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Abstract A useful patient admission prediction model

that helps the emergency department of a hospital admit

patients efficiently is of great importance. It not only

improves the care quality provided by the emergency

department but also reduces waiting time of patients. This

paper proposes an automatic prediction method for patient

admission based on a fuzzy min–max neural network

(FMM) with rules extraction. The FMM neural network

forms a set of hyperboxes by learning through data sam-

ples, and the learned knowledge is used for prediction. In

addition to providing predictions, decision rules are

extracted from the FMM hyperboxes to provide an expla-

nation for each prediction. In order to simplify the structure

of FMM and the decision rules, an optimization method

that simultaneously maximizes prediction accuracy and

minimizes the number of FMM hyperboxes is proposed.

Specifically, a genetic algorithm is formulated to find the

optimal configuration of the decision rules. The experi-

mental results using a large data set consisting of 450740

real patient records reveal that the proposed method

achieves comparable or even better prediction accuracy

than state-of-the-art classifiers with the additional ability to

extract a set of explanatory rules to justify its predictions.

Keywords Patient admission prediction � Fuzzy min–

max neural network � Genetic algorithm � Rule extraction

1 Introduction

For more than a decade, an increasing number of patients

visit hospital emergency departments daily. This poses a

great challenge for emergency departments to manage

limited medical resources (e.g., available hospital beds and
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doctors) for patients seeking emergency care. Tradition-

ally, patient admission is manually determined by medical

practitioners. This manual operation has several draw-

backs. Firstly, comparing with the large number of patients,

medical practitioners, especially the ones with extensive

experience, are very limited. Secondly, the manual

admission process is always time-consuming and labor-

intensive. Finally, the manual admission process heavily

relies on the knowledge and experience of medical prac-

titioners, which sometimes entails a subjective reasoning

process. Therefore, a decision support system that is able to

automatically and accurately predict patient admission is

very valuable for real clinical application and is highly

sought after by emergency departments. It is even more

valuable if the decision support system could justify its

prediction pertaining to patient admission objectively.

Therefore, the decision support system helps emergency

departments to deliver timely emergency care, improve

quality of care, and reduce waiting time of presented

patients.

Although automatic prediction of patient admission has

great potential applications in clinical environments, few

works have been conducted to investigate this problem [1–

5]. Automatic prediction of patient admission can be cast

as a pattern recognition and classification problem that can

be addressed by various types of classifiers such as artifi-

cial neural networks (ANNs) [6], Adaboost [7, 8], Random

Forest [9], Classification And Regression Tree (CART)

[10], Support Vector Machine (SVM) [8].

Among them, the fuzzy min–max (FMM) neural net-

work [11, 12] is a promising model to undertake pattern

recognition and classification tasks in medical prediction

and diagnosis [13]. As a reliable and promising prediction

model, FMM has several desirable properties. Firstly,

FMM is an online learning model. It incrementally learns

information from new coming training samples (i.e.,

patient information) without forgetting previously learned

information. Furthermore, FMM is a nonlinear classifier,

i.e., it is able to learn decision boundaries to separate

classes that consist of different sizes and shapes. In addi-

tion, FMM provides a soft decision through its membership

function, which is tolerant of imprecision, partial truth, and

uncertainty. This soft decision can be further converted into

a hard decision by setting a decision threshold.

The FMM neural network forms a group of hyperboxes

with fuzzy sets theory to represent the information learned

from training data. A fuzzy hyperbox is an n dimension box

(n is the dimension of input patterns) that is defined by a set

of minimum and maximum points. The goodness-of-fit of

an input pattern to a hyperbox is determined by the degree

of membership to the corresponding hyperbox. The hyper-

box size is controlled by a user-defined parameter. A larger

hyperbox size leads to a larger coverage of the pattern

space. The resulting hyperbox can contain a larger number

of data samples, which reduces the complexity of the FMM

neural network. By contrast, a smaller hyperbox can only

cover a smaller region that contains fewer data samples,

which in turn increases the complexity of FMM. Therefore,

the hyperbox size is of importance to the FMM neural

network. An FMM model with large hyperboxes neglects

salient and discriminative information of input patterns,

while one with small hyperboxes over-fits the training data.

A number of extensions have been proposed to improve

the performance of FMM. For instance, Nandedkar and

Biswas [14] extended the standard FMM network to cope

with granular data by representing granular data using

hyperbox fuzzy sets. Seera et al. derived a hybrid model of

FMM and CART (Classification and Regression Tree) to

detect and classify fault conditions of induction motors in

both offline [15] and online [16] learning modes, as well as

with hardware implementation [17]. The proposed FMM–

CART model exploits the advantages of both FMM and

CART for data classification and rule extraction. Zhang

et al. [18] added a kind of overlapped neuron with new

membership function based on data core to the FMM

neural network to characterize the overlapping regions of

hyperboxes in different classes. Since the characteristics of

the data and influence of noise are simultaneously captured

by the membership function, the data core-based FMM is

more robust to noise. However, one drawback of this

method is that it cannot correctly classify datasets con-

sisting of a large proportion of data samples that are located

in overlapping regions. In order to address this problem,

the work in [19] extended an FMM in a multi-level

structure to classify patterns. The multi-level fuzzy min–

max neural network classifier (MLF) learns smaller hy-

perboxes in different levels to classify the samples that are

located in boundary regions. MLF is able to learn nonlinear

boundaries and is more precise and robust.

Although the FMM neural network is a reliable and

promising prediction model, it lacks an important ability

for medical prediction applications, i.e., decision rule

extraction. Decision rules are important in medical pre-

diction applications because they explain why and how the

neural network, which is commonly criticized as a ‘‘black-

box’’ [20], makes a certain decision for an input pattern.

Without the ability to explain and justify the decision

output, it is hard for medical practitioners to accept and

trust the network prediction in medical applications. Fur-

thermore, since decision rules provide an explicit rela-

tionship between features and decision classes, it is very

helpful to identify the salient and discriminative feature

patterns in the input data sets. In addition, decision rules

can improve the robustness of a neural network by iden-

tifying conditions under which the prior learning of the

network cannot be generalized.
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A number of methods have been proposed to extract

decision rules from neural networks. Three techniques are

proposed in [21] to extract rules from neural networks. The

first one is able to extract a group of binary decision rules

from any type of neural networks, while the other two are

specific to feed-forward neural networks with a single

hidden layer with nodes using sigmoid activation functions.

Another work in [22] translates the system state into a set

of rules by quantizing the continuous network weights. In

order to simplify the network structure, the recognition

categories and weights of the network are excessively

removed. Most of the investigations focus on extracting

rules from neural networks for classification. The work in

[23] proposes a method to extract rules from trained neural

networks for regression. Allowing each rule to correspond

to a subregion of the input space, the rules are extracted by

approximating the activation function at each hidden neu-

ron. Since decision rules extracted from neural networks

can be complex in real applications, some methods to

simplify the extracted rules have been explored. For

instance, the work in [24] employs a genetic algorithm to

select a small number of significant rules. This method is

further improved by introducing a ‘‘don’t care’’ attribute in

the fuzzy if-then rules [25, 26]. The features that have

limited or no impact on the final decision rule are defined

as ‘‘don’t care’’ features. Some works have also been

conducted to extract decision rules from FMM [13, 27, 28].

Each hyperbox of FMM is transformed into a descriptive

rule by quantizing the minimum and maximum values of

input features.

In order to extract a compact set of decision rules, the

works in [13, 27, 28] propose to prune FMM using a

confidence factor (CF). The CF identifies hyperboxes that

are frequently used and those that are rarely used but highly

accurate. Each FMM hyperbox is tagged with a CF. Hy-

perboxes that have CF scores lower than a user-defined

threshold are pruned. The resulting FMM network reduces

the complexity of original FMM and its decision rules.

However, it cannot guarantee that hyperboxes of original

FMM are optimally pruned in terms of prediction accuracy.

Furthermore, it is difficult to determine the optimal

threshold of CF.

In order to address these problems, this paper proposes a

genetic algorithm (GA)-based pruning scheme to optimally

prune the hyperboxes of FMM. The resulting model is

known as FMM-GA. Unlike the method to prune hyper-

boxes based on CF (FMM-CF), FMM-GA defines an

objective function to find the optimal configuration of hy-

perboxes. Specifically, the objective function simulta-

neously maximizes prediction accuracy and minimizes the

number of hyperboxes in FMM-GA. The advantage of the

proposed FMM-GA model is that it is able to achieve the

highest prediction accuracy with the smallest number of

hyperboxes. Therefore, the number of decision rules

extracted is in a parsimonious state, without sacrificing

prediction accuracy. Figure 1 outlines the general flowchart

of the proposed method.

The motivation of this paper was to develop a patient

admission prediction model based on FMM, which is able

to achieve high prediction accuracy and simultaneously

produce a small number of decision rules. The main con-

tribution of the work is twofold: (i) an objective function

that simultaneously maximizes prediction accuracy and

minimizes the number of hyperboxes is proposed to opti-

mize the standard FMM network and (ii) a series of

experiments to evaluate the performance of the proposed

FMM-GA model using a large database with real (anony-

mous) patient admission records.

The rest of the paper is organized as follows. Section 2

describes FMM in detail. Section 3 explains the details of

hyperbox pruning based on GA. Rules extraction is

explained in Sect. 4. Section 5 presents the experimental

setup, results, and discussion on the patient admission

dataset, while Sect. 6 compares the experimental results on

three benchmark datasets from the UCI machine-learning

repository. Conclusion and future works are given in Sect.

7.

2 Fuzzy min–max neural network

The FMM neural network is an online incremental learning

model, which is based on hyperbox fuzzy sets. In general,

FMM forms the hyperboxes with fuzzy sets to represent

knowledge learned by the model from training data. One

benefit of FMM is that it is able to refine its current model

online as new training samples are available. The learning

procedure of FMM consists of a series of expansion and

contraction processes that fine-tune the hyperboxes to

establish decision boundaries among different classes. The

Fig. 1 A general procedure of

the proposed method
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FMM operations are described in the following section,

and the details are in [11].

Figure 2 depicts the structure of FMM, which consists of

three layers. Layer FA is the input layer. Each node in layer

FA represents a feature of the input pattern. As such, the

number of nodes in layer FA equals to the dimension of the

input pattern. Layer FC is the output layer, which has nodes

equal to the number of target classes. The output of a node

in layer FC represents the degree to which an input pattern

fits within a target class. For hard-decision classification,

the node that produces the highest value corresponds to the

predicted target class. Hidden layer FB is also known as the

hyperbox. Each node in layer FB represents a hyperbox

fuzzy set. The connections between FA and FB represent

the min–max points of hyperboxes, and the FB transfer

function is the hyperbox membership function. The mini-

mum and maximum points of the hyperboxes are stored in

matrices V and W , respectively. The connections between

FB and FC are binary values, which are stored in matrix U

[11].

The hyperboxes are confined between zero and one.

Therefore, the input patterns are normalized and projected

into an n-dimensional unit hypercube (In). The membership

function of a hyperbox that describes the degree to which a

pattern located in the hyperbox is defined based on the

minimum and maximum points of the hyperbox. A hy-

perbox (Bj) can be defined as [11]:

Bj ¼ fA;Vj;Wj; f ðA;Vj;WjÞg 8A 2 In; ð1Þ

where A ¼ ða1; a2; . . .; anÞ is the input pattern; Vj ¼
ðvj1; vj2; . . .; vjnÞ and Wj ¼ ðwj1;wj2; . . .;wjnÞ are the mini-

mum and maximum points of the hyperbox, respectively;

and f ðA;Vj;WjÞ is the hyperbox membership function.

The membership function for the jth hyperbox, i.e.,

bjðAhÞ, where 0� bjðAhÞ� 1, measures the degree to which

the hth input pattern (Ah) fits in hyperbox Bj. The mem-

bership function is defined as:

bjðAhÞ ¼
1

2n

Xn

i¼1

½maxð0; 1�maxð0; cminð1; ahi � wjiÞÞÞ

þmaxð0; 1�maxð0; cminð1; vji � ahiÞÞÞ;
ð2Þ

where c is a sensitivity parameter that regulates how fast

the membership value decreases with respect to the dis-

tance between Ah and Bj. Based on the definition of fuzzy

set in FMM, the combined fuzzy set that discriminates the

Kth pattern class (Ck) is defined as:

Ck ¼
[

j 2 K

Bj; ð3Þ

where K is the index set of the hyperboxes corresponding

to class K. The main learning procedure of FMM is to find

and fine-tune the class boundaries. Figure 3 shows an

example of two-dimensional hyperboxes and the corre-

sponding decision boundary learned by FMM for a binary

class problem. The FMM learning algorithm is summarized

as follows.

(a) Expansion: This step identifies hyperboxes that are

expandable and expand them. If no expandable

hyperbox is found, a new hyperbox corresponding to

this class is inserted. For hyperbox Bj to expand, the

following constraint must be met:

nh�
Xn

i¼1

ðmaxðwji; ahiÞ �minðvji; ahiÞÞ; ð4Þ

where 0\h\1 is a user-defined parameter to con-

trol the hyperbox size. If this expansion constraint is

met, the minimum and maximum points of the hy-

perbox Bj are modified to:

Fig. 3 A demonstration of hyperboxes and the corresponding

decision boundary learned by FMM for a binary class problem [11]

Fig. 2 Structure of FMM
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vnew
ji ¼ minðvold

ji ; ahiÞ 8i; i ¼ 1; 2; � � � ; n; ð5Þ

wnew
ji ¼ maxðwold

ji ; ahiÞ 8i; i ¼ 1; 2; � � � ; n: ð6Þ

(b) Overlapping Test: This step determines whether

there are any hyperboxes belonging to different

classes that are overlapped with each other. For each

dimension of the input pattern, if at least one of the

following four cases is satisfied, then the two

hyperboxes are overlapped with each other. If

overlapping is detected, the contraction process is

implemented based on the index of the feature

dimension and the smallest overlap value. Assuming

that dold ¼ 1 initially, the four overlapping cases and

the corresponding minimum overlapping value are:

Case 1: vji\vki\wji\wki,

dnew ¼ minðwji � vki; d
oldÞ; ð7Þ

Case 2: vki\vji\wki\wji,

dnew ¼ minðwki � vji; d
oldÞ; ð8Þ

Case 3: vji\vki\wki\wji,

dnew ¼ minðminðwki � vji;wji � vkiÞ; doldÞ; ð9Þ

Case 4: vki\vji\wji\wki,

dnew ¼ minðminðwji � vki;wki � vjiÞ; doldÞ; ð10Þ

where j corresponds to hyperbox Bj that has

been expanded in the previous step, and k cor-

responds to hyperbox Bk that belongs to another

class being examined for possible overlapping. If

dold � dnew [ 0, then the D ¼ ith dimension is

identified as overlapping, and dold is set to dnew.

This process is repeated for all the dimensions.

If no overlapping is identified, D is set to a

negative value to indicate that it is not necessary

to contract the hyperboxes.

(c) Contraction: If there exists overlapped hyperboxes

that belong to different classes, eliminate the over-

lapped region. In order to keep the hyperbox size as

large as possible, only one of the n dimensions in

each hyperbox is selected for adjustment, with the

aim to maintain the hyperbox size as large as

possible while eliminating the overlapped region.

The following four cases are examined to properly

adjust the hyperbox.

Case 1: vjD\vkD\wjD\wkD,

wnew
jD ¼ vnew

kD ¼
wold

jD þ vold
kD

2
; ð11Þ

Case 2: vkD\vjD\wkD\wjD,

wnew
kD ¼ vnew

jD ¼
wold

kD þ vold
jD

2
; ð12Þ

Case 3a: vjD\vkD\wkD\wjD and ðwkD � vjDÞ\
ðwjD � vkDÞ,

vnew
jD ¼ wold

kD ; ð13Þ

Case 3b: vjD\vkD\wkD\wjD and ðwkD � vjDÞ[
ðwjD � vkDÞ,

wnew
jD ¼ vold

kD ; ð14Þ

Case 4a: vkD\vjD\wjD\wkD and ðwkD � vjDÞ\
ðwjD � vkDÞ,

wnew
kD ¼ vold

jD ; ð15Þ

Case 4b: vkD\vjD\wjD\wkD and ðwkD � vjDÞ[
ðwjD � vkDÞ,

vnew
kD ¼ wold

jD : ð16Þ

3 FMM network pruning

3.1 FMM pruning based on confidence factor

In order to obtain a small network size with a high-

classification performance, the works in [13, 27, 28]

introduce a pruning procedure into FMM. The basic

idea is to calculate a confidence factor (CFj) for each

hyperbox Bj to measure the degree of usage frequency

and prediction accuracy. A hyperbox with an CF lower

than a pre-defined threshold is removed. The CF is

defined as:

CFj ¼ ð1� cÞUj þ cAj; ð17Þ

where Uj and Aj are the usage and accuracy indices of

hyperbox Bj, and c 2 ½0; 1� is a weighting factor. Using a

training set, Uj is calculated as the number of patterns

classified by hyperbox Bj divided by the total number of

patterns classified by all the hyperboxes that belong to the

same class. Using a prediction data set, Aj is calculated as

the number of correctly classified patterns by hyperbox Bj

divided by the total number of correctly classified patterns

in the same class. Once the CF for each hyperbox is cal-

culated, the hyperboxes that have CF scores lower than a

pre-defined threshold are pruned. After pruning, the

remaining hyperboxes are used in the next step for decision

rule extraction.
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3.2 FMM pruning by GA

Pruning of FMM based on CF (i.e., FMM-CF) is able to

remove hyperboxes that are rarely used and are less

accurate. However, FMM-CF cannot guarantee that the

pruned FMM network is optimal in terms of prediction

accuracy. Another disadvantage of FMM-CF is that it is

difficult to determine the optimal CF threshold to prune

FMM, which affects prediction accuracy. In order to

address this problem, the genetic algorithm (GA) [29] is

employed to prune original FMM (i.e., FMM-GA), which

is able to determine the optimal configuration of hyper-

boxes in FMM.

Suppose that there are P hyperboxes in original FMM,

the chromosome of the GA(S) is a binary string that

encodes a solution consisting of all possible hyperbox

configurations, as follows:

S ¼ fs1; s2; . . .; sPg; ð18Þ

where the binary value of the allele si indicates whether the

i-th hyperbox should be pruned, i.e., 0 indicates that the i-th

hyperbox should be pruned, and 1 otherwise.

Similar to [26], an objective function (fitness function)

is defined to maximize prediction accuracy and minimize

the number of hyperboxes, as follows:

maximizeðf ðSÞÞ ¼ NCPðSÞ � kjSj; ð19Þ

where NCP(S) is the number of data samples that are

correctly classified by pruned FMM (with selected hyper-

boxes), jSj is the number of hyperboxes after pruning in

pruned FMM, and k is a positive weight factor that is

0\k\1. The general process of the genetic operation is

implemented as follows.

1. Initialization Randomly generate many (Npop) individ-

ual population strings (solutions) in each generation.

The population strings are generated by assigning 1 for

keeping the hyperbox and 0 for pruning the hyperbox.

2. Selection Select Npop=2 pairs of population strings. The

selection probability PðSÞ of a string S in a population

W is determined by:

PðSÞ ¼ ff ðSÞ � fminðWÞgP
S2Wff ðSÞ � fminðWÞg

; ð20Þ

where fminðWÞ ¼ minff ðSÞ j S 2 Wg is the minimum

of the fitness function of the population W.

3. Crossover Randomly select the bit position with a

probability and interchange the bit values at the

selected positions for each of the selected pairs.

4. Mutation Mutate new offspring at each bit value of the

generated strings. The following mutation operation is

implemented:

si ¼ 1! si ¼ 0 with probability Pmð1! 0Þ;
si ¼ 0! si ¼ 1 with probability Pmð0! 1Þ:

5. Replacement Randomly remove one string from Npop,

and add the offspring that has the highest fitness

function value into the current population.

6. Termination If the termination conditions are satisfied,

then stop. Otherwise, return to the first step to repeat

this process.

4 Fuzzy if then rule extracting

All the evolved hyperboxes are used for rules extraction.

The minimum and maximum values of each input pattern

are quantized into Q levels, which equals to the number of

fuzzy partitions in the quantized rules [22]. As an example,

with Q ¼ 5, input feature Aq is quantized to very low, low,

medium, high, and very high in a fuzzy rule. For quanti-

zation, interval [0, 1] is divided into Q intervals, and the

input pattern is assigned to the quantization points evenly

with one at each of the end points using [22]:

Aq ¼
q� 1

Q� 1
; ð21Þ

where q ¼ 1; 2; . . .;Q. The fuzzy if-then rule extracted is as

follows:

Rule Rj: IF xp1 is Aq and . . . xpn is Aq,

THEN xp is class Cj with CF ¼ CFj; j ¼ 1; 2; . . .;N,

where N is the number of hyperboxes, xp ¼ ðxp1; . . .; xpnÞ is

an input pattern vector with dimension of n, Aq is the

antecedent value, and CFj is the CF of the jth hyperbox

(rule).

5 Experiment on patient admission dataset

5.1 Dataset and experiment setup

The patient admission dataset was collected from the

Emergency Department of Ballarat Base Hospital, Aus-

tralia. This dataset consists of 450740 real patient records.

Each record contains information pertaining to a patient

visiting the emergency department. The following infor-

mation is extracted from the patient record, while all other

private details (e.g., name, address, and contact numbers)

are removed, in order to protect privacy of patients.

• Compensable: describes if it is compensable. There are

two values, i.e., 1 = Compensable and 2 =

NonCompensable.
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• ArrivalMode: describes how the patients arrived at the

emergency department. There are three arrive models,

i.e., by ambulance, by police, and by others.

• TriageCategory: describes the triage categories. Values

are from 1 to 6.

• ServiceType: describes service types, values are from 1

to 9.

• AgeInDays: describes a patient’ age in days at the time

of presentation.

• Sex: describes a patient’ sex. 0 = Female, 1 = Male

• IndigStatus: describes if a patient is Aboriginal.

0 = Not Aboriginal, 1 = Aborginal or Torres Strait

or Both, and 9 = Unknown/NotStated

• Weeknum: Weeknumber of year.

• EDQueueDurationMinutes: gives queue duration in the

emergency department in minutes.

• EDServiceDurationMinutes: gives service duration in

the emergency department in minutes.

The above information constitutes ten input features to

FMM-GA for experimentation. All the features are nor-

malized so that they are at the same scale. A total of 2,000

data samples are used to train and prune the FMM model

(1,000 for training of FMM and 1,000 for pruning with the

GA), and the remaining samples (448740) are used to test

the prediction performance. It should be noted that the test

dataset is very large, which implies that the prediction

result is based on a large sample size.

In order to prune the hyperboxes efficiently, the GA

parameters were set as follows.

• objective function weight: k ¼ 0:5;

• population size: Npop ¼ 50;

• crossover probability: 0.9;

• mutation probability: 0.1;

• stopping condition: 500 generations, or no change in

the fitness function value for 100 consecutive

generations.

The performance of the proposed FMM-GA model was

evaluated using the following three classification criteria:

• Accuracy: The number of correctly classified samples

divided by the total number of test samples;

• Sensitivity: The number of positive samples (i.e.,

Admission Accept samples) correctly predicted divided

by the number of samples that are actually positive;

• Specificity: The number of negative samples (i.e., Not

Admitted samples) correctly predicted divided by the

number of samples that are actually negative.

In order to assess the results fairly, all the experiments

were repeated twenty times, each time with a random

sequence of the training data samples. To evaluate the

results statistically, the bootstrap method [30] was used to

compute the averages of performance indicators, including

accuracy, sensitivity, specificity, and the number of

hyperboxes1.

5.2 Prediction results and extracted decision rules

Three FMM models were experimented, i.e., original

FMM, FMM-CF, and FMM-GA. The hyperbox size was

varied from 0.05 to 0.7 with an interval of 0.05. Setting the

hyperbox size larger than 0.7 caused prediction accuracy to

deteriorate below 50 %, which is not useful in binary

classification (i.e., worse than the probability of coin

tossing). Table 1 summarizes bootstrapped prediction

accuracy, sensitivity, specificity, and the corresponding

number of hyperboxes by FMM, FMM-CF and FMM-GA

with various setting of h. In FMM-CF, the CF threshold

was empirically set to 0.6 (this parameter was varied later).

It can be seen that both FMM-CF and FMM-GA eliminate

a large number of hyperboxes from original FMM, which

simplifies the network structure considerably. The number

of hyperboxes learned by original FMM ranges from 28 to

989. After pruning by FMM-CF, the number of hyperboxes

decreases from 2 to 458. By contrast, pruning with the GA

(FMM-GA) is able to greatly reduce the number of hy-

perboxes, resulting in only 3–23 hyperboxes. Notice that

with small setting of h (0.05 and 0.1), the numbers of hy-

perboxes are pruned from 989 and 933 to 458 and 176 by

FMM-CF, respectively, which are still too many for rule

extraction. By contrast, the numbers of hyperboxes pro-

duced by FMM-GA are only 23 and 19, respectively. This

indicates a parsimonious rule base for domain users

(medical practitioners) to interpret the predictions from the

resulting decision support system.

In general, FMM-GA achieves considerably higher

accuracy than both FMM and FMM-CF, which mainly

attributes to the optimization process. The highest predic-

tion accuracy achieved by FMM-GA is 77.97 % (with

h ¼ 0:3), while those obtained by FMM and FMM-CF are

75.36 % (with h ¼ 0:05) and 74.09 % (with h ¼ 0:05),

respectively. Furthermore, the corresponding sensitivity

(77.88 %) and specificity (77.58 %) achieved by FMM-GA

are also more promising than those obtained by FMM and

FMM-CF, which are two important performance metrics in

medical prediction applications. The corresponding num-

bers of hyperboxes created by FMM, FMM-CF, and FMM-

GA are 989, 458, and 17, respectively. Overall, FMM-GA

achieves a higher accuracy with a better-scale hyperbox

number than both FMM and FMM-CF. This mainly attri-

butes to the fact that the GA-based pruning process in the

1 Since the number of hyperbox is an integral number, the nearest

integral value is reported.
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proposed method optimizes the FMM model to better fit

the underlying data samples dataset with fewer hyperboxes.

In order to fairly compare the performance of both GA-

based and CF-based pruning methods, we fixed the hy-

perbox size parameter h to 0.3 and varied the CF threshold

from 0.05 to 0.7. Since a CF threshold larger than 0.7

removes nearly all the hyperboxes from original FMM, the

CF threshold is restricted to 0.7 or lower. Table 2 gives the

prediction results as well as the corresponding hyperboxes

number obtained by FMM-CF with different CF thresholds.

Figures 4a, b compare prediction accuracy and the hyper-

boxes number by FMM-CF and FMM-GA. We can see that

the highest prediction accuracy obtained by FMM-CF with

different CF threshold is still considerably lower than that

by FMM-GA. Notice that the hyperbox number fluctuates

around 200 when the CF threshold is smaller than 0.55,

while it suddenly drops to 10 and fewer when the CF

threshold is 0.6 and larger. This observation highlights the

drawback of FMM-CF, i.e., it is difficult to determine the

optimal CF threshold. By contrast, FMM-GA does not

require this parameter. Instead, FMM-GA defines the

optimization objective function to adaptively prune the

hyperboxes learned by original FMM.

Table 3 shows the decision rules extracted by FMM-GA

(h ¼ 0:3) with a quantization level of 5 for the decision-

making process2. As an example, Rule 1 is interpreted as in

Table 4. It is interesting that the values in the rule for

ArrivalMode and Sex cover the complete range (i.e., a

‘‘don’t care’’ condition), which could be omitted in order to

simplify interpretation of this rule.

5.3 Comparison with state-of-the-art classifiers

We compared the performance of the proposed FMM-GA

model against several state-of-the-art classifiers. The fol-

lowing classifiers were used for comparison:

• Multi-Layer Perceptron (MLP) [6]: MLP is a feed-

forward neural network that contains multiple layers of

nodes in a direct graph. All nodes in a layer are fully

connected with the other nodes in the next layer. Except

for the input nodes, each node is a neuron with a

Table 1 Prediction results with

respect to hyperbox size

parameter (i.e., h in Eq. 4) by

FMM, FMM-CF, and FMM-GA

Acc means accuracy, Sen means

sensitivity, Spe is specificity,

and Num means the

corresponding number of

hyperboxes

h FMM FMM-CF FMM-GA

Acc Sen Spe Num Acc Sen Spe Num Acc Sen Spe Num

0.05 75.36 70.81 76.24 989 74.09 74.20 74.14 458 77.72 77.57 77.82 23

0.1 72.61 69.03 73.26 933 70.69 77.66 69.52 176 77.31 77.78 77.28 19

0.15 71.60 70.68 71.77 841 66.42 83.70 62.83 41 77.28 78.02 77.18 17

0.2 67.35 70.37 66.60 713 67.55 78.13 65.72 22 77.72 77.21 78.09 14

0.25 67.61 69.70 67.00 587 68.91 77.36 67.31 13 77.92 78.19 77.91 12

0.3 67.04 70.42 66.02 460 69.35 81.97 66.29 8 77.97 77.88 77.58 17

0.35 70.45 69.78 70.55 364 65.16 73.93 63.59 6 77.46 77.45 77.45 15

0.4 66.47 61.31 67.18 269 72.66 75.82 72.44 5 74.74 71.77 74.94 13

0.45 70.44 66.94 71.44 210 71.34 61.15 73.05 3 77.60 75.29 78.10 10

0.5 74.06 60.26 76.79 145 73.07 70.30 73.97 3 77.39 73.34 78.32 7

0.55 69.47 70.07 69.44 100 70.42 64.44 71.72 2 77.34 73.91 77.99 5

0.6 72.09 59.64 74.08 73 64.92 65.82 64.92 2 73.09 69.15 73.40 3

0.65 66.43 61.39 68.50 49 58.97 69.15 56.81 2 71.02 60.99 73.39 3

0.7 64.98 51.27 65.82 28 64.88 53.73 65.85 2 65.55 60.77 66.69 3

Table 2 Prediction results with respect to the confidence factor by

FMM-CF

Threshold Acc Sen Spe Num

0.05 70.65 71.29 70.33 224

0.1 69.77 69.52 69.92 214

0.15 66.81 71.83 65.59 204

0.2 68.93 72.98 68.24 204

0.25 70.70 73.13 70.10 201

0.3 72.51 74.08 72.43 198

0.35 70.37 74.72 69.53 195

0.4 72.28 74.91 72.01 193

0.45 69.89 80.01 67.82 192

0.5 72.01 77.09 70.69 20

0.55 64.97 84.28 60.61 9

0.6 69.35 81.97 66.29 8

0.65 66.18 73.68 64.11 4

0.7 70.58 68.56 71.07 3

Acc means accuracy, Sen means sensitivity, Spe is specificity, and

Num is the number of hyperboxes

2 The number of the decision rules is not the same as the number of

hyperboxes reported in Table 1 because the number of hyperboxes is

the mean of multiple implementations.
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nonlinear activation function, which enables the MLP

to distinguish nonlinear datasets. In the experiment, the

learning rate (i.e., the amount of weights are updated)

was set to 0.3, and the momentum applied to the

weights during updating was set to 0.2.

• Adaboost [7, 8]: Adaboost combines a set of relatively

weak and inaccurate classifiers to achieve high accu-

racy. Adaboost is a powerful classifier that works well

on both basic and more complex classification

problems. In this experiment, the weak classifiers used

in each round of Adaboost was the Decision Stump.

• Random Forest [9]: Random Forest is an ensemble

learning method for classification. It constructs a

multitude of decision trees during training and outputs

the class that is the mode of the classes output by

individual trees. The Random Forest classifier has been

shown to be very successful in tackling complex real-

world classification problems. The number of tree to be

Fig. 4 Prediction accuracies on the Patient Admission Dataset by FMM-CF and FMM-GA (a) and the corresponding hyperbox numbers

extracted by FMM-CF and FMM-GA (b)

Table 3 Decision rules

extracted by FMM-GA

1 very low, 2 low, 3 medium, 4 high,

5 very high

Rules IF (features) THEN

(classes)
1 2 3 4 5 6 7 8 9 10

Rule 1 5 1–5 2–3 1 2–4 1–5 1 2–4 1 1 0

Rule 2 5 1–5 2–3 1 2–4 1–5 1 4–5 1 1 1

Rule 3 5 5 1–3 1 1–4 1–5 1 2–4 1 1–2 1

Rule 4 5 1–5 2–4 1 1–5 1 1 3–5 1 1–2 1

Rule 5 5 5 2 1 2–3 1–5 1 1–2 1 2–4 1

Rule 6 5 5 2–3 1 1–3 1–5 1 1–3 1–2 2–3 1

Rule 7 5 1–5 1–2 1 1 5 1 4–5 1 1–2 1

Rule 8 5 1 2 1 2–4 1–5 1 3–4 1 1 1

Rule 9 5 5 2–3 1 1–2 1–5 1 1–5 1 1–3 1

Rule 10 5 1–5 3 1 1–3 1–5 1 3–5 1 1 0

Rule 11 5 5 1–3 1 1–4 1–5 1 1–5 1 1 0

Rule 12 5 5 3 1 1–4 1–5 1 2–5 1–3 1 0

Rule 13 5 5 2–4 1 1–4 1–5 1 3–5 1 1 0

Rule 14 5 5 3 1 1 1 1 1 1 1 0

Rule 15 5 1–5 2–4 1 3–5 5 1 2–3 1 2 1

Rule 16 5 5 2–3 1 1–4 1–5 1 1–4 1–2 1 0

Rule 17 5 5 2–3 1 1–2 1–5 1 2–3 1–2 1 0

Rule 18 5 5 1–2 1 1–4 1–5 1 1–5 1 1–2 1

Rule 19 5 1–5 2–3 1 3–4 1–5 1 3–4 1 1–2 1

Rule 20 5 1–5 2–3 1 3–4 5 1 3–5 1 1–2 1

Rule 21 5 5 2–3 1 1–4 5 1 1–3 1 1–2 1

Rule 22 5 1–5 1–3 1 2–4 5 1 1-5 1 1–2 1

Rule 23 5 5 3–4 1 1–3 1–5 1 1–4 1–3 1 0

Rule 24 5 1–5 1–4 1 2–4 5 1 3–5 1–2 2 1

Rule 25 5 5 2–3 1 2–5 1–5 1 1–4 1 1–2 1
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generated was set to 10, and the maximum depth of the

trees was unlimited.

• Classification And Regression Tree (CART) [10]: It

learns a tree structure from training data for classifica-

tion. In the tree structure, leaves represent class labels

and branches represent conjunctions of features that

lead to those class labels. One advantage of the CART

classifier is that the decision tree learned from training

data is very useful for interpreting the prediction. In the

experiment, the parameters were set as default values of

MATLAB (Version R2010a) function classregtree for

classification.

The same training and testing data sets were used in the

comparison experiment. Table 5 compares the classifica-

tion results achieved by FMM, FMM-CF and FMM-GA

with those from MLP, Adaboost, Random Forest and

CART3. We can see that the prediction accuracy (77.97 %)

achieved by FMM-GA is lower than those by MLP

(80.96 %) and Random Forest (80.68 %), but higher than

those by Adaboost (77.18 %) and CART (75.98 %). It is

worth mentioning that only CART is able to produce a

decision trees that is useful for prediction interpretation.

While the other three classifiers (MLP, Adaboost, and

Random Forest) perform generally better than FMM-GA

and CART, they are only able to produce a prediction for

each test sample without being able to explain and justify

the prediction. In summary, while the proposed FMM-GA

model produces slightly inferior results than black-box

classifiers, it is able to yield a parsimonious rule base to

provide explanation pertaining to its predictions. This rule

extraction capability is very important in practice as it is

able to help medical practitioners to understand the

underlying reasoning process of a neural network model

that leads to the resulting prediction. Therefore, they are

able to appreciate and accept the use of neural network as a

decision support system in their domain.

6 Experiment on benchmark datasets

In this section, we provide further evaluation of the clas-

sification performance of original FMM, FMM-CF, and

FMM-GA using three benchmark datasets. The following

benchmark datasets from the UCI machine-learning

repository [31] were used:

• The Iris dataset: This dataset consists of 150 samples

from three classes (Iris setosa, Iris versicolor, and Iris

virginica, each of which has four continuous features

(sepal length, sepal width, petal length, and petal

width).

• The PID dataset: This dataset contains 768 samples

from two classes (diabetic and healthy), each with eight

features. 35 % of the samples (i.e., 268 samples) are

collected from patients diagnosed as diabetic and the

others are as healthy.

• The Sonar dataset: This dataset consists of 208 samples

from two classes (i.e., sonar signals collected from

mine or rocks, respectively). This dataset is a high-

dimension dataset and each of the samples has 60

features.

Table 6 gives the classification results by FMM, FMM-

CF and FMM-GA with hyperbox size parameter h ¼ 0:3.

Table 4 Interpretation of rule 1

IF Compensable is very high

ArrivalMode is from very low to very high

TriageCategory is from low to medium

ServiceType is very low

AgeInDays is from low to high

Sex is from very low to very high

IndigStatus is very low

Weeknum is from low to high

EDQueueDurationMinutes is very low

EDServiceDurationMinutes is very low

THEN Output is ‘‘Admission Decline’’

Table 5 Comparison results with state-of-the-art classifiers

Methods Acc Sen Spe

MLP 80.96 82.76 80.61

Adaboost 77.18 86.05 75.43

Random Forest 80.68 77.38 81.34

CART 75.98 76.74 75.84

FMM 75.36 70.81 76.24

FMM-CF 74.09 74.20 74.14

FMM-GA 77.97 77.88 77.58

Acc means accuracy, Sen means sensitivity, and Spe is Specificity

Table 6 Classification results by FMM and FMM-GA on the three

benchmark datasets

Dataset FMM FMM-CF FMM-GA

Acc Num Acc Num Acc Num

Iris 93.33 53 95.75 13 95.75 4

PID 61.98 187 69.79 35 70.57 14

Sonar 56.09 118 56.09 117 73.17 7

Acc means accuracy, and Num means the number of hyperboxes

3 We varied the parameters of these four classifiers and found that the

accuracies fluctuated slightly.
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In general, FMM-GA is able to achieve comparable or

better classification accuracy with fewer number of hy-

perboxes, as compared with original FMM and FMM-CF.

Notice that both original FMM and FMM-CF only produce

around 56 % accuracy with 118 and 117 hyperboxes using

the Sonar dataset. FMM-GA significantly improves the

classification accuracy to 73.17% with 7 hyperboxes.

Table 7 gives the classification results on the three

benchmark datasets by FMM-CF with CF threshold vary-

ing from 0.05 to 0.7. It shows that the classification accu-

racies vary considerably with respect to the CF threshold.

This indicates the drawback of FMM-CF, i.e., it is not easy

to choose the optimal CF threshold. Figures 5, 6, and 7

show comparison of classification accuracy and the number

of hyperboxes of FMM-CF and FMM-GA on the three

benchmark datasets, respectively. We can see that the

accuracies obtained by FMM-GA with optimal CF

thresholds (0.3 on Iris, 0.5 on PID and 0.45 on Sonar) are

still inferior or comparable to those achieved by FMM-GA.

Overall, the proposed FMM-GA model achieved compa-

rable or higher accuracy than original FMM and FMM-CF

with a parsimonious number of hyperboxes.

7 Conclusion and future works

In this paper, the FMM neural network has been enhanced

for tackling real-world problems related to patient admis-

sion prediction. Decision rules that provide an explicit

explanation of the decision process have been extracted

from the hyperboxes learned by FMM. In order to simplify

Table 7 Classification results

with respect to CF threshold by

FMM-CF on the three

benchmark datasets

Threshold Iris PID Sonar

Accuracy Hyperbox

number

Accuracy Hyperbox

number

Accuracy Hyperbox

number

0.05 94.50 40 67.19 101 56.09 118

0.1 95.25 26 66.04 66 56.09 118

0.15 94.50 14 67.11 50 56.09 118

0.2 94.25 13 66.69 45 56.09 118

0.25 95.25 13 67.68 42 56.09 118

0.3 95.75 13 66.35 37 56.09 117

0.35 95.25 12 69.79 35 55.97 117

0.4 94.75 12 68.67 33 56.09 117

0.45 95.00 12 68.07 30 56.09 117

0.5 95.00 12 69.53 26 55.97 117

0.55 90.75 11 68.54 20 51.22 22

0.6 93.75 10 67.05 11 51.22 22

0.65 95.00 7 65.16 9 51.22 22

0.7 90.75 5 64.92 5 51.22 22

Fig. 5 Classification accuracies on the Iris dataset by FMM-CF and FMM-GA (a) and the corresponding hyperbox numbers extracted by FMM-

CF and FMM-GA (b)
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the decision rules and the network structure of FMM, a

GA-based pruning method has been formulated to find the

optimal solution (i.e., hyperboxes pruning) that maximizes

prediction accuracy and simultaneously minimizes the

number of hyperboxes. Unlike the CF-based pruning

method (FMM-CF) that requires a user-defined CF

threshold to remove the hyperboxes, the proposed FMM-

GA model is able to automatically determine the optimal

configuration of the hyperboxes in terms of prediction

accuracy and the number of hyperboxes.

The proposed FMM-GA model has been evaluated using

a very large patient admission dataset that consists of

450740 data samples collected from an emergency

department of a hospital. The experimental results dem-

onstrate that the proposed method achieves good results

with the ability to establish a parsimonious rule base. In

addition, the proposed model has been tested on three

benchmark datasets from the UCI machine-learning

repository, which reveals that the proposed model performs

very well relatively to the other state-of-the-art methods.

For further work, it is useful to investigate patient-spe-

cific information in the dataset to improve prediction

accuracy. As the same patient could visit the emergency

department several times, it is beneficial to correlate all the

information from the same patient in order to reach a more

accurate prediction. This patient-specific information needs

to be investigated in order to extract more useful repre-

sentative features. Another information to be considered is

the date of each visit, which is ignored in this study. This

temporal information will be investigated in future work.

Another suggestion is to investigate how the prediction

results of the proposed model can be further improved, e.g.,

by using an ensemble approach, so that it is more useful in

real clinical environments.
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