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Abstract Bat algorithm is a recent optimization algo-

rithm with quick convergence, but its population diversity

can be limited in some applications. This paper presents a

new bat algorithm based on complex-valued encoding

where the real part and the imaginary part will be updated

separately. This approach can increase the diversity of the

population and expands the dimensions for denoting. The

simulation results of fourteen benchmark test functions

show that the proposed algorithm is effective and feasible.

Compared to the real-valued bat algorithm or particle

swarm optimization, the proposed algorithm can get high

precision and can almost reach the theoretical value.

Keywords Complex-valued encoding � Bat algorithm �
Diploid � Test functions

1 Introduction

Swarm intelligence optimization algorithm originates from

the simulation of various types of biological behavior in

nature and has the characteristics of simple operation,

strong parallelism, good optimization performance, etc.

Inspired by this idea, the genetic algorithm (GA) [1], ant

colony optimization (ACO) [2, 3], particle swarm optimi-

zation (PSO) [4] are proposed and are applied widely. In

recent years, some new swarm intelligence algorithms were

also proposed, such as the shuffled frog leaping algorithm

(SFLA) [5], artificial bee colony optimization (ABC) [6],

artificial fish swarm algorithm (AFSA) [7], cuckoo search

(CS) [8], monkey algorithm (MA) [9] and firefly algorithm

(FA), Glowworm swarm optimization algorithm (GSO)

[10–13]. Swarm intelligence optimization algorithm can

effectively solve some problems which traditional methods

cannot solve and have shown excellent performance in

many respects. So, its application scope has been greatly

expanded.

The real-valued bat algorithm (BA) was proposed by

Yang in 2010 [14, 15], which originated from the simula-

tion of echolocation behavior in bats. Bats use a type of

sonar called echolocation to detect prey, avoid obstacles in

the dark. When searching their prey, the bats emit ultra-

sonic pulses. The loudness at this time is the maximum,

which can help lengthen the ultrasonic propagation dis-

tance. During flight to the prey, loudness will decrease

while the pulse emission will gradually increase, which can

make the bat locate the prey more accurately. But the basic

bat algorithm uses real number encoding method, and the

application range is limited in the real number. So, the

population diversity is limited, and the algorithm is easy to

fall into the local optimum. In the low dimensional case,

optimization performance is good [16–18], engineering

optimization [19, 20], multi-objective optimization [21],

and hybrid bat algorithm [22], but in the high dimensional

case, optimization performance cannot be satisfactory. In

order to solve the high space optimization problems in the

basic bat algorithm based on the idea of complex diploid

encoding [23–25], we present a bat algorithm based on the

complex-valued encoding (CBA) in this paper. The idea of

complex-valued encoding uses two parameters (i.e., the

real part and the imaginary part) to represent a variable,

and the real and imaginary parts can be updated in parallel.
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The independent variables of the objective function are

determined by the modules and angles of their corre-

sponding complex numbers. So, the diversity of population

is greatly enriched, the proposed CBA algorithm expands

the dimensions for denoting and the performance of the

algorithm is improved and CBA can expand the scope of

application and basic theory of bat algorithm to certain

extent and also provides a new way for bat algorithm to

solve the practical problems. This paper is organized as

follows. In the Sect. 2, the basic bat algorithm is described.

Section 3 gives the CBA algorithm. The simulation and

comparison of this proposed algorithm are presented in

Sect. 4. Finally, some remarks and conclusions are pro-

vided in Sect. 5.

2 Bat algorithm

2.1 The velocity updating and position updating

of the bat

Firstly, initialize the bat population randomly. Supposed

the dimension of search space is n, the position of the bat i

at time t is xt
i and the velocity is vt

i. Therefore, the position

xtþ1
i and velocity vtþ1

i at time t ? 1 are updated by the

following formulas:

Qt
i ¼ Qmin þ ðQmax � QminÞb ð1Þ

vtþ1
i ¼ vt

i þ ðxt
i � bestÞQt

i ð2Þ

xtþ1
i ¼ xt

iþvtþ1
i ð3Þ

where Qi represents the pulse frequency emitted by bat i at

the current moment. Qmax and Qmin represent the maximum

and minimum values of pulse frequency, respectively, b is

a random number in ½0; 1� and best represents the current

global optimal solution.

Select a bat from the bat population randomly and

update the corresponding position of the bat according to

Eq. (4). This random walk can be understood as a process

of local search, which produces a new solution by the

chosen solution.

xnewðiÞ ¼ xold þ eAt ð4Þ

where xold represents a random solution selected from the

current optimal solution, At is the loudness, e is a random

vector and its arrays are random values in ½�1; 1�.

2.2 Loudness and pulse emission

Usually, at the beginning of the search, loudness is strong

and pulse emission is small. When a bat has found its prey,

the loudness decreases while pulse emission gradually

increases. Loudness A(i) and pulse emission r(i) are

updated according to Eqs. (5) and (6):

rtþ1ðiÞ ¼ r0ðiÞ � ½1� expð�ctÞ� ð5Þ

Atþ1ðiÞ ¼ aAtðiÞ ð6Þ

where a and c are constants. For any 0 \ a\ 1, c[ 0,

A(i) = 0 means that a bat has just found its prey and

temporarily stop emitting any sound. It is not hard to find

that as t!1, we can get AtðiÞ ! 0; rtðiÞ ¼ r0ðiÞ.

2.3 The implementation steps of bat algorithm

Generally speaking, the implementation steps of bat algo-

rithm as follows:

1. Initialize the basic parameters: population size N,

attenuation coefficient of loudness a, increasing coef-

ficient of pulse emission c, the maximum loudness A0

and maximum pulse emission r0 and the maximum

number of iterations iterMax;

2. Define pulse frequency Qi 2 ½Qmin; Qmax�;
3. Initialize the bat population xi and v;

4. Enter the main loop. If rand \ ri, update the velocity

and the current position of the bat according to Eqs. (2)

and (3). Otherwise, make a random disturbance for

position of the bat and go to step 5;

5. If (rand\Ai; f ðxiÞ\f ðxÞ), accept the new solutions and

fly to the new position;

6. If f ðxiÞ\fmin, replace the best bat and adjust the

loudness and pulse emission according to Eqs. (5) and

(6);

7. Evaluate the bat population and find out the best bat

and its position;

8. If termination condition is met (i.e., reach maximum

number of iterations or satisfy the search accuracy), go

to step 9; otherwise, go to step 4 and execute the next

search.

9. Output the best fitness values and global optimal

solution.

3 Complex-valued bat algorithm (CBA)

3.1 The complex-valued encoding method

Compared with the traditional real number encoding

method, complex-valued encoding has many advantages.

It maps one-dimensional expression space with two-

dimensional coding space. For each individual bat, the

real and imaginary part of complex are updated separately

which leads to an inherent parallelism and increases the

diversity of individuals in the intangible. So, to some
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extent, the CBA has higher population diversity and

overcomes the disadvantage of bat algorithm, which is

easy to fall into local optimum. What’s more, the appli-

cation range of the bat algorithm is expanded to complex

range. Because of the two-dimensional properties of

complex number, CBA can express a higher dimension

space.

3.1.1 Initialize the complex-valued encoding population

Based on the definition interval of the problem

½Ak;Bk�; k ¼ 1; 2;1. . .; 2M, generate 2M complex mod-

ulus and 2M phase angle randomly.

qk 2 0;
Ak � Bk

2

� �
; k ¼ 1; 2; . . .; 2M ð7Þ

hk 2 ½�2p; 2p�; k ¼ 1; 2; . . .; 2M ð8Þ

According to the Eq. (9), get 2M complex number:

XRk þ iXIk ¼ qkðcos hk þ i sin hkÞ; k ¼ 1; 2; . . .; 2M ð9Þ

Thus, we obtain 2M real parts and 2M imaginary parts, and

the real and imaginary parts are updated according to the

following way.

3.1.2 The updating method of CBA

1. Update the real parts

VRðt þ 1Þ ¼ VRðtÞ þ ðXRðtÞ � best1Þ � Q1ðtÞ ð10Þ
XRðt þ 1Þ ¼ XRðtÞ þ VRðt þ 1Þ ð11Þ

2. Update the imaginary parts

VIðt þ 1Þ ¼ VIðtÞ þ ðXIðtÞ � best2Þ � Q2ðtÞ ð12Þ
XIðt þ 1Þ ¼ XIðtÞ þ VIðt þ 1Þ ð13Þ

where the VRðtÞ;VIðtÞ are the bat speed of real and

imaginary, XRðtÞ;XIðtÞ are the bat current position of

real and imaginary, best1 is the best solution of real

parts and best2 is the best solution of imaginary parts.

Q1ðtÞ and Q2ðtÞ are the pulse frequency.

3.1.3 The calculation method of fitness value

Because the complex domain has two parts (i.e., the real

and imaginary parts), when calculating the fitness value,

the complex number needs to be converted into real

number firstly and then calculates its fitness value. Specific

practices are as follows:1. Take complex modulus as the

value of the real number:

qk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

Rk þ X2
Ik

q
; k ¼ 1; 2; . . .;M ð14Þ

2. The sign is determined by phase angle:

Xk ¼ qksgn sin
XIk

qk

� �� �
þ Bk þ Ak

2
; k ¼ 1; 2; . . .;M ð15Þ

where Xn represents the converted real variables.

3.2 CBA algorithm

The complex-valued encoding idea which can be considered

as an efficient global optimization strategy is introduced to

the bat algorithm. Based on the two-dimensional properties

of the complex number, the real and imaginary parts of

complex number are updated separately. This strategy can

greatly enrich the diversity of population and enhance the

global search ability of individual bat. Thus, the perfor-

mance of the algorithm is improved greatly. When updating

two new parameters, we also introduce the differential

evolution strategy ‘‘DE/best/2/bin’’ [26, 27] to improve the

local search ability of the algorithm. In this case, CBA can

balance global and local search and cope with multimodal

benchmarks. The pseudo code of CBA is as follows:
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4 Simulation experiments and results analysis

4.1 Simulation platform

The proposed algorithm is implemented in MATLAB.

Operating system: Windows XP; CPU: AMD Athlon (tm)

II X4 640 Processor, 3.01 GHz; RAM: 3 GB; Program-

ming language: Matlab R2012 (a).

4.2 Benchmark functions

In order to verify the effectiveness of the proposed algo-

rithm, we select fourteen standard benchmark functions

[28, 29] to detect the searching capability of the proposed

algorithm. Each function has its own characteristics, and a

single algorithm cannot apply to every benchmark func-

tion. Therefore, the experimental results can fully reflect

the performance of the algorithm.

The benchmark functions selected can be divided into

three categories (i.e., high-dimensional unimodal functions,

high-dimensional multimodal functions and low-dimensional

functions). They are F1, F2, F3, F4 and F5 for category I, F6,

F7, F8 and F9 for category II and F10, F11, F12, F13 and F14

for category III. In high-dimensional functions, F2 is a

classical test function. Its global minimum is in a parabolic

valley, and function values change little in the valley. So, it is

very difficult to find the global minimum. There are a large

number of local minima in the solution space of F6. And in

low-dimensional functions, most functions have the charac-

teristic of strong shocks. As the global minimum of most

benchmark functions is zero, in order to verify the searching

capability of the algorithm effectively, we select some

functions with nonzero global minimum.

4.3 Parameter setting

Generally, the choice of parameters requires some experi-

menting. In this paper, after a lot of experimental com-

parison, the parameters of the algorithm are set as follows.

In BA, the parameters are generally set as follows: Pulse

frequency range is Qi 2 ½0; 2�, the maximum loudness is

A0 = 0.5, maximum pulse emission is r0 = 0.5, attenua-

tion coefficient of loudness is a = 0.95, increasing coeffi-

cient of pulse emission is c = 0.05 and population size is

N = 40.

In PSO, we use linear decreasing inertia weight that is

xmax ¼ 0:9, xmin ¼ 0:4, and learning factor is C1 ¼ C2 ¼
1:4962.

In CBA, the basic parameters are the same with BA. The

range of complex modulus is qk 2 ½0; Ak�Bk

2
�, the range of

phase angle is hk 2 ½�2p; 2p�, where ½Ak;Bk� is the range of

variables.

In the tests, the maximum number of iterations of each

algorithm is iterMax ¼ 500.

4.4 Comparison of experiment results

For standard benchmark functions in Table 1, the com-

parison of test results is shown in Tables 2, 3 and 4, while

Table 1 Benchmark functions

Category No. Name Benchmark functions D Scope fmin

I F1 Sphere f ðxÞ ¼
Pn

i¼1 x2
i

30 ½�5:12; 5:12� 0

F2 Rosenbrock f ðxÞ ¼
Pn�1

i¼1 ½ðxi � 1Þ2 þ 100ðx2
i � xiþ1Þ2� 30 ½�2:048; 2:048� 0

F3 Step f ðxÞ ¼
Pn�1

i¼1 ð xiþ 0:5b cÞ2 30 ½�100; 100� 0

F4 Quartic f ðxÞ ¼
Pn

i¼1 x4
i þ random½0; 1Þ 30 ½�1:28; 1:28� 0

F5 X. S. Yang-7 f ðxÞ ¼
Pn

i¼1 ej xi � 1=ij j; ei 2 U½0; 1� 30 ½�5; 5� 0

II F6 Rastrigin f ðxÞ ¼
Pn

i¼1 ½x2
i � 10 cosð2pxiÞ þ 10� 30 ½�5:12; 5:12� 0

F7 Ackley
f ðxÞ ¼ �20 exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1 x2

i

q
� exp 1

n

Pn
i¼1 cos 2pxi

� �	 

þ 20þ e

30 ½�32:768; 32:768� 0

F8 Griewank
f ðxÞ ¼ 1

4;000

Pn
i¼1 ðx2

i Þ �
Qn
i¼1

cos xiffi
i
p
	 


þ 1
30 ½�600; 600� 0

F9 Alpine f ðxÞ ¼
Pn

i¼1 xi sinðxiÞ þ 0:1xi 30 ½�10; 10� 0

III F10 Schaffer’s F6
f ðxÞ ¼ sin2

ffiffiffiffiffiffiffiffiffiffiffiffi
ðx2

1
þx2

2
Þ

p
�0:5

½1þ0:001ðx2
1
þx2

2
Þ�2 � 0:5

2 ½�100; 100� -1

F11 Drop Wave
f ðxÞ ¼ � 1þcosð12

ffiffiffiffiffiffiffiffiffi
x2

1
þx2

2

p
Þ

1=2ðx2
1
þx2

2
Þþ2

2 ½�5:12; 5:12� -1

F12 Shekel 1 f ðxÞ ¼ �
P5

i¼1 ððx� aiÞðx� aiÞT þ ciÞ�1Þ 4 ½0; 10� 10.1532

F13 Shekel 2 f ðxÞ ¼ �
P7

i¼1 ððx� aiÞðx� aiÞT þ ciÞ�1 4 ½0; 10� -10.4029

F14 Shekel 3 f ðxÞ ¼ �
P10

i¼1 ððx� aiÞðx� aiÞT þ ciÞ�1 4 ½0; 10� -10.5364
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comparison of searching success rate is shown in Table 5.

In this paper, the results are obtained in twenty trials. The

Best, Mean, Worst and Std. represent the optimal fitness

value, mean fitness value, worst fitness value and standard

deviation, respectively. Bold and italicized results mean

that CBA is better, while underlined results mean that other

algorithm is better.

Seen from Table 2, in category I, CBA can find the

optimal solution for F1 and F3 and has a very strong

robustness. For other three functions, the precision of

optimal fitness value and mean fitness value is higher than

those of PSO and BA. For the five functions in category I,

standard deviation of CBA is less than that of PSO and BA.

And this means that in the optimization of high-dimen-

sional unimodal function, CBA has better stability.

Similarly, seen from Table 3, besides F7, for other func-

tions in category II, CBA can find out the optimal solution,

and all the standard deviation is 0. Even for F7, CBA has a

higher precision of optimization. The accuracy of CBA can

be higher than that of PSO and BA for 16, 17 orders of

magnitude, respectively. Overall, the optimization perfor-

mance of CBA is superior to PSO and BA in the high-

dimensional case.

The optimal value of functions in category III is non-

zero. Seen from the results in Table 4, although in func-

tions F10, F11 and F12, both PSO and CBA can find out the

optimal solution, but the mean optimal value and standard

deviation of CBA are smaller than those of the PSO. Only

for F14, the optimal value of CBA is slightly worse than

PSO, while standard deviation of CBA is slightly larger

Table 2 Simulation results for

test functions Fi; i ¼ 1; 2; 3; 4; 5
Benchmark functions Method Results

Best Mean Worst Std.

F1ðD ¼ 30Þ PSO 0.848903879 2.019502887 3.543298331 0.882332983

BA 0.001241624 0.001441276 0.001680063 1.13E-04

CBA 0 0 0 0

F2ðD ¼ 30Þ PSO 36.63927586 70.69199924 1.14E?02 19.0223137

BA 23.72699513 28.05953865 29.51861835 1.476970852

CBA 0.001219204 0.191232376 3.765215505 0.841231155

F3ðD ¼ 30Þ PSO 345 8.60E?02 1775 3.72E?02

BA 49575 6.27E?04 71257 5.96E?03

CBA 0 0 0 0

F4ðD ¼ 30Þ PSO 0.034431114 0.120536812 0.262638954 0.061560069

BA 0.08291352 0.149113591 0.217150154 0.032129523

CBA 2.41E-06 6.18E-05 1.68E-04 5.31E-05

F5ðD ¼ 30Þ PSO 4.189661137 7.345693455 11.87075461 2.309022597

BA 0.561140026 0.71553531 2.715762867 0.66129969

CBA 0.438096172 0.691105745 0.831076592 0.104928892

Table 3 Simulation results for

test functions Fi; i ¼ 6; 7; 8; 9
Benchmark functions Method Results

Best Mean Worst Std

F6ðD ¼ 30Þ PSO 59.31426674 1.07E?02 1.72E?02 23.13294355

BA 1.46E?02 1.99E?02 2.63E?02 30.87488147

CBA 0 0 0 0

F7ðD ¼ 30Þ PSO 4.315029312 6.569731545 8.927045465 1.302036553

BA 18.80506661 19.13267851 19.62574603 0.220545362

CBA 8.88E-16 8.88E-16 8.88E-16 0

F8ðD ¼ 30Þ PSO 1.696523568 2.829749864 5.047220552 1.090576403

BA 3.53E?02 5.48E?02 6.66E?02 76.99297871

CBA 0 0 0 0

F9ðD ¼ 30Þ PSO 0 1.49E-41 1.43E-40 3.69E-41

BA 3.68E-10 8.13E-07 5.56E-06 1.64E-06

CBA 0 0 0 0
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than the BA. But the mean optimal value of CBA is better

than PSO and BA. Obviously, for functions in category III,

the optimization performance of CBA is still better than

PSO and BA.

For functions in three categories, Figs. 1, 2, 3, 4, 5, 6, 7,

8, 9, 10, 11, 12, 13 and 14 are the fitness evolution curve,

Figs. 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 and

28 are the anova tests of the global minimum and Figs. 29,

30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41 and 42 are the

comparisons of optimal fitness value.

If the error between actual optimization and theoretical

optimal value is less than 1 %, count as a successful search

to the optimal value. In order to fully validate the effec-

tiveness of the algorithm, we made a statistical analysis of

the optimization success rate of each algorithm. Table 5

shows that optimization success rate of each algorithm,

where dimension of functions in category I and category II

Table 4 Simulation results for

test functions

Fi; i ¼ 10; 11; 12; 13; 14

Benchmark functions Method Results

Best Mean Worst Std.

F10ðD ¼ 2Þ PSO -1 -0.996599432 -0.99028409 0.004754582

BA -0.962775925 -0.71578852 -0.528385341 0.131553488

CBA -1 -1 -1 0

F11ðD ¼ 2Þ PSO -1 -0.996812266 -0.936245328 0.014255978

BA -0.999999932 -0.732945647 -0.477784428 0.179212441

CBA -1 -1 -1 0

F12ðD ¼ 4Þ PSO -10.15319968 -8.267267062 -2.630471668 3.033997517

BA -10.15311639 -4.895061995 -2.630453789 3.232005155

CBA -10.15319968 -10.15319964 -10.15319953 3.86E-08

F13ðD ¼ 4Þ PSO -10.40294057 -9.491619079 -2.765897328 2.268580502

BA -10.40286341 -5.861470277 -1.837589128 3.552600389

CBA -10.4029401 -10.40293146 -10.40289599 1.19E-05

F14ðD ¼ 4Þ PSO -10.53640982 -9.003684191 -2.421734027 3.156219888

BA -10.53626178 -4.232217299 -1.676545005 2.852811947

CBA -10.53640972 -9.112674411 -2.421733874 2.933412724

Table 5 Comparison of the optimization success rate

Category Benchmark

functions

D PSO BA CBA

I F1 10 85.345 % 95.8 % 1

F2 10 0 0 67.5 %

F3 10 18.935 % 0 1

F4 10 0.085 % 2.09 % 99.9 %

F5 10 0 0 0

II F6 10 0 0 1

F7 10 0 0 1

F8 10 0 0 1

F9 10 99.885 % 99.975 % 1

III F10 2 98.03 % 9.975 % 1

F11 2 0.94 % 5 % 99.99 %

F12 4 22.39 % 19.73 % 99.1 %

F13 4 58.905 % 29.62 % 99.9 %

F14 4 36.16 % 24.7 % 83.8 %
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Fig. 2 D = 30, evolution curves of fitness value for F2
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Fig. 3 D = 30, evolution curves of fitness value for F3
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Fig. 10 D = 2, evolution curves of fitness value for F10
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Fig. 11 D = 2, evolution curves of fitness value for F11
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Fig. 12 D = 4, evolution curves of fitness value for F12
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Fig. 13 D = 4, evolution curves of fitness value for F13
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Fig. 14 D = 4, evolution curves of fitness value for F14
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Fig. 16 D = 30, anova tests of the global minimum for F2
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Fig. 17 D = 30, anova tests of the global minimum for F3
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Fig. 18 D = 30, anova tests of the global minimum for F4
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Fig. 19 D = 30, anova tests of the global minimum for F5
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Fig. 20 D = 30, anova tests of the global minimum for F6
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Fig. 21 D = 30, anova tests of the global minimum for F7
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Fig. 22 D = 30, anova tests of the global minimum for F8
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Fig. 23 D = 30, anova tests of the global minimum for F9
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Fig. 24 D = 2, anova tests of the global minimum for F10

PSO BA CBA

-1

-0.8

-0.6

-0.4

Algorithms

F
itn

es
s 

va
lu

e

Fig. 25 D = 2, anova tests of the global minimum for F11
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Fig. 26 D = 4, anova tests of the global minimum for F12
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Fig. 27 D = 4, anova tests of the global minimum for F13
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Fig. 28 D = 4, anova tests of the global minimum for F14
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Fig. 29 D = 30, comparison of optimal fitness value for F1
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Fig. 30 D = 30, comparison of optimal fitness value for F2
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Fig. 31 D = 30, comparison of optimal fitness value for F3
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Fig. 32 D = 30, comparison of optimal fitness value for F4
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Fig. 33 D = 30, comparison of optimal fitness value for F5
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Fig. 34 D = 30, comparison of optimal fitness value for F6
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Fig. 35 D = 30, comparison of optimal fitness value for F7
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Fig. 36 D = 30, comparison of optimal fitness value for F8
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Fig. 37 D = 30, comparison of optimal fitness value for F9
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Fig. 38 D = 2, comparison of optimal fitness value for F10
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Fig. 39 D = 2, comparison of optimal fitness value for F11
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Fig. 40 D = 4, comparison of optimal fitness value for F12
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Fig. 41 D = 4, comparison of optimal fitness value for F13
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Fig. 42 D = 4, comparison of optimal fitness value for F14
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is 10. Figures 43 and 44 are the anova tests of the global

minimum for F2 and F6 in the 10 dimensional case, and

Fig. 45, Fig. 46 is comparison of optimal fitness value for

F2 and F6 in the 10 dimensional case.

Because the optimization success rate of PSO and BA in

high-dimensional search is very low, so the dimension for

functions in category I and category II is set to 10. It can be

seen from Table 5, except that the optimization success

rate of CBA for F5 is 0, the optimization success rate of

CBA for other functions is higher than those of PSO and

BA. In particular, for functions F6, F7 and F8, CBA can

certainly find out the optimal solution, while optimization

success rate of PSO and BA is 0 and cannot find a satis-

factory result. The anova function tests of the global

minimum in Figs. 43 and 44 and comparison of optimal

fitness value in Fig. 45, Fig. 46 also show that the CBA has

better stability and higher precision of optimization.

5 Conclusions

There are many shortcomings of bat algorithm, such as poor

population diversity, low precision of optimization, easy to

fall into local optimum and poor optimization performance

in high-dimensional case. This paper introduces the idea of

complex-valued encoding into bat algorithm and proposes a

novel bat algorithm based on complex-valued encoding

(CBA). With the unique two-dimensional characteristics of

complex number, the proposed algorithm increases the

diversity of population and improves the optimization per-

formance of the algorithm. In this article, we tested fourteen

typical benchmark functions. The results of comparison

with the PSO and BA show that precision of optimization,

convergence speed and robustness of CBA are all better

than PSO and BA. The results of simulation test show that

the proposed algorithm is effective and feasible.
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