests should be conducted to prove that a proposed new

algorithm presents a significant improvement over other

existing methods for a particular problem. In order to judge

whether the results of the GGSA and GSA differ from each

other in a statistically significant way, a nonparametric

statistical test, Wilcoxon’s rank-sum test [44], is carried out

at 5 % significance level. The p values calculated in the

Wilcoxon’s rank-sum comparing the algorithms over all

the benchmark functions are given in Tables 4, 6 and 8. In

these tables, N/A indicates ‘‘Not Applicable,’’ which means

the statistical test cannot be done because both algorithms

found the optimum successfully in all the runs. According

to Derrac et al., p values that are less than 0.05 can be

considered as strong evidence against the null hypothesis.

Note that the results are provided in the form of Algorithm

(p value), where Algorithm is the better algorithm based on

the average of the results (AVE). In the following sub-

sections, the simulation results of benchmark functions are

explained and discussed in terms of search performance

and convergence behaviour.

4.1 Search performance analysis

As shown in Table 3, the GGSA and GSA provide similar

results on 10-D unimodal benchmark functions. For the

remaining dimensions, GGSA has the best results for all

benchmark functions. The p values presented in Table 4

indicate that the results of GGSA are significantly better

than GSA. The unimodal benchmark functions have only

one global solution without any local optima so they are

highly suitable for examining exploitation. Therefore, these

results demonstrate that the proposed method provides

greatly improved exploitation compared to the original

GSA.

However, multimodal test functions have many local

minima, with the number increasing exponentially with

dimension, so they are well suited to test the exploration

capability of an algorithm. The mean and STD values in

Table 3 Minimisation results of the unimodal benchmark functions

Dim F1 F2 F3 F4 F5

GGSA

10 2450.00000 – 0.00000 2450.00000 – 0.00000 2450.00000 – 0.00000 2450.00000 – 0.00000 2310.00000 – 0.00000

30 1,038.47460 – 975.055 1,410.45330 – 919.248 922.223800 – 683.538 1,127.84270 – 1,217.68 2,115.65050 – 1,965.03

50 31,012.0700 – 5,200.31 31,020.6090 – 6,791.73 30,232.2660 – 6,218.12 30,564.1930 – 3,753.42 30,084.5240 – 6,179.49

100 157,574.471 – 8,320.58 155,456.001 – 10,458.1 156,098.961 – 6,401.34 151,617.639 – 5,460.79 161,084.308 – 5,502.25

200 587,011.907 – 11,179.7 584,665.605 – 15,890.6 590,912.910 – 13,248.5 586,355.823 – 13,329.0 589,741.240 – 20,028.2

300 858,222.694 – 9,447.49 860,288.803 – 18,289.4 866,201.591 – 15,625.2 858,551.587 – 19,348.6 853,933.492 – 16,969.4

GSA

10 2450.00000 – 0.00000 2450.00000 – 0.00000 2450.00000 – 0.00000 2450.00000 – 0.00000 2310.00000 – 0.00000

30 23,756.9400 ± 3,610.59 25,459.6480 ± 3,065.40 25,025.3420 ± 5,838.77 23,659.0870 ± 3,076.43 25,321.0640 ± 3,328.68

50 78,615.7800 ± 7,561.45 78,115.8710 ± 6,946.47 79,719.0030 ± 6,142.03 79,545.7910 ± 8,253.67 79,734.3280 ± 6,411.98

100 223,847.517 ± 10,639.9 229,005.346 ± 6,203.36 227,534.626 ± 5,379.42 225,582.846 ± 7,253.33 224,507.487 ± 5,893.19

200 670,413.528 ± 16,093.9 673,780.129 ± 18,084.8 686,825.022 ± 13,363.0 673,645.855 ± 14,617.9 677,916.400 ± 12,712.1

300 949,270.405 ± 18,348.1 956,634.832 ± 12,447.4 948,794.770 ± 13,517.7 965,324.325 ± 16,913.2 954,244.460 ± 12,784.8

Table 4 p values of

Wilcoxon’s rank-sum test for

unimodal benchmark functions

Dim F1 F2 F3 F4 F5

10 N/A N/A N/A N/A N/A

30 GGSA (0.00018) GGSA (0.00018) GGSA (0.00018) GGSA (0.00018) GGSA (0.00018)

50 GGSA (0.00018) GGSA (0.00018) GGSA (0.00018) GGSA (0.00018) GGSA (0.00018)

100 GGSA (0.00018) GGSA (0.00018) GGSA (0.00018) GGSA (0.00018) GGSA (0.00018)

200 GGSA (0.00018) GGSA (0.00018) GGSA (0.00018) GGSA (0.00018) GGSA (0.00018)

300 GGSA (0.00018) GGSA (0.00018) GGSA (0.00018) GGSA (0.00018) GGSA (0.00018)
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Table 5 Minimisation results of the multimodal benchmark functions

Dim F6 F7 F8 F9 F10

GGSA

10 390.000000 – 0.00000 2109.64880 – 222.4702 9,632.5842 – 199.9269 24,318.8556 – 93.2272 24,318.991 – 96.71750

30 2,610.51600 – 1,491.60 84,637.5080 – 23,391.52 38,054.967 – 1,881.951 79,133.2785 – 480.221 79,173.459 – 404.7450

50 31,490.0170 – 5,020.49 203,828.334 – 48,436.87 76,491.616 – 2,982.408 132,155.559 – 862.244 132,401.20 – 319.1275

100 156,998.075 – 9,113.09 365,001.140 – 50,728.39 177,772.69 – 4,312.698 264,098.649 – 689.162 264,435.70 – 630.8460

200 588,559.860 – 17,866.5 894,117.506 – 83,959.53 587,851.76 – 8,084.269 696,260.734 – 1,437.11 695,557.84 – 1,357.026

300 865,395.919 – 18,627.4 1,356,170.09 – 94,453.33 848,279.17 – 11,595.40 951,549.525 – 1,922.34 950,034.26 – 2,055.630

GSA

10 390.000000 – 0.00000 13,024.87 0 ± 13,821.88 10,203.996 ± 452.626 24,375.5194 ± 116.077 24,344.7388 ± 126.611

30 29,514.9520 ± 5,720.44 177,978.330 ± 40,563.92 47,536.183 ± 3,246.152 79,604.3470 ± 606.208 79,321.2020 ± 590.015

50 82,455.2530 ± 8,705.94 616,546.368 ± 61,610.10 93,310.367 ± 4,827.996 132,390.083 ± 356.120 132,911.000 ± 649.400

100 225,961.501 ± 14,860.9 2,695,994.54 ± 211,511.9 218,785.48 ± 5,668.755 264,948.737 ± 1,018.87 264,902.427 ± 1,030.81

200 671,946.558 ± 16,681.5 9,304,835.05 ± 539,337.5 658,328.24 ± 5,237.024 702,211.439 ± 1,669.58 700,882.302 ± 1,079.05

300 949,534.815 ± 12,623.6 16,841,021.0 ± 552,117.3 936,002.17 ± 8,489.646 963,609.162 ± 2,070.76 964,702.193 ± 1,559.11

Dim F11 F12 F13 F14

GGSA

10 27,701.2434 ± 26.2017 25,635.8866 – 72.44380 25,896.771 – 38.54430 2300.0000 0 – 0.00000

30 87,737.4482 – 93.4266 82,910.8146 – 197.4686 83,335.913 – 169.3187 1,461.86660 – 1,208.91

50 144,933.445 – 86.9164 138,212.204 – 277.2080 138,416.86 – 368.0530 31,240.1757 – 6,198.75

100 286,910.627 – 134.111 274,620.631 – 572.6490 275,058.44 – 307.4,835 157,685.984 – 12,433.0

200 738,697.539 – 440.459 716,167.820 – 858.7484 716,968.57 – 874.5393 584,837.006 – 15,460.2

300 1,004,054.91 – 549.127 977,130.968 – 1,433.060 977,518.19 ± 889.0172 858,549.906 – 16,630.9

GSA

10 27,693.0119 – 22.9293 25,670.9233 ± 90.31160 25,964.668 ± 45.01150 2300.00000 – 0.00000

30 87,789.4,728 ± 104.725 83,083.2753 ± 297.4075 83,579.995 ± 236.4237 24,581.2390 ± 2,629.66

50 145,071.771 ± 80.7319 138,284.762 ± 314.8960 138,465.68 ± 402.3,130 78,622.8973 ± 6,696.06

100 287,015.125 ± 167.504 275,369.983 ± 424.1814 275,445.67 ± 334.6597 220,939.682 ± 7,343.51

200 738,917.428 ± 289.219 717,498.153 ± 1,046.253 717,332.39 ± 744.1265 680,207.251 ± 15,864.5

300 1,004,612.02 ± 267.922 978,733.440 ± 611.0777 978,589.17 – 1,364.674 954,869.302 ± 11,192.9

Table 6 p values of Wilcoxon’s rank-sum test for multi-modal benchmark functions

Dim F6 F7 F8 F9 F10

10 N/A GGSA (8.74e-05) GGSA (0.004586) GGSA (0.241322) GGSA (0.850107)

30 GGSA (0.000183) GGSA (0.000183) GGSA (0.000183) GGSA (0.053903) GGSA (0.384673)

50 GGSA (0.000183) GGSA (0.000183) GGSA (0.000183) GGSA (0.273036) GGSA (0.053903)

100 GGSA (0.000183) GGSA (0.000183) GGSA (0.000183) GGSA (0.045155) GGSA (0.472676)

200 GGSA (0.000183) GGSA (0.000183) GGSA (0.000183) GGSA (0.000183) GGSA (0.000183)

300 GGSA (0.000183) GGSA (0.000183) GGSA (0.000183) GGSA (0.000183) GGSA (0.000183)

Dim F11 F12 F13 F14

10 GSA (0.570750) GGSA (0.273036) GGSA (0.002202) N/A

30 GGSA (0.273036) GGSA (0.185877) GGSA (0.037635) GGSA (0.000183)

50 GGSA (0.004586) GGSA (0.677585) GGSA (0.850107) GGSA (0.000183)

100 GGSA (0.161972) GGSA (0.002827) GGSA (0.045155) GGSA (0.000183)

200 GGSA (0.241322) GGSA (0.004586) GGSA (0.161972) GGSA (0.000183)

300 GGSA (0.021134) GGSA (0.002202) GGSA (0.121225) GGSA (0.000183)

1576 Neural Comput & Applic (2014) 25:1569–1584

123



Table 5 and p values in Table 6 are for this class of

benchmark functions. These tables show that GGSA pro-

vided better results than GSA across the majority of

dimensions. GGSA completely outperformed GSA on F7

and F9 for all dimensions. For some of the remaining

benchmark functions, GSA provides apparently better

results but the p values indicate the results for some cases

were not statistically significant. The results of the third

group of benchmark functions, composite benchmark

functions, are provided in Tables 7 and 8.

The third class of benchmark functions, the composite

functions, have extremely complex structures with many

local minima, similar to real-world problems. These func-

tions are thus suitable to test an algorithm in terms of both

exploration and exploitation. Many of the results for these

functions presented in Tables 7 and 8 are inconclusive.

However, GGSA still showed generally better results,

particularly for higher-dimensional functions.

To give an overall image of the performance of these

algorithms, a summary of the results is provided in Figs. 5

and 6. It may be seen that the results of GGSA tend to be

significantly better than GSA as the dimension and com-

plexity of the problems rises (e.g., the ESGA provides

significant improvement on almost all benchmark functions

in 200 and 300 dimensions). This improving trend can be

seen in both figures.

In summary, the results on unimodal functions strongly

suggest that GGSA has superior exploitation to GSA. The

results obtained on multimodal functions also show that

the proposed method is capable of efficiently exploring

Table 7 Minimisation results of the composite benchmark functions

Dim F15 F16 F17 F18 F19 F20

GGSA

10 24,754.23 – 90.364 24,739.34 – 121.11 24,745.42 – 86.265 24,582.19 – 111.98 24,607.66 – 106.24 24,695.82 ± 56.557

30 79,729.60 – 253.37 79,270.13 – 376.45 79,652.03 – 515.15 79,643.85 ± 554.11 79,510.88 – 180.21 79,496.72 – 201.66

50 132,574.3 – 845.51 132,715.3 – 795.05 132,714.2 – 517.72 132,745.0 – 467.87 132,491.7 – 682.34 132,780.9 ± 674.19

100 264,443.6 – 1,058.7 264,339.3 – 803.46 264,680.1 – 906.96 263,975.7 – 804.12 264,411.1 – 643.53 264,082.4 – 903.38

200 695,325.7 – 1,729.7 696,547.7 – 2,065.0 695,079.6 – 1,378.1 694,975.8 – 1,287.1 695,651.1 – 1,477.4 697,005.9 – 1,551.5

300 950,454.9 – 3,019.7 952,388.6 – 3,049.5 951,423.9 – 1,884.8 952,689.1 – 1,905.0 951,062.5 – 1,917.3 951,928.1 – 2,450.1

GSA

10 24,758.10 ± 120.06 24,842.93 ± 107.97 24,836.86 ± 94.745 24,670.36 ± 90.001 24,708.33 ± 98.683 24,612.79 – 103.88

30 79,832.79 ± 185.68 79,760.23 ± 169.95 79,680.81 ± 330.34 79,278.21 – 446.29 79,683.00 ± 405.66 79,536.02 ± 460.50

50 132,877.0 ± 850.01 133,343.2 ± 833.95 133,295.6 ± 469.39 132,797.2 ± 522.30 133,145.1 ± 411.43 132,646.3 – 571.68

100 265,419.7 ± 1,004.5 265,396.2 ± 947.22 264,941.6 ± 791.68 265,054.1 ± 1,034.8 265,197.8 ± 878.11 265,218.6 ± 700.48

200 702,309.0 ± 2,675.8 702,654.8 ± 1,864.2 702,187.2 ± 1,345.0 702,309.0 ± 1,141.5 702,977.8 ± 2,435.8 702,277.9 ± 1,335.4

300 964,649.3 ± 1,923.1 963,174.6 ± 2,054.8 963,750.0 ± 1,405.4 963,769.0 ± 2,901.6 965,054.2 ± 2,598.6 963,298.8 ± 2,449.6

Dim F21 F22 F23 F24 F25

GGSA

10 24,953.41 – 117.98 25,004.72 – 92.801 24,998.07 – 72.846 24,933.98 – 125.66 24,870.91 – 95.729

30 79,726.87 – 187.21 79,592.34 – 224.39 79,701.94 – 353.10 79,757.11 – 280.97 79,709.79 – 364.14

50 132,753.7 – 715.35 133,189.9 – 412.32 132,971.1 – 715.17 132,887.2 – 502.82 132,874.6 – 560.12

100 264,514.5 – 930.59 264,479.8 – 971.16 265,027.7 – 758.81 264,309.5 – 675.43 264,745.5 – 1,091.3

200 696,218.2 – 1,341.4 695,796.0 – 835.54 695,220.6 – 1,523.8 696,129.0 – 1,352.0 696,973.2 – 1,418.3

300 951,831.8 – 1,941.1 951,873.2 – 1,056.7 950,682.4 – 2,081.1 951,058.4 – 1,784.9 952,318.6 – 2,089.0

GSA

10 25,043.82 ± 82.104 25,048.63 ± 65.284 24,981.55 – 83.522 24,961.21 ± 64.549 24,963.03 ± 89.812

30 79,977.98 ± 264.92 79,820.98 ± 354.83 80,089.38 ± 272.27 79,907.19 ± 339.69 79,948.36 ± 161.12

50 133,202.4 ± 600.04 133,479.4 ± 875.04 133,062.5 ± 621.02 133,100.9 ± 724.07 132,904.8 ± 636.46

100 265,411.2 ± 625.06 265,123.1 ± 669.89 265,737.1 ± 720.56 265,406.6 ± 701.76 265,693.3 ± 886.62

200 702,844.7 ± 1,313.0 702,468.8 ± 1,830.7 702,742.0 ± 638.31 702,206.3 ± 1,267.5 703,801.7 ± 1,055.2

300 965,684.7 ± 1,831.3 963,284.4 ± 1,418.5 964,654.4 ± 1,874.3 965,154.6 ± 2,796.5 964,136.8 ± 2,412.6
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the search space. Moreover, the results on composite

functions highly support this statement that the proposed

adaptive values for c01 and c02 is a suitable method to

balance exploration and exploitation. In the next section,

the convergence behaviour of GGSA and GSA is

investigated.

4.2 Convergence analysis

The convergence curves of both algorithms over 30-D

benchmarks at all dimensions are illustrated in Fig. 11 in the

Appendix. As may be seen from these figures, GGSA has a

much better convergence rate than GSA on unimodal bench-

mark functions for all dimensions. Generally speaking, the

convergence of GGSA tends to surpass GSA from the initial

steps of a run. Considering this behaviour and the character-

istics of unimodal functions indicates that the proposed

method successfully improves the convergence rate compared

with GSA and the consequent effectiveness of exploitation.

The convergence of the algorithms on the majority of

multimodal and composite benchmark functions follows a

different scenario. The GGSA has worse convergence than

GSA in the initial iterations. However, the search process is

progressively accelerated during iterations for this algorithm.

This acceleration helps GGSA to surpass GSA after com-

pleting about a quarter of the iterations. This demonstrates

how GGSA is capable of balancing exploration and exploi-

tation to find the global optimum rapidly and effectively.

Overall, these results show that the proposed algorithm is able

tosignificantly improveon theperformanceofGSA,overcoming

its major shortcomings. In the next section, the performance of

GGSA solving real engineering constraint problems is examined.

5 GGSA for classical design engineering problems

In the field of meta-heuristics, it is very common that an

algorithm provides very promising results on test prob-

lems, but poor results on real challenging problems. In

other words, there are possibilities that an algorithm uti-

lises the known characteristics of test functions (sym-

metric for instance) and provides good superior results. In

this case, some classical engineering design problems with

unknown search spaces are available in the literature to

benchmark meta-heuristics. Moreover, real problems

usually have constraints, and an algorithm should be able

to handle constraints in order to solve them. In this

Table 8 p values of Wilcoxon’s rank-sum test for composite benchmark functions

Dim F15 F16 F17 F18 F19 F20

10 GGSA (0.96985) GGSA (0.05390) GGSA (0.05390) GGSA (0.10411) GGSA (0.04515) GSA (0.03120)

30 GGSA (0.34470) GGSA (0.00220) GGSA (0.79133) GSA (0.12122) GGSA (0.34470) GGSA (0.90972)

50 GGSA (0.27303) GGSA (0.14046) GGSA (0.01725) GGSA (0.79133) GGSA (0.01725) GSA (0.67758)

100 GGSA (0.05390) GGSA (0.02574) GGSA (0.52052) GGSA (0.03763) GGSA (0.03120) GGSA (0.01401)

200 GGSA (0.00018) GGSA (0.00033) GGSA (0.00018) GGSA (0.00018) GGSA (0.00018) GGSA (0.00018)

300 GGSA 0.00018) GGSA (0.00033) GGSA (0.00018) GGSA (0.00018) GGSA (0.00018) GGSA (0.00018)

Dim F21 F22 F23 F24 F25

10 GGSA (0.05390) GGSA (0.34470) GSA (0.62317) GGSA (0.47267) GGSA (0.03763)

30 GGSA (0.03763) GGSA (0.16197) GGSA (0.01725) GGSA (0.57075) GGSA (0.01133)

50 GGSA (0.21229) GGSA (0.38467) GGSA (0.79133) GGSA (0.67758) GGSA (0.96985)

100 GGSA (0.03120) GGSA (0.08897) GGSA (0.06402) GGSA (0.00728) GGSA (0.05390)

200 GGSA (0.00018) GGSA (0.00018) GGSA (0.00018) GGSA (0.00018) GGSA (0.00018)

300 GGSA (0.00018) GGSA (0.00018) GGSA (0.00018) GGSA (0.00018) GGSA (0.00018)
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Fig. 5 Statistical results of all benchmark functions based on

dimension
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section, two constrained engineering design problems (a

tension/compression spring and welded beam) are

employed to further investigate the efficiency of the pro-

posed method for real problems. We have chosen these

classical engineering problems because they are con-

strained, so the ability of the proposed method would be

benchmarked in terms of solving constrained problems.

Moreover, the employed engineering problems are the

simplified version of real problems with unknown search

spaces, so the performance of the proposed method would

be examined in terms of finding the optima of unknown

challenging search spaces.

5.1 Tension/compression spring design

The objective of this problem is to minimise the weight of

a tension/compression spring [45–47]. The minimisation

process is subject to some constraints such as shear stress,

surge frequency and minimum deflection. There are three

variables in this problem: wire diameter (d), mean coil

diameter (D) and the number of active coils (N). The

mathematical formulation of this problem is as follows:

Consider x~¼ x1 x2 x3½ � ¼ d D N½ �;
Minimize f x~ð Þ ¼ x3 þ 2ð Þx2x2

1;

Subject to g1 x~ð Þ ¼ 1� x3
2x3

71785x4
1

� 0;

g2 x~ð Þ ¼ 4x2
2 � x1x2

12566ðx2x3
1 � x4

1Þ
þ 1

5108x2
1

� 0;

g3 x~ð Þ ¼ 1� 140:45x1

x2
2x3

� 0;

g4 x~ð Þ ¼ x1 þ x2

1:5
� 1� 0;

Variable range 0:05� x1� 2:00;
0:25� x2� 1:30; 2:00� x3� 15:0;

ð5:1Þ

This problem has been tackled by both mathematical and

heuristic approaches. Ha and Wang tried to solve this

problem using PSO [48]. The evolution strategy (ES) [49],

GA [50], harmony search (HS) [51] and DE [52] algo-

rithms have also been employed as heuristic optimisers for

this problem. The mathematical approaches that have been

adopted to solve this problem are the numerical optimisa-

tion technique (constraints correction at constant cost) [45]

and mathematical optimisation technique [46]. The com-

parison of results of these techniques and the proposed

method are provided in Table 9. Note that we use a penalty
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Fig. 6 Statistical results of unimodal, multimodal, and composite benchmark functions separately

Table 9 Comparison of results for tension/compression spring design problem

Algorithm Optimum variables Optimum weight

d D N

GGSA 0.051319 0.347901 11.825211 0.0126677

GSA 0.050276 0.323680 13.525410 0.0127022

PSO (Ha and Wang) 0.051728 0.357644 11.244543 0.0126747

ES (Coello and Montes) 0.051989 0.363965 10.890522 0.0126810

GA (Coello) 0.051480 0.351661 11.632201 0.0127048

HS (Mahdavi et al.) 0.051154 0.349871 12.076432 0.0126706

DE (Huang et al.) 0.051609 0.354714 11.410831 0.0126702

Mathematical optimisation (Belegundu) 0.053396 0.399180 9.1854000 0.0127303

Constraint correction (Arora) 0.050000 0.315900 14.250000 0.0128334
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function for both GGSA and GSA to perform a fair com-

parison [53]. As shown in Table 9, GSA only outperforms

two of the algorithms, whereas GGSA consistently has the

best results. The convergence curves of GGSA and GSA in

this problem are illustrated in Fig. 7. The convergence

behaviour is entirely consistent with the previous results

whereby GGSA is accelerated over the iteration. As the

exploitation phase comes up, the GGSA surpasses GSA

and exploits a better solution eventually.

5.2 Welded beam design

The objective of this problem was to minimise the fabri-

cation cost of a welded beam [50]. The constraints are

shear stress (s), bending stress in the beam (h), buckling

load on the bar (Pc), end deflection of the beam (d) and side

constraints. This problem has four variables: thickness of

weld (h), length of attached part of bar (l), the height of the

bar (t) and thickness of the bar (b). The mathematical

formulation is as follows:

Consider x~¼ x1 x2 x3 x4½ � ¼ h l t b½ �;
Minimize f x~ð Þ ¼ 1:10471x2

1x2 þ 0:04811x3x4 14:0þ x2ð Þ;
Subject to g1 x~ð Þ ¼ s x~ð Þ � smax� 0;
g2 x~ð Þ ¼ r x~ð Þ � rmax� 0;
g3 x~ð Þ ¼ d x~ð Þ � dmax� 0;
g4 x~ð Þ ¼ x1 � x4� 0;
g5 x~ð Þ ¼ P� Pcðx~Þ� 0;
g6 x~ð Þ ¼ 0:125� x1� 0

g7 x~ð Þ ¼ 1:10471x2
1 þ 0:04811x3x4 14:0þ x2ð Þ � 5:0� 0;

Variable range 0:1� x1� 2;
0:1� x2� 10;
0:1� x3� 10;
0:1� x4� 2;

where s x~ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs0Þ2 þ 2s0s00

x2

2R
þ ðs00Þ2

r
;

s0 ¼ P
ffiffiffi
2
p

x1x2

; s00 ¼ MR

J
;M ¼ P Lþ x2

2

� �
;

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

2

4
þ x1 þ x3

2

� �2
r

;

J ¼ 2
ffiffiffi
2
p

x1x2

x2
2

4
þ x1 þ x3

2

� �2
	 
� �

;

r x~ð Þ ¼ 6PL

x4x2
3

; d x~ð Þ ¼ 6PL3

Ex2
3x4

Pc x~ð Þ ¼
4:013E

ffiffiffiffiffiffiffiffiffi
x2

3x6
4

36

r

L2
1� x3

2L

ffiffiffiffiffiffi
E

4G

r !

;

P ¼ 6000lb; L ¼ 14in:; dmax ¼ 0:25in:;
E ¼ 30� 16 psi;G ¼ 12� 106psi;
smax ¼ 13600 psi; rmax ¼ 30000 psi;

ð5:2Þ

Coello [54] and Deb [55, 56] employed GA, whereas Lee

and Geem [57] utilised HS to solve this problem. Richard-

son’s random method, simplex method, Davidon–Fletcher–

Powell, Griffith and Stewart’s successive linear approxi-

mation are the mathematical approaches that have been

adopted by Radgsdell and Philips [58] for this problem. The

comparison results are provided in Table 10. The results
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Fig. 7 Convergence curve of GGSA and GSA in tension/compres-

sion design problem

Table 10 Comparison results for welded beam design problem

Algorithm Optimum variables Optimum cost

h l t b

GGSA 0.21591707125 3.3149551004 8.8961948919 0.21591707126 1.770829299

GSA 0.1821296746 3.8569797232 10.00000000 0.2023764710 1.879952224

GA (Coello) N/A N/A N/A N/A 1.8245

GA (Deb) N/A N/A N/A N/A 2.3800

GA (Deb) 0.2489 6.1730 8.1789 0.2533 2.4331

HS (Lee and Geem) 0.2442 6.2231 8.2915 0.2443 2.3807

Random 0.4575 4.7313 5.0853 0.6600 4.1185

Simplex 0.2792 5.6256 7.7512 0.2796 2.5307

David 0.2434 6.2552 8.2915 0.2444 2.3841

APPROX 0.2444 6.2189 8.2915 0.2444 2.3815
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show that GGSA and GSA both have high performance in

this problem. The result of GGSA, however, is better than

GSA. Moreover, Fig. 8 demonstrates that GGSA has a

slightly better convergence rate with the acceleration noted

in previous benchmarks.

The possible reason for this is that GSA is not able to

discover new feasible areas in the search space when

masses should cross an infeasible area to reach a new

feasible area. This phenomenon is visualised in Fig. 9. It

can be observed in this figure that the masses are not able

to move to the second feasible zone since there is no mass

there to attract them. Moreover, the infeasible masses are

extremely light when using a penalty function or assigning

large fitness function values to handle constraints. Thus,

they get attracted back immediately they exit feasible

areas. However, as is clearly shown in Fig. 10, the pro-

posed method helps masses cross infeasible areas of search

space. Therefore, the proposed method helps masses not

only to accelerate towards the best solution but also dis-

cover new feasible areas in some special situations.

In summary, the results show that the proposed method

successfully outperforms GSA in a majority of benchmark

functions. Furthermore, tests using classical engineering

problems show that GGSA is capable of providing very

competitive results, indicating the superior performance of

this algorithm in solving constrained problems compared to

GSA. It therefore appears from this comparative study that

the proposed method has merit in the field of evolutionary

algorithm and optimisation.
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Fig. 8 Convergence curve of GGSA and GSA in welded beam

design problem
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6 Conclusion

In this work, the exploitation of GSAs was improved by

accelerating the masses towards the best solution currently

obtained. The proposed method proved its superior per-

formance on 25 benchmark functions in terms of improved

avoidance of local minima and increased convergence rate.

Furthermore, two classical engineering design prob-

lems were employed to benchmark the performance of the

proposed method when applied to real problems. The

results verified the superior performance of GGSA on

optimising constrained problems when compared to GSA,

due to its improved ability to discover new, promising

feasible areas.

For future studies, it would be interesting to expand the

application of GGSA further on other real-world engi-

neering problems.

Appendix

See Fig. 11.
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Fig. 11 Convergence behaviour of GGSA and GSA on the benchmark functions with dim = 30
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