
ORIGINAL ARTICLE

Binary optimization using hybrid particle swarm optimization
and gravitational search algorithm

Seyedali Mirjalili • Gai-Ge Wang •

Leandro dos S. Coelho

Received: 9 January 2014 / Accepted: 15 May 2014 / Published online: 11 June 2014

� Springer-Verlag London 2014

Abstract The PSOGSA is a novel hybrid optimization

algorithm, combining strengths of both particle swarm

optimization (PSO) and gravitational search algorithm

(GSA). It has been proven that this algorithm outperforms

both PSO and GSA in terms of improved exploration and

exploitation. The original version of this algorithm is well

suited for problems with continuous search space. Some

problems, however, have binary parameters. This paper

proposes a binary version of hybrid PSOGSA called

BPSOGSA to solve these kinds of optimization problems.

The paper also considers integration of adaptive values to

further balance exploration and exploitation of BPSOGSA.

In order to evaluate the efficiencies of the proposed binary

algorithm, 22 benchmark functions are employed and

divided into three groups: unimodal, multimodal, and

composite. The experimental results confirm better per-

formance of BPSOGSA compared with binary gravita-

tional search algorithm (BGSA), binary particle swarm

optimization (BPSO), and genetic algorithm in terms of

avoiding local minima and convergence rate.

Keywords Binary optimization � Binary algorithms �
PSOGSA � Particle swarm optimization � Gravitational

search algorithm

1 Introduction

Recently, nature-inspired stochastic optimization tech-

niques have received much attention. Such optimization

mostly mimics social/individual behavior of a group of

animal or natural phenomena. Such techniques start the

optimization process by creating a set of random solutions

and improve them as candidate solutions for a particular

problem. Due to the superior performance of such tech-

niques compared to mathematical optimization approaches,

the application of stochastic optimization methods can be

found in different fields. It has been logically proven by the

well-known No Free Lunch (NFL) theorem that there is no

optimization technique which for solving all optimization

problems [1]. This theorem therefore allows researchers to

propose new optimization techniques or improve the cur-

rent algorithms for solving a wider range of problems.

Some of the most popular and well-known algorithms are

particle swarm optimization (PSO) [2], genetic algorithm

(GA) [3], differential evolution algorithm (DE) [4], simu-

lated annealing (SA) [5], harmony search (HS) [6], ant

colony optimization (ACO) [7], gravitational search algo-

rithm (GSA) [8], biogeography-based optimization algo-

rithm (BBO) [9–12], grey wolf optimizer (GWO) [13], and

Krill Herd (KH) algorithm [14–20].

The literature shows that hybridizing stochastic opti-

mization techniques is one of the ways for designing

S. Mirjalili (&)

School of Information and Communication Technology,

Griffith University, Nathan, Brisbane, QLD 4111, Australia

e-mail: seyedali.mirjalili@griffithuni.edu.au

G.-G. Wang

School of Computer Science and Technology, Jiangsu Normal

University, Xuzhou 221116, Jiangsu, China

L. S. Coelho

Industrial and Systems Engineering Graduate Program

(PPGEPS), Pontifical Catholic University of Parana (PUCPR),

Curitiba, Parana, Brazil

L. S. Coelho

Electrical Engineering Graduate Program (PPGEE), Department

of Electrical Engineering, Polytechnic Center, Federal

University of Parana (UFPR), Curitiba, Parana, Brazil

123

Neural Comput & Applic (2014) 25:1423–1435

DOI 10.1007/s00521-014-1629-6

superior algorithms and using the advantages of multiple

algorithms when solving optimization problems [21–28].

The PSOGSA algorithm is a novel hybrid of PSO and

GSA, which was proposed in 2010 [29]. It has been proven

that this algorithm has a good performance in solving

optimization problems. In this algorithm, the search pro-

cess is carried out by agents, which mimics the behavior of

GSA in the exploration phase and PSO in exploitation

phase. In fact, this algorithm was proposed to alleviate

slow exploitation of the GSA algorithm, which was iden-

tified to be one of its main drawbacks.

Since the proposal of the GSA algorithm, many studies

have been aimed for improving the performance of this

algorithm. In 2011, Hatamlou et al. [30] hybridized GSA

with another heuristic method for improving the solutions

obtained by GSA for solving clustering problems. In 2012,

an position-based learning GSA [31] and Immune Gravi-

tation Optimization Algorithm (IGOA) [32] were

employed to improve the convergence speed of GSA. The

latter study incorporated the characteristics of antibody

diversity and vaccination to the GSA algorithm. Similarly

to PSOGSA [29], social thinking and individual thinking of

PSO were integrated to GSA for solving a continuous

problem called parameter identification of hydraulic tur-

bine governing system [33].

The GSA algorithm was modified by Rashedi et al. [34]

to solve binary problems as well. Since BGSA utilizes the

same concepts of GSA, however, it suffers from the same

drawbacks of GSA mentioned above. Needless to say, the

binary version of improved GSA algorithms in the litera-

ture would also have superior performance compared to

BGSA if they design in a way that uses the same concepts

of continuous optimization for binary optimization. This

motivates the authors to extend PSOGSA algorithm as one

of the best improved GSA algorithms to a binary version

and investigate its performance since the original version

of PSOGSA has been designed for solving problems with

continuous real search spaces (domains) [29].

In real world, there are many optimization problems

with discrete binary search spaces (for instance, dimen-

sionally reduction or feature selection in different fields).

There are different methods in the literatures to require a

continuous algorithm for solving binary problems as well.

Some of these methods change the structure of the algo-

rithm, whereas others maintain the algorithm’s mechanism

in binary search spaces. In the literatures, stochastic opti-

mization algorithms such as HS, DE, PSO, and GSA [35]

have been adapted to solve binary problems. The binary HS

algorithm utilizes a set of harmony search considerations

and pitch adjustment rules to perform binary optimization

[36]. In addition, binary DE uses a probability estimation

operator in order to solve discrete problems [37]. The

mechanism of binary PSO [38] and binary GSA [34] is

quite similar since they both use transfer functions to solve

binary problems. The difference of BPSO and BGSA

compared to other above-mentioned binary optimization

methods is that these two algorithms retain the same con-

cepts of position and velocity updating procedures.

In this paper, a binary version of PSOGSA is introduced

called BPSOGSA in order to solve binary problems. A

transfer function and new positing updating procedure are

integrated to BPSOGSA. The paper also considers the

proposal of adaptive values for BPSOGSA in order to

balance exploration and exploitation.

The rest of the paper is organized as follows. Section 2

presents a brief introduction to hybrid PSOGSA. Section 3

discusses the basic principles of binary version of PSO-

GSA. The experimental results are demonstrated in Sect. 4.

Finally, Sect. 5 concludes the work and suggests some

researches for future works.

2 The hybrid PSOGSA

The hybrid PSOGSA algorithm was introduced by Mirjalili

and Mohd Hashim [29]. The basic idea of PSOGSA is to

combine the ability of social thinking (gbest) in PSO with

exploration capability of GSA. The PSOGSA algorithm

was mathematically modeled as follows:

Similarly to PSO and GSA, every search agent has a

position vector reflecting the current position in search

spaces as follows:

Xi
!¼ x1

i ; . . .; xd
i

� �
; i ¼ 1; 2; . . .;N ð2:1Þ

where N is the number of search agents, d is the dimension

of the problem, and xi
d is the position of the ith agent in the

d-th dimension.

So the whole population is represented as a matrix as

follows:

X~ ¼

x1
1 x2

1 . . . xd
1

x1
2 x2

2 . . . xd
2

..

. ..
. ..

. ..
.

x1
n x2

n . . . xd
n

2

6664

3

7775
ð2:2Þ

There is another matrix for storing the corresponding

fitness value for each search agent as follows:

O~ ¼

o1

o2

..

.

on

2

6664

3

7775
ð2:3Þ

The optimization process begins with filling out the

position matrix by random values. During optimization, the

gravitational force from agent j on agent i at a specific time

t is defined as follows:

1424 Neural Comput & Applic (2014) 25:1423–1435

123

Fd
ij tð Þ ¼ G tð ÞMpi tð Þ �Maj tð Þ

Rij tð Þ þ e
xd

j tð Þ � xd
i tð Þ

� �
ð2:4Þ

where Maj is the active gravitational mass related to agent j,

Mpi is the passive gravitational mass related to agent i,

G(t) is a gravitational constant at time t, e is a small con-

stant, and Rij(t) is the Euclidian distance between two

agents i and j.

The gravitational constant (G) and the Euclidian dis-

tance between two agents i and j are calculated as follows:

GðtÞ ¼ G0 � expð�a� iter=maxiterÞ ð2:5Þ
Rij tð Þ ¼ Xi tð Þ;XjðtÞ2 ð2:6Þ

where a is the descending coefficient, G0 indicates the

initial gravitational constant, iter is the current iteration,

and maxiter shows the maximum number of iterations.

Y=X2

M2

M1

M3

F31

F21

F12

F23

F13

F32

y

x-x
Iteration = t

Y=X2

M2

M1

M3

y

x-x
Iteration = t+1

Fig. 1 Operation of GSA’s

masses in two iterations

Y=X2

M2

M1

y

x

M3

F31

F21

F12

F23

F13

F32Gbest

Gbest

-x
Iteration = t

Y=X2

M2

M1

x

M3

y

-x
Iteration = t+1

Fig. 2 Operation of PSOGSA’s

particles in two iterations

Generate initial population
Repeat
 Calculate fitness of all agents
 Update gbest and G

For each search agent:
 -Calculate all gravitational forces
 -Calculate acceleration
 -Update velocity
 -Update position

End for
Until satisfying the stop criterion
Return gbest

Fig. 3 Pseudocode of PSOGSA

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

V

S(
V

)

Fig. 4 Tangent hyperbolic transfer function

Neural Comput & Applic (2014) 25:1423–1435 1425

123

In a problem space with dimension equals to d, the total

force that acts on agent i is calculated by the following

equation:

Fd
i tð Þ ¼

XN

j¼1;j 6¼i

randjF
d
ij tð Þ ð2:7Þ

where randj is a random number generated with uniform

distribution in the interval [0, 1].

The law of motion has also been utilized in this algo-

rithm which states that the acceleration of a mass is pro-

portional to the resultant force and inverse of its mass, so

the acceleration of all agents are calculated as follows:

ad
i tð Þ ¼ Fd

i tð Þ
Mii tð Þ ð2:8Þ

where d is the dimension of the problem, t is a specific

time, and Mii is the inertial mass of agent i.

During optimization, the best obtained solution so far is

saved in gbest variable inspired by PSO. The reason for

using the best solution is that GSA suffers from slow

exploitation and deteriorates in final iterations [29, 39, 40].

In GSA, the masses movements are calculated based on

their weights, and the weights are directly calculated by the

fitness function. Thus, the masses that have better values of

fitness function are considered as heavy objects, and con-

sequently, they move slowly. According to the concepts of

EA, particles should wander through the search space at

initial iterations. Then, after finding a good solution, they

have to gather around that solution in order to exploit the

best solution. In GSA, during running time, masses become

Table 1 Unimodal benchmark functions

Function Dim Range fmin

f1ðxÞ ¼
Pn

i¼1 x2
i

5 [-100,

100]

0

f2 xð Þ ¼
Pn

i¼1 xij j þ
Qn

i¼1 xij j 5 [-10, 10] 0

f3 xð Þ ¼
Pn

i¼1

Pi
j�1 xj

� �2 5 [-100,

100]

0

f4 xð Þ ¼ maxi xij j; 1� i� nf g 5 [-100,

100]

0

f5 xð Þ ¼
Pn�1

i¼1 100 xiþ1 � x2
i

� �2þ xi � 1ð Þ2
h i

5 [-30, 30] 0

f6 xð Þ ¼
Pn

i¼1 xi þ 0:5½ �ð Þ2 5 [-100,

100]

0

f7 xð Þ ¼
Pn

i¼1 ix4
i þ random½0; 1Þ 5 [-1.28,

1.28]

0

For each search agent
Create and initialize a D-dimensional vector randomly

End for
Repeat
 Calculate fitness of all agents
 Update gbest and G

For each particle:
 -Calculate all gravitational forces by equation 2.2
 -Calculate acceleration by equation 2.6
 -Calculate velocity by equation 2.7
 -Calculate probability of changing position vector’s element using 3.1
 -Update position vector’s elements according to rules in 3.2

End for
Until the satisfaction of the stop criterion
Return gbest

Fig. 5 Pseudocode of

BPSOGSA

0 100 200 300 400 500
0

0.5

1

1.5

2

Iteration

0 100 200 300 400 500
0

0.5

1

1.5

2

Iteration

Fig. 6 Adaptive behavior of coefficients

1426 Neural Comput & Applic (2014) 25:1423–1435

123

Table 2 Multimodal benchmark functions

Function Dim Range fmin

f8 xð Þ ¼
Pn

i¼1 �xi sin
ffiffiffiffiffiffiffi
xij j

p� �
5 [-500, 500] -418.9829 9 5

f9 xð Þ ¼
Pn

i¼1 x2
i � 10 cos 2pxið Þ þ 10

� �
5 [-5.12, 5.12] 0

f10 xð Þ ¼ �20 exp �0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1 x2

i

q� �
� exp 1

n

Pn
i¼1 cos 2pxið Þ

� �
þ 20þ e

5 [-32, 32] 0

f11 xð Þ ¼ 1
4000

Pn
i¼1 x2

i �
Qn

i¼1 cos xiffi
i
p
� �

þ 1 5 [-600, 600] 0

f12 xð Þ ¼ p
n

10 sin py1ð Þ þ
Pn�1

i¼1 yi � 1ð Þ2 1þ 10 sin2 pyiþ1ð Þ
� �

þ yn � 1ð Þ2
n o

þ
Pn

i¼1 u xi; 10; 100; 4ð Þ

yi ¼ 1þ xiþ1
4

uðxi; a; k;mÞ ¼
k xi � að Þm xi [a

0 �a\xi\a

k �xi � að Þm xi\� a

8
<

:

5 [-50, 50] 0

f13 xð Þ ¼ 0:1 sin2 3px1ð Þ þ
Pn

i¼1 xi � 1ð Þ2 1þ sin2 3pxi þ 1ð Þ
� �

þ xn � 1ð Þ2 1þ sin2 2pxnð Þ
� �n o

þ
Pn

i¼1 u xi; 5; 100; 4ð Þ 5 [-50, 50] 0

f14 xð Þ ¼ �
Pn

i¼1 sin xið Þ: sin
i:x2

i

p

� �� �2m

; m ¼ 10
5 [0, p] -4.687

f15 xð Þ ¼ e�
Pn

i¼1
xi=bð Þ2m

� 2e�
Pn

i¼1
x2

i

	

:
Qn

i¼1 cos2 xi; m ¼ 5
5 [-20, 20] -1

f16 xð Þ ¼
Pn

i¼1 sin2 xið Þ
� �

� exp �
Pn

i¼1 x2
i

� �� �
: exp �

Pn
i¼1 sin2

ffiffiffiffiffiffiffi
xij j

p� �
5 [-10, 10] -1

Table 3 Composite benchmark functions

Neural Comput & Applic (2014) 25:1423–1435 1427

123

heavier and heavier. In the final steps of iterations, masses

have almost the same weights due to gathering around a

promising solution. They approximately attract each other

with the same intensity of gravitational forces. Therefore,

they are not able to move toward the best solution quickly.

This problem can be seen in Fig. 1. This figure shows a

simple one-dimensional problem where the fitness function

is Y = X2. This above-mentioned problem is more critical

for high dimensional problems.

In order to see how PSOGSA alleviate this drawback, a

conceptual model is illustrated in Fig. 2. This figure shows

that the hybrid PSOGSA employs the best solution

obtained so far for guiding the heavy masses toward the

global optimum. Apparently, this method speeds up the

overall movement of masses as well, resulting in enhancing

exploitation ability of PSOGSA.

The Eq. (2.9) was proposed as follows for combining

PSO and GSA:

Vi t þ 1ð Þ ¼ rand � Vi tð Þ þ c01 � aci tð Þ þ c02
� ðgbest � XiðtÞÞ ð2:9Þ

where Vi(t) is the velocity of agent i at iteration t, cj

0
is an

accelerating factor, rand is a random number generated

with uniform distribution between 0 and 1, aci(t) is the

acceleration of agent i at iteration t, and gbest is the best

obtained solution so far.

In each iteration, the positions of agents are updated as

follows:

Xi t þ 1ð Þ ¼ Xi tð Þ þ Vi t þ 1ð Þ ð2:10Þ

In PSOGSA, at first, all agents are randomly initial-

ized using uniform distribution. Each agent is considered as

a candidate solution. After initialization, gravitational force,

gravitational constant, and resultant forces among agents

are calculated by Eqs. 2.2, 2.3, and 2.5, respectively. After

that, the accelerations of particles are defined by Eq. 2.6. In

each iteration, the best attained solution should be updated.

After calculating the acceleration and updating the best

Table 4 Initial parameters for BPSOGSA, BGSA, BPSO, and GA

Algorithm Parameter Value Algorithm Parameter Value

BPSOGSA Number of particles 30 BPSO [1] Number of individuals 30

c
0

1
(-2t3/T3) ? 2 c1; c2 2, 2

c
0
2

(2t3/T3) W Decreases linearly from 0.9 to 0.4

G0 1

a 20 Max generation 500

Max iterations 500 Stoppig criteria Max iteration

Stoppig criteria Max iteration

BGSA [2] Number of masses 30 GA [3] Number of individuals 30

G0 1 Selection Roulette wheel

a 20 Crossover(probability) One-point (0.9)

Max iterations 500 Mutation(probability) Uniform (0.005)

Stoppig criteria Max iteration Max generation

Stoppig criteria

500

Max iteration

T indicates the maximum number of interactions

t is the current iteration

Table 5 Minimization results of unimodal benchmark functions over

10 independent runs

f BPSOGSA BGSA BPSO GA

f1

Ave 0.753881836 2,052.005 5.2965 10.0705

Std 0.744054218 41.45277 2.7657 24.9445

f2

Ave 0.158447266 1.325269 0.2292 0.269483

Std 0.121911192 0.67277 0.0938 0.23788

f3

Ave 45.28667603 509.0988 22.48915 555.9039

Std 94.45222722 266.3714 14.11401 250.693

f4

Ave 2.464062500 7.999219 2.608854 1.59375

Std 2.429516395 3.450794 0.838937 1.21348

f5

Ave 281.4149623 2,620.465 148.0799 369.7545

Std 667.8743127 1,735.901 137.1896 342.8893

f6

Ave 8.093701172 126.6157 5.492444 6.984222

Std 17.67056950 88.03597 3.070168 7.010388

f7

Ave 0.006396714 0.023861 0.015542 0.047174

Std 0.008876364 0.02688 0.007474 0.043587

1428 Neural Comput & Applic (2014) 25:1423–1435

123

solution, the velocities of all agents can be calculated by

Eq. 2.7. Finally, the positions of agents are updated by

Eq. 2.8. The process of updating velocities and positions

will be stopped when meeting an end criterion. The steps of

hybrid PSOGSA are represented in Fig. 3.

It was experimentally proved that PSOGSA is powerful

enough to solve optimization problems better than PSO and

GSA [29]. However, the original PSOGSA is a continuous

algorithm, which is not capable of solving binary problems

directly. In the following subsections, the binary version of

PSOGSA is proposed and investigated.

3 Binary version of PSOGSA (BPSOGSA)

In the original PSOGSA, agents can continuously move

around the search space because of having position vectors

with continuous real domain. In order to require the search

agents to move in a binary search space, we have to modify

position updating (Eq. 2.10). According to [34, 38], a

transfer function is also needed to change position of an

agent with the probability of its velocity. Transfer functions

map the velocities values to the probability values for

updating the positions. A set of standard transfer functions

can be found in [41]. According to Mirjalili and Lewis [41],

a transfer function should be able to provide a high proba-

bility of changing the position for a large absolute value of

the velocity. In addition, it should present a small probability

of changing the position for a small absolute value of the

velocity. Moreover, the range of a transfer function should

be bounded in the interval of [0, 1] and increased with the

increasing of velocity. The utilized function in [34] is pre-

sented as Eq. 3.1. This function is also depicted in Fig. 4.

S vk
i;j tð Þ

� �
¼ tanh vk

i;j tð Þ
� �

 ð3:1Þ

We use this equation for mapping velocities of agents in

BPSOGSA to probabilities of flipping their position vec-

tors’ elements. After calculating the probabilities, the

agents update their positions based on the presented rules

in Eq. 3.2.

If rand \ S vk
i;j t þ 1ð Þ

� �
then xk

i;j t þ 1ð Þ

¼ complement xk
i;j tð Þ

� �
else xk

i;j t þ 1ð Þ ¼ xk
i;j tð Þ ð3:2Þ

Table 6 Minimization results

of multimodal benchmark

functions over 10 independent

runs

f BPSOGSA BGSA BPSO GA

f8

Ave -979.8132 -828.602 2988.355 -929.324

Std 25.03774 42.63769 14.21898 27.95231

f9

Ave 1.875194 5.999694 4.977688 2.1896

Std 1.271683 2.963102 1.597929 0.8330273

f10

Ave 0.541234 2.947044 2.725568 1.399853

Std 0.800463 1.481999 0.472191 1.338105

f11

Ave 0.179551 0.647846 0.3873 0.7067

Std 0.092974 0.228547 0.1302 0.3223

f12

Ave 0.370201 12.66839 0.621354 0.191197

Std 0.485135 8.774814 0.388572 0.244347

f13

Ave 0.255321 922.4907 0.444445 0.193006

Std 0.305777 2,458.653 0.211701 0.254864

f14

Ave 23.902076 -2.494 -3.6416 -3.88492

Std 0.446362 0.126732 0.32452 0.717682

f15

Ave -1.66e-107 -1e-112 -0.055483 20.474555

Std 3.48e-107 3.1e-112 0.1351484 0.4856118

f16

Ave 0.0003171 0.002329 2.95E204 0.001575

Std 0.0002562 0.000998 0.000215 0.000818

Neural Comput & Applic (2014) 25:1423–1435 1429

123

The pseudocode regarding the general steps of

BPSOGSA is culminated in Fig. 5.

In should be noted that we utilize adaptive values for c1

0

and c2

0
in this study. According to Mirjalili and Lewis [42],

adding gbest to the velocity vector have weakened the

exploration phase, since it establishes a permanent element

of velocity updating. In order to resolve this issue, we

utilize adaptive values for c1

0
and c2

0
as follows [42]:

c01 ¼ �2
t3

T3
þ 2 ð3:3Þ

c02 ¼ 2
t3

T3
þ 2 ð3:4Þ

where t indicates the current iteration and T is the maxi-

mum number of iterations.

The behavior of these two variables is illustrated in

Fig. 6. We adaptively decrease c1

0
and increase c2

0
so that

the masses tend to accelerate toward the best solution as the

algorithm reaches the exploitation phase. Since there is no

clear border between the exploration and exploitation

phases in evolutionary algorithm, the adaptive method is

one of the best options for allowing an algorithm to grad-

ually transit between these two phases.

Theoretically, the BPSOGSA algorithm has the potential

to outperform both BPSO and BGSA since it uses the same

concepts of PSOGSA. In the following subsection, a

comparative study is provided in order to justify the per-

formance of BPSOGSA practically. Note that the source

code of this algorithm can be found in http://www.ali

mirjalili.com/Projects.html.

4 Experimental results and discussion

In this section, 22 benchmark functions dividing into three

groups such as unimodal, multimodal, and composite are

chosen to evaluate the performance of BPSOGSA [43–47].

Tables 1, 2 and 3 present these benchmark functions, range

of search space, and the optimum values.

A comparative study with BGSA, BPSO, and GA is

conducted for verifying the performance of BPSOGSA.

The dimension of all benchmark functions is set to 5

(m = 5). Fifteen bits are used for representing each vari-

able in binary format (one bit is reserved for the sign).

Therefore, the dimensions of test functions and search

agents are 75. Note that the initial values of basic param-

eters of the algorithms are provided in Table 4.

The experimental results are presented in Tables 5, 6

and 7. The results are collected over 10 independent runs.

The average (ave) and standard deviation (std) of the best

obtained solutions in the last iterations are reported as the

results in bold type.

4.1 Unimodal benchmark functions

The unimodal test functions are useful to examine exploi-

tation of the algorithms. As per the results of unimodal

functions in Table 5, the BPSOGSA algorithm shows the

best results on three of the unimodal benchmark functions

in terms of the mean and standard deviation the results.

According to the statistical results in Fig. 7, BPSOGSA

and BPSO provide better results on 43 % of the unimodal

benchmark functions, followed by GA with 14 %. BGSA

did not show good performance on this set of functions due

to the above-mentioned drawback (slow exploitation).

Therefore, this is evidence that the proposed algorithm has

high performance in finding the global solution of uni-

modal benchmark functions.

Table 7 Minimization results of composite benchmark functions

over 10 independent runs

f BPSOGSA BGSA BPSO GA

f17

Ave 89.14436567 252.8848 194.8523 193.6682

Std 55.4314206 43.63499 60.03402 121.9127

f18

Ave 95.51982614 254.0506 146.7613 205.6785

Std 48.23949857 36.16261 29.08005 160.9849

f19

Ave 152.1242021 213.2075 445.7764 384.7761

Std 54.29495933 63.65201 49.3449 118.0311

f20

Ave 186.3464791 255.0879 479.9867 588.1262

Std 43.54435273 50.36717 30.19361 102.3373

f21

Ave 150.8872309 245.235 172.0816 246.3021

Std 48.09488617 52.89851 64.2674 183.5344

f22

Ave 365.0728328 232.2638 691.65 914.5375

Std 132.8960595 27.63692 149.6255 12.32191

BPSOGSA
43%

BGSA 0%
BPSO
43%

GA 14%

Unimodal Benchmark Functions

f1 - f7

Fig. 7 Statistical results for unimodal benchmark functions

1430 Neural Comput & Applic (2014) 25:1423–1435

123

http://www.alimirjalili.com/Projects.html
http://www.alimirjalili.com/Projects.html

According to the convergence curves of algorithm

when solving unimodal test functions in Fig. 8, the

BPSOGSA and BPSO algorithms have the fastest con-

vergence rate. These findings prove that the BPSOGSA

algorithm seems to show the best exploitation ability and

convergence rate.

4.2 Multimodal benchmark functions

The results of the multimodal benchmark functions are

provided in Table 6 and Figs. 9, 10. Multimodal test

0 100 200 300 400 500

10
0

10
2

10
4

 f1

 Iteration

 A
ve

ra
ge

 B
es

t-
so

-f
ar

BPSOGSA

BGSA

BPSO

GA

0 100 200 300 400 500
10

-1

10
0

10
1

10
2

 f2

 Iteration

 A
ve

ra
ge

 B
es

t-
so

-f
ar

BPSOGSA

BGSA

BPSO

GA

0 100 200 300 400 500
10

1

10
2

10
3

10
4

 f3

 Iteration

 A
ve

ra
ge

 B
es

t-
so

-f
ar

BPSOGSA

BGSA

BPSO

GA

0 100 200 300 400 500
10

0

10
1

10
2

 f4

 Iteration

 A
ve

ra
ge

 B
es

t-
so

-f
ar

BPSOGSA

BGSA

BPSO

GA

0 100 200 300 400 500
10

0

10
2

10
4

10
6

10
8

 f5

 Iteration

 A
ve

ra
ge

 B
es

t-
so

-f
ar

BPSOGSA

BGSA

BPSO

GA

0 100 200 300 400 500
10

0

10
1

10
2

10
3

10
4

 f6

 Iteration

 A
ve

ra
ge

 B
es

t-
so

-f
ar

BPSOGSA

BGSA

BPSO

GA

0 100 200 300 400 500

10
-2

10
-1

10
0

10
1

 f7

 Iteration

 A
ve

ra
ge

 B
es

t-
so

-f
ar

BPSOGSA

BGSA

BPSO

GA

Fig. 8 Convergence curves for unimodal benchmark functions

BPSOGSA
45%

BGSA 0%
BPSO
22%

GA 33%

Multimodal Benchmark Functions

f8 -f16

Fig. 9 Statistical results for unimodal multimodal benchmark

functions

Neural Comput & Applic (2014) 25:1423–1435 1431

123

functions are helpful for benchmarking local optima

avoidance of the algorithms. According to the results of

Table 6 and Fig. 9, BPSOGSA shows the best results in

four of the multimodal benchmark functions (45 % of the

functions). However, the BPSO and GA algorithms out-

perform BPSOGSA in two (22 %) and three (33 %) mul-

timodal test functions, respectively. Once again, the BGSA

algorithm could not provide competitive results.

The convergence curves in Fig. 10 prove that BPSOGSA

has the fastest convergence behavior in four out of nine

functions. These findings prove that the BPSOGSA algo-

rithm is able to avoid local optima, and this avoidance does

0 100 200 300 400 500

-10
2.7

-10
2.8

-10
2.9

 f8

 Iteration

 A
ve

ra
ge

 B
es

t-
so

-f
ar

BPSOGSA

BGSA

BPSO

GA

0 100 200 300 400 500
10

0

10
1

10
2

 f9

 Iteration

 A
ve

ra
ge

 B
es

t-
so

-f
ar

BPSOGSA

BGSA

BPSO

GA

0 100 200 300 400 500
10

-1

10
0

10
1

10
2

 f10

 Iteration

 A
ve

ra
ge

 B
es

t-
so

-f
ar

BPSOGSA

BGSA

BPSO

GA

0 100 200 300 400 500

10
0

 f11

 Iteration

 A
ve

ra
ge

 B
es

t-
so

-f
ar

BPSOGSA

BGSA

BPSO

GA

0 100 200 300 400 500

10
0

10
5

 f12

 Iteration

 A
ve

ra
ge

 B
es

t-
so

-f
ar

BPSOGSA

BGSA

BPSO

GA

0 100 200 300 400 500

10
0

10
5

 f13

 Iteration

 A
ve

ra
ge

 B
es

t-
so

-f
ar

BPSOGSA

BGSA

BPSO

GA

0 100 200 300 400 500

-10
0.1

-10
0.3

-10
0.5

 f14

 Iteration

 A
ve

ra
ge

 B
es

t-
so

-f
ar

BPSOGSA

BGSA

BPSO

GA

0 100 200 300 400 500
-10

0

-10
-100

-10
-200

 f15

 Iteration

 A
ve

ra
ge

 B
es

t-
so

-f
ar

BPSOGSA

BGSA

BPSO

GA

0 100 200 300 400 500
10

-4

10
-3

10
-2

10
-1

 f16

 Iteration

 A
ve

ra
ge

 B
es

t-
so

-f
ar

BPSOGSA

BGSA

BPSO

GA

Fig. 10 Convergence curves for multimodal benchmark functions

BPSOGSA
84%

BGSA
16%

BPSO 0% GA 0%

Compisite Benchmark Functions

f17-f22

Fig. 11 Statistical results for composite benchmark functions

1432 Neural Comput & Applic (2014) 25:1423–1435

123

not have negative impact of the convergence speed. In

addition, the results can also evidence high exploration of

BPSOGSA.

4.3 Composite benchmark functions

Composite functions are the most challenging test functions

and suitable for benchmarking exploration and exploitation

combined. The results in Table 7 and Figs. 11, 12 show that

the BPSOGSA is evidently better than other algorithms on

84 % of the composite functions. For the function f22,

BGSA has the best results, followed by BPSOGSA.

The convergence of algorithms when solving composite

functions are illustrated in Fig. 12. This figure shows that

BPSOGSA has the fastest convergence rate. These findings

prove that BPSOGSA properly and efficiently balances

exploration and exploitation, which is due to the employed

adaptive values for c
0
1 and c

0
2.

Figure 13 shows the overall statistical results on all the

benchmark functions whereby the BPSOGSA algorithm

has the best result for 55 % of the benchmark functions.

To summarize, results prove BPSOGSA have better

performance than BGSA, BPSO, and GA. Therefore, it can

be said that the binary version of hybrid PSOGSA also has

the strengths of both PSO and GSA in solving binary

problems. According to this comprehensive comparative

study and discussion, we state that this algorithm has merit

among other binary algorithms.

The reason of the high performance of BPSOGSA on

unimodal test functions is due to the fact the algorithm has

higher exploitation compared to GSA. The social compo-

nent of PSO allows BPSOGSA to exploit accurately around

the best mass obtained so far. High exploration of

BPSOGSA algorithm originates from the intrinsic charac-

teristic of the GSA algorithm, wherein all search agents

have impact on each other at each iteration (in contrast to

the search agents of PSO that only sees pbest and gbest).

This high exploration ability assists BPSOGSA to outper-

form other algorithms on multimodal test functions. The

0 100 200 300 400 500

10
2

10
3

 f17

 Iteration

 A
ve

ra
ge

 B
es

t-
so

-f
ar

BPSOGSA

BGSA

BPSO

GA

0 100 200 300 400 500

10
2

10
3

 f18

 Iteration

 A
ve

ra
ge

 B
es

t-
so

-f
ar

BPSOGSA

BGSA

BPSO

GA

0 100 200 300 400 500
10

2

10
3

10
4

 f19

 Iteration

 A
ve

ra
ge

 B
es

t-
so

-f
ar

BPSOGSA

BGSA

BPSO

GA

0 100 200 300 400 500
10

2

10
3

10
4

 f20

 Iteration

 A
ve

ra
ge

 B
es

t-
so

-f
ar

BPSOGSA

BGSA

BPSO

GA

0 100 200 300 400 500
10

2

10
3

10
4

 f21

 Iteration

 A
ve

ra
ge

 B
es

t-
so

-f
ar

BPSOGSA

BGSA

BPSO

GA

0 100 200 300 400 500
10

2

10
3

10
4

 f22

 Iteration

 A
ve

ra
ge

 B
es

t-
so

-f
ar

BPSOGSA

BGSA

BPSO

GA

Fig. 12 Convergence curves for composite benchmark functions

BPSOGSA
55%

BGSA 5%

BPSO
22%

GA 18%

Total (all benchmark functions)

f1 - f22

Fig. 13 Overall statistical results

Neural Comput & Applic (2014) 25:1423–1435 1433

123

reason of significantly better results of BPSOGSA on

composite test functions is due to adaptive values for c
0

1

and c
0
2. These two variables require BPSOGSA to balance

between exploration and exploitation, so it emphasizes

exploration in initial steps of iteration. However, exploi-

tation is promoted as iteration increases. This cases local

minima avoidance and accelerated convergence toward the

global optimum over the course of iterations. Finally, the

employed v-shaped transfer function obliges search agents

of BPSOGSA to switch their positions when they are

moving into unpromising areas of the search space, making

it more likely to move toward promising areas of search

space in contrast to s-shaped transfer functions.

5 Conclusion

In this paper, a binary version of hybrid PSOGSA called

BPSOGSA was proposed by utilizing the same concepts of

the continuous version in terms of search behavior. In order

to justify the performance BPSOGSA, 22 benchmark

functions were employed, and the results were compared

with BGSA, BPSO, and GA. The results proved that

BPSOGSA was able to provide competitive results and has

merit among binary heuristic optimization algorithms in

binary search spaces. According to the findings, the

BPSOGSA algorithm successfully inherits the advantages

of the PSOGSA. On one hand, BPSOGSA shows superior

exploration since all search agents participate in updating

position of a search agent. On the other hand, the exploi-

tation of BPSOGSA is very accurate due to the social

component of PSO integrated that causes accelerated

convergence. The findings also proved that the adaptive

values for c
0

1 and c
0

2 balance exploration and exploitation,

so BPSOGSA is able to avoid local optima and converge to

the promising regions of the search space. The transfer

function employed also proved to be advantageous since

there is no obligation for search agents to take 0 or 1.

For future studies, it is recommended to apply

BPSOGSA in real optimization problems in order to further

evaluate the efficiencies of BPSOGSA in solving real-

world problems. Investigating the effect of different

transfer functions on BPSOGSA would be interesting as

well.

References

1. Wolpert DH, Macready WG (1997) No free lunch theorems for

optimization. IEEE Trans Evol Comput 1:67–82

2. Kennedy J, Eberhart R (1995) Particle swarm optimization, vol 4,

pp 1942–1948

3. Holland JH (1992) Genetic algorithms. Sci Am 267:66–72

4. Storn R, Price K (1997) Differential evolution—a simple and

efficient heuristic for global optimization over continuous spaces.

J Global Optim 11:341–359

5. Aarts EHL, Laarhoven PJM (1989) Simulated annealing: an

introduction. Stat Neerl 43:31–52

6. Geem ZW, Kim JH (2001) A new heuristic optimization algo-

rithm: harmony search. Simulation 76:60–68

7. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization.

IEEE Comput Intell Mag 1:28–39

8. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a

gravitational search algorithm. Inf Sci 179:2232–2248

9. Simon D (2008) Biogeography-based optimization. IEEE Trans

Evol Comput 12:702–713

10. Mirjalili S, Mirjalili SM, Lewis A (2014) Let a biogeography-

based optimizer train your multi-layer perceptron. Inf Sci

269:188–209. doi:10.1016/j.ins.2014.01.038

11. Saremi S, Mirjalili S, Lewis A (2014) Biogeography-based

optimisation with chaos. Neural Comput Appl 1–21. doi:10.1007/

s00521-014-1597-x

12. Saremi S, Mirjalili S (2013) Integrating chaos to biogeography-

based optimization algorithm. Int J Comput Commun Eng

2:655–658

13. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer.

Adv Eng Softw 69:46–61. doi:10.1016/j.advengsoft.2013.12.007

14. Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired

optimization algorithm. Commun Nonlinear Sci Numer Simul

17:4831–4845

15. Guo L, Wang G-G, Gandomi AH, Alavi AH, Duan H (2014) A

new improved krill herd algorithm for global numerical optimi-

zation. Neurocomputing 138:392–402

16. Wang G-G, Gandomi AH, Alavi AH (2013) An effective krill

herd algorithm with migration operator in biogeography-based

optimization. Appl Math Model 38(9–10):2454–2462

17. Wang G-G, Gandomi AH, Alavi AH (2014) Stud krill herd

algorithm. Neurocomputing 128:363–370

18. Wang G-G, Guo L, Gandomi AH, Hao G-S, Wang H (2014)

Chaotic Krill Herd algorithm. Inf Sci 274:17–34

19. Wang G, Guo L, Wang H, Duan H, Liu L, Li J (2012) Incor-

porating mutation scheme into krill herd algorithm for global

numerical optimization. Neural Comput Appl 1–19. doi:10.1007/

s00521-012-1304-8

20. Saremi S, Mirjalili SM, Mirjalili S (2014) Chaotic Krill Herd

optimization algorithm. Procedia Technol 12:180–185. doi:10.

1016/j.protcy.2013.12.473

21. Esmin A, Lambert-Torres G, Alvarenga GB (2006) Hybrid evo-

lutionary algorithm based on PSO and GA mutation. In: Sixth

international conference on hybrid intelligent systems, pp 57–57

22. Holden N, Freitas AA (2008) A hybrid PSO/ACO algorithm for

discovering classification rules in data mining. J Artif Evol Appl

2008:2

23. Holden NP, Freitas AA (2007) A hybrid PSO/ACO algorithm for

classification. In: GECCO ’07 proceedings of the 9th annual

conference companion on genetic and evolutionary computation,

pp 2745–2750

24. Lai X, Zhang M (2009) An efficient ensemble of GA and PSO for

real function optimization. In: 2nd IEEE international conference

on computer science and information technology, pp 651–655

25. Niu B, Li L (2008) A novel PSO-DE-based hybrid algorithm for

global optimization. In: Advanced intelligent computing theories

and applications. With aspects of artificial intelligence,

pp 156–163

26. Zhang WJ, Xie XF (2003) DEPSO: hybrid particle swarm with

differential evolution operator. In: IEEE international conference

on systems, man and cybernetics, vol 4, pp 3816–3821

27. Wang G-G, Gandomi AH, Alavi AH, Hao G-S (2013) Hybrid

krill herd algorithm with differential evolution for global

1434 Neural Comput & Applic (2014) 25:1423–1435

123

http://dx.doi.org/10.1016/j.ins.2014.01.038
http://dx.doi.org/10.1007/s00521-014-1597-x
http://dx.doi.org/10.1007/s00521-014-1597-x
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1007/s00521-012-1304-8
http://dx.doi.org/10.1007/s00521-012-1304-8
http://dx.doi.org/10.1016/j.protcy.2013.12.473
http://dx.doi.org/10.1016/j.protcy.2013.12.473

numerical optimization. Neural Comput Appl 1–12. doi:10.1007/

s00521-013-1485-9

28. Wang G-G, Gandomi AH, Alavi AH (2013) A chaotic particle-

swarm krill herd algorithm for global numerical optimization.

Kybernetes 42(6):6962–6978

29. Mirjalili S, Hashim SZM (2010) A new hybrid PSOGSA algo-

rithm for function optimization. In: 2010 international conference

on computer and information application (ICCIA), pp 374–377.

doi:10.1109/ICCIA.2010.6141614

30. Hatamlou A, Abdullah S, Othman Z (2011) Gravitational search

algorithm with heuristic search for clustering problems. In: 3rd

conference on data mining and optimization (DMO), pp 190–193

31. Shaw B, Mukherjee V, Ghoshal SP (2012) A novel opposition-

based gravitational search algorithm for combined economic and

emission dispatch problems of power systems. Int J Electr Power

Energy Syst 35:21–33

32. Zhang Y, Wu L, Zhang Y, Wang J (2012) Immune gravitation

inspired optimization algorithm advanced intelligent computing,

vol 6838. In: Huang D-S, Gan Y, Bevilacqua V, Figueroa J (eds)

Advanced intelligent computing. Springer, Berlin, pp 178–185

33. Li C, Zhou J (2011) Parameters identification of hydraulic turbine

governing system using improved gravitational search algorithm.

Energy Convers Manag 52:374–381

34. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2010) BGSA: bin-

ary gravitational search algorithm. Nat Comput 9:727–745

35. Rashedi E, Nezamabadi S, Saryazdi S (2009) GSA: a gravita-

tional search algorithm. Inf Sci 179:2232–2248

36. Wang L, Xu Y, Mao Y, Fei M (2010) A discrete harmony search

algorithm. Life Syst Model Intell Comput 37–43

37. Wang L, Fu X, Menhas M, Fei M (2010) A modified binary

differential evolution algorithm. Life Syst Model Intell Comput

6329:49–57

38. Kennedy J, Eberhart RC (1997) A discrete binary version of the

particle swarm algorithm, vol 5, pp 4104–4108

39. Mirjalili S, Mohd Hashim SZ, Moradian Sardroudi H (2012)

Training feedforward neural networks using hybrid particle swarm

optimization and gravitational search algorithm. Appl Math Com-

put 218(22):11125–11137. doi:10.1016/j.amc.2012.04.069

40. Mirjalili S (2011) Hybrid particle swarm optimization and

gravitational search algorithm for multilayer perceptron learning.

Universiti Teknologi Malaysia, Faculty of Computer Science and

Information System, Master thesis

41. Mirjalili S, Lewis A (2013) S-shaped versus V-shaped transfer

functions for binary particle swarm optimization. Swarm Evol

Comput 9:1–14. doi:10.1016/j.swevo.2012.09.002

42. Mirjalili S, Lewis A (2014) Adaptive gbest-guided gravitational

search algorithm. Neural Comput Appl. doi:10.1007/s00521-014-

1640-y

43. Yao X, Liu Y, Lin G (1999) Evolutionary programming made

faster. IEEE Trans Evol Comput 3:82–102

44. Yang XS (2010) Engineering optimization: an introduction with

metaheuristic applications. Wiley, London

45. Molga M, Smutnicki C (2005) Test functions for optimization

needs. http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf

46. Digalakis J, Margaritis K (2001) On benchmarking functions for

genetic algorithms. Int J Comput Math 77:481–506

47. Liang J, Suganthan P, Deb K (2005) Novel composition test

functions for numerical global optimization, pp 68–75

Neural Comput & Applic (2014) 25:1423–1435 1435

123

http://dx.doi.org/10.1007/s00521-013-1485-9
http://dx.doi.org/10.1007/s00521-013-1485-9
http://dx.doi.org/10.1109/ICCIA.2010.6141614
http://dx.doi.org/10.1016/j.amc.2012.04.069
http://dx.doi.org/10.1016/j.swevo.2012.09.002
http://dx.doi.org/10.1007/s00521-014-1640-y
http://dx.doi.org/10.1007/s00521-014-1640-y
http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf

	Binary optimization using hybrid particle swarm optimization and gravitational search algorithm
	Abstract
	Introduction
	The hybrid PSOGSA
	Binary version of PSOGSA (BPSOGSA)
	Experimental results and discussion
	Unimodal benchmark functions
	Multimodal benchmark functions
	Composite benchmark functions

	Conclusion
	References

