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Abstract In this paper, we propose a coevolutionary

genetic watermarking scheme based on wavelet packet

transform. Wavelet packet transform can be viewed as a

generalization of the discrete wavelet transform, and a best

wavelet basis in the sense of some cost metric can be found

within a large library of permissible bases. Coevolutionary

genetic algorithm is employed to select an appropriate

basis from permissible bases of wavelet packet transform,

and it determines the subbands for watermark embedding.

Experimental results demonstrate that proposed method

can increase the capability to resist specific image pro-

cessing methods while keeping quality of the watermarked

image acceptable. Moreover, the architecture of coopera-

tive coevalutionary genetic algorithm is particularly suit-

able in distributed computing environment. This

characteristic would make genetic watermarking schemes

more applicable in real-world applications.

Keywords Image watermarking � Cooperative

coevolutionary genetic algorithm � Owner identification �
Data hiding

1 Introduction

Nowadays, people can easily retrieve multimedia contents

from the Internet via personal computers, notebooks, and

smart mobile phones. With the digital nature of unlimited

copying and ease of alteration, the copyright of multimedia

contents should be properly protected. Against piracy

behavior, digital watermarking has been regarded as an

effective solution [3, 13, 16].

Image watermarking is to embed secret information

(i.e., watermarks) into images for certain purposes such as

owner identification or copy control. Spatial domain

watermarking algorithms are famous for their ease of

implementation; however, the limited capacity for owner-

ship protection is the major drawback with this type of

schemes. Correspondingly, transform domain (or fre-

quency domain) watermarking algorithms provide more

flexibilities for algorithm design. Researchers can choose

the low-, mid-, or high-frequency coefficients for water-

mark embedding. For natural images, low-frequency

coefficients reside a large amount of energy. Hence, for

embedding watermark bits into low-frequency coefficients,

large amount of alteration may be expected, and water-

marked image quality may get degraded drastically. Con-

versely, for embedding watermark bits into high-frequency

coefficients, it would lead to small alteration of image;

however, external signal processing (or attack), such as

low-pass filtering, may cause the disappearance of

embedded watermark. Conceptually, because watermark

embedding into low- or high-frequency coefficients have

their drawbacks, embedding into mid-frequency coeffi-

cients seems a proper solution [10].

By following the discussions above, an excellent image

watermarking scheme would be hoped to have following

properties:
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1. High fidelity: The watermarked image quality should

be perceptually similar to the original image.

2. Good robustness: The watermark can be successfully

detected even though some attacks are applied to the

watermarked image.

3. Large data capacity: The larger the data capacity is,

the more secret information can be embedded into

original images.

These properties are usually used as performance measures

of watermarking schemes. As we mentioned above, since

these properties may have conflict with each other, a

watermarking scheme is difficult to meet the three prop-

erties above at the same time. First of all, increasing

fidelity of watermarked images, e.g., embedding into low-

frequency coefficients, would lower the strength of water-

marks, and thus, it would decrease the robustness of

watermarks. Secondly, embedding larger amount of infor-

mation leads to the more alteration of image, and hence, it

would reduce the fidelity of watermarked images. Finally,

increased capacity may bring the flexibility for watermark

generation, for instance, the inclusion of error control

coding for the better protection of watermark, and thus, the

robustness may get enhanced. Therefore, typical water-

marking schemes embed watermarks in accordance with

some heuristic rules so that all three properties mentioned

above are acceptable.

A number of methods have been proposed to insert

robust and invisible watermarks [2, 9]. Among all methods,

the schemes based on wavelet packet transform (WPT)

have attracted much attention. WPT can be viewed as a

generalization of the discrete wavelet transform (DWT). In

the usual dyadic wavelet decomposition, only the low-pass-

filtered subband is recursively decomposed, and thus, it can

be represented by a logarithmic tree structure. A wavelet

packet decomposition allows the decomposition to be

represented by any pruned subtree of the full tree topology.

Therefore, this representation of the decomposition topol-

ogy is isomorphic to all permissible subband topologies.

The leaf nodes of each pruned subtree represent one per-

missible orthonormal basis [12]. Thus, a best wavelet basis

in the sense of some cost metric can be found within a large

library of permissible bases.

Due to the conflict of above three performance mea-

sures, embedding watermarks into images can be referred

to as an optimization problem. If these properties are

evaluated and combined into a weighted sum form appro-

priately, genetic algorithm (GA) could be used to solving

this problem [9, 11, 15]. Different from typical water-

marking schemes, conventional genetic watermarking finds

out the optimal coefficients in frequency domain in the

sense of a certain evaluation function to embed water-

marks. Under the constraint of keeping other properties

acceptable, GA can be used to optimize the robustness of

watermarks or the fidelity of watermarked images [8, 16].

However, if two or more types of parameters must be

determined by GA, it is difficult to appropriately encode

these parameters into chromosomes in GA.

In [14], authors indicated that the watermarking scheme

employing the zerotree of WPT provided the best perfor-

mance in term of PSNR compared to schemes employing

DWT or discrete cosine transform (DCT). However, the

robustness against various types of attack of the scheme

employing WPT got slightly decreased. Therefore, we

propose a coevolutionary genetic watermarking scheme

based on wavelet packet transform in this paper. In the

proposed method, coevolutionary genetic algorithm is

employed to select an appropriate basis from permissible

bases of wavelet packet transform and to determine the

subbands for watermark embedding. Experimental results

shows that comparing to watermarking methods based on

DWT or GA, the proposed method can increase the capa-

bility to resist image processing operations.

The rest of the paper is organized as follows. Section 2

introduces the concepts of the coevolutionary genetic

algorithm and then describes the proposed coevolutionary

genetic watermarking scheme. Section 3 presents the

experimental results of the proposed method. Finally,

Sect. 4 summarizes the proposed method and draws a brief

concluding remarks and future works.

2 Coevolutionary genetic algorithm in wavelet packet

domain

Assuming that a watermark consists of 0’s and 1’s, all bits

of the watermark are embedded into an image with the

same manner, separately. To embed the watermark, the

cooperative coevolutionary genetic algorithm (CCGA) is

first employed to select an appropriate basis of WPT, and

subbands are used to embed watermark bits. Then, a

number of coefficients are randomly chosen and modified.

The random seed, the WPT decomposition tree, and sub-

bands used in the watermark embedding process are pre-

served as secret key.

2.1 An introduction to CCGA

Genetic algorithm (GA), based on the concept of natural

genetics, is a directed random search technique. The

exceptional contribution of this method was developed by

Holland [7] over the course of 1960s and 1970s, and finally

popularized by Goldberg [6].

As depicted in Fig. 1, a typical binary GA begins by

defining the optimization parameters, the fitness function,
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and the fitness value, and it ends by testing for convergence.

The optimization parameters are represented by an encoded

binary string, called a chromosome. The elements in the

binary strings, or the genes, are adjusted by GA to minimize

or maximize the fitness value. According to the applications

for optimization, designers need to carefully define the

necessary elements to be optimized. The fitness function,

which is composed of multiple variables to be optimized, is

used to evaluate the fitness value of chromosomes. In every

iteration of GA, a pre-determined number of chromosomes

will be evaluated to obtain fitness values. Then, GA is

stopped if the terminating criteria is reached; otherwise, the

natural selection, crossover, and mutation operations are

applied on the chromosomes in a reasonable way to generate

the next generation of chromosomes. A description of GA in

more detail can be found in [5, 11].

Comparing to GA, all parameters of the fitness function

are not encoded and represented by a single chromosome in

CCGA [18]. Instead, the parameters are separated into

several subsets. Each subset of the parameters is encoded

with one kind of chromosomes, which compose an indi-

vidual population. Consequently, when fitness value of a

chromosome is evaluated, chromosomes in other popula-

tions are necessary so that all parameters of the fitness

function can be provided. These chromosomes chosen from

other populations for fitness value evaluation are referred

to as representative chromosomes, which can be chosen

randomly or according to the fitness value. The flowchart

of CCGA with three populations is depicted in Fig. 2. At

the beginning of CCGA, chromosomes in these three

populations are randomly initialized. Chromosomes are

then evaluated in accordance with fitness function and

representative chromosomes. Then, mate selection,

crossover, and mutation operations are applied separately

to chromosomes of these populations to generate next

generations. In other words, GA is applied on these three

populations, respectively.

2.2 Selection of the best basis with CCGA

Chromosomes of the genetic algorithm used to selecting

the best basis consist of a binary string. The length of the

binary string is equal to
ð4D�1Þ
ð4�1Þ , where D is decomposition

level of WPT. A bit equal to ‘1’ in the string indicates the

corresponding subband should be decomposed further, and

the decomposition will stop if the bit value equals to ‘0’. If

the allele at index i equals to ‘1’, the indices of the

resulting four subbands can be derived by:

im ¼ 4� iþ m; m 2 f1; 2; 3; 4g: ð1Þ

An example of the chromosome and its corresponding

WPT decomposition tree is illustrated in Fig. 3.

2.3 Selection of subbands with CCGA

The chromosome of GA used for subband selection is also

composed of a binary string. The length of the chromosome

equals to the chromosome used in previous subsection. The

chromosome is encoded in the following manner:

Fig. 1 The flowchart of a typical binary genetic algorithm

Fig. 2 The flowchart of coevolutionary genetic algorithm, in which

chromosomes of population 3 are evaluated
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1. If the allele at index i equals to ‘1’ and its

corresponding subband is not decomposed further,

the subband is selected for watermark embedding.

2. If the ith allele equals to ‘1’ and subbands decomposed

from ith subband are leaf nodes in the WPT decom-

position tree, the decomposed LL subband is selected

for watermark embedding.

3. Otherwise, the corresponding subband are not selected

for watermark embedding.

Figure 4 depicts an example of the chromosome.

2.4 Fitness function in CCGA watermarking

The fitness function employed in the proposed scheme is as

follows:

fitness ¼ PMSE �
YK

i¼1

Pi; ð2Þ

where Pi is the percentage of the watermark bits that still

survive after a certain attack method was applied, and K is

the number of attack methods adopted for robustness

evaluation. Perceptual quality of the watermarked images

was measured with mean squared error ratio (MSE),

referred to as PMSE. All these terms are combined in

multiplication to obtain a fitness value.

2.5 Binary watermarking in wavelet packet transform

The method to embed one binary value into an image was

mainly based on [2]. When one bit of the watermark is

embedded, a number of coefficients, which is pre-specified

by the user, are chosen randomly. These coefficients are

then modified such that the first one, in the order of being

chosen, is the largest if an ’1’ is embedded. If a ’0’ is

embedded, the coefficients should be modified such that the

first one is the smallest. Suppose ci; i ¼ 1; . . .; n are the

chosen coefficients, and n is the number of coefficients.

The modified coefficients will satisfy Eq. (3),

c
0

1� maxðc02; c
0

3; . . .; c
0

nÞ þ d; if W ¼ 1;

c
0
1\ minðc02; c

0
3; . . .; c

0
nÞ � d; if W ¼ 0:

(
ð3Þ

Here, c
0

i; i ¼ 1; . . .; n are the modified coefficients, W is one

bit of the watermark, and d; d� 0, is the strength parameter

specifying the difference between the first coefficient and

the largest (smallest) one among remaining coefficients. To

maximize the PSNR value, the algorithm described in

Sect. 2.6 is used to find the optimal values of the coeffi-

cients to be modified.

The extracting algorithm proposed is to compare the first

coefficient to the largest and smallest ones among

remaining coefficients. If the value of the first coefficient is

closer to the largest one among remaining coefficients, an

‘1’ will be extracted; otherwise, a ‘0’ will be extracted. The

extracting process is described in Eq. (4):

W
0 ¼ 1; if c

00
1�

c
00
max þ c

00
min

2
;

0; otherwise.

8
<

: ð4Þ

Note that

c
00
max ¼ max c

00
2; c

00
3; . . .; c

00
n

� �
;

c
00

min ¼ min c
00

2; c
00

3; . . .; c
00

n

� �
:

ð5Þ

Here, c
00
i ; i ¼ 1; . . .; n are the coefficients obtained from a

image, and W
0

is the extracted bit. Then, according to a

threshold, we can compare the extracted binary string with

the watermark to determine whether the watermark exists

or not.

Fig. 3 An example of a chromosome and its corresponding subband

tree

Fig. 4 An example of a chromosome and corresponding subbands it

selected. Subbands filled with gray are selected to embed a watermark
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2.6 Extreme value-based watermarking (EVBW)

The main idea of EVBW is to modify more than one

coefficient at the same time. To embed a ‘1’, if the first

coefficient c1 is increased to xþ d, all coefficients larger

than x should be decreased to x to fit the rule shown in

Eq. (3). Therefore, it is possible to find the optimal value of

x such that the watermarked image have the best quality

according to an appropriate quality metric.

If the mean square error (MSE) of the modified coeffi-

cients is minimized, the peak signal-to-noise ratio (PSNR)

value is maximized simultaneously. Suppose a bit of ‘1’ is

to be embedded into n coefficients. If c1 is increased to

xþ d and all coefficients larger than x are decreased to x,

the square error (SE) value can be calculated as Eq. (6):

SE ðxÞ ¼ ððxþ dÞ � c1Þ2 þ
X

ci [ x

ðci � xÞ2: ð6Þ

Then, the minimum of SE ðxÞ can be obtained by finding

out the value of x where the first derivative of SE ðxÞ is

equal to 0. The first derivative of SE ðxÞ is shown in

Eq. (7), and the optimal value of x is shown in Eq. (8).

d

dx
SE ðxÞ ¼ 2� ðxþ d� c1Þ þ 2�

X

ci [ x

ðx� ciÞ: ð7Þ

x ¼

P
ci [ x

ci

 !
þ c1 � d

k þ 1
; i ¼ 1; . . .; n:

ð8Þ

Here, k is the number of coefficients larger than c1. In

Eq. (8), it is assumed that only k largest coefficient and c1

be modified. Therefore, the value of x should be larger than

the ðk þ 1Þ-th largest coefficient but smaller than kth

largest coefficient. The algorithm to find the optimal value

x is stated as follows:

Obtain d1 d2 dn by sorting c1 c2 cn

such that d1 d2 dn

Suppose c1 is the k 1 -th largest value
If k 1 1

xopt d2, Stop
End If
For i 1 to k

x
∑i

j 1 d j dk 1 δ
i 1

If di 1 x di

xopt x, Stop
End If

End For
xopt c1, Stop

After the algorithm finishes, the optimal value of x can be

found. c1 can then be modified to xþ d, and all coefficients

larger than x be modified to x to embed a bit of ‘1’. A

similar algorithm to find the optimal value to embed a ‘0’ is

stated as follows:

Obtain d1 d2 dn by sorting c1 c2 n

such that d1 d2 dn

Suppose c1 is the k 1 -th smallest value
If k 1 1

xopt d2, Stop
For i 1 to k

x
∑i

j 1 d j dk 1 δ
i 1

If di 1 x di

xopt x, Stop
End If

End For
xopt c1, Stop

Finally, c1 is decreased to x� d, and all coefficients

smaller than x be increased to x to embed a bit of ‘0’.

Continuing the example in previous subsection, if d ¼ 0,

the SE ðxÞ value is:

SEðxÞ

¼
ðx� 112Þ2 þ ðxþ 5Þ2 if 107� x\112

ðx� 112Þ2 þ ðx� 107Þ2 þ ðxþ 5Þ2 if � 1� x\107

ðx� 112Þ2 þ ðx� 107Þ2 þ ðxþ 1Þ2 þ ðxþ 5Þ2 if � 5� x\� 1

8
><

>:

By applying the proposed algorithm, the optimal value of x,

about 71.3, can be obtained. The curve of SE ðxÞ is shown

in Fig. 5. It is clear that SE ðxÞ is the minimum when

x ¼ 71:3.

3 Experimental results

In this section, we present some experimental results to

demonstrate the performance of the proposed method. An

1,000-bit watermark was generated randomly and used

throughout the experiments. The numbers of chromosomes

of two populations were 200 and 200, maximal

Fig. 5 Curves of ðx� 112Þ2 þ ðxþ 5Þ2 (curve 1), ðx� 112Þ2 þ ðx�
107Þ2 þ ðxþ 5Þ2 (curve 2) and ðx� 112Þ2 þ ðx� 107Þ2 þ ðxþ 1Þ2 þ
ðxþ 5Þ2 (curve 3)
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decomposition level was 7, the selection and mutation rates

were set to 0.5 and 0.04, respectively, and the number of

training iterations was 400.

In our experiments, performances are assessed by the

output image quality, represented by PSNR value between

original and watermarked images, Six 512� 512; 8 bits/

pixel gray scale test images, including Lena, Baboon, F16,

Fishing Boat, Pentagon, and Peppers are employed for

performance comparisons. Three image processing opera-

tions: JPEG compression with quality factor = 30, Gaussian

filtering, and sharpening were applied on the watermarked

images to evaluate fitness values of the chromosomes. To

compare with [1] and [2], the watermark was only

embedded into subbands decomposed from LH2; HL2 and

HH2. The parameters used in the watermarking scheme

were the same with that in [2]. To embed one bit of the

watermark, twelve coefficients were chosen from

LH2; HL2 or HH2 subband. In other words, n ¼ 12 in our

experiments. The strength parameter d was assigned to 0.

A watermarked image Lena is displayed in Fig. 6. The

results of applying three image processing operations on

six test images that are watermarked with [1, 2] and the

proposed scheme are summarized in Table 1 for the pur-

pose of comparison. Similar experimental results obtained

by applying [1, 2] and the proposed scheme on 100 test

images randomly selected from Corel Gallery are also

depicted in Table 2. Figure 6, and Tables 1 and 2 reveal

that the proposed watermarking scheme can generate

watermarked image with higher robustness and similar

perceptual quality. It is because a proper basis and sub-

bands are selected by CCGA aiming to the three image

processing methods. Moreover, due to the adaptivity of

CCGA, the robustness of the proposed scheme is better

than [1] and [2] in average.

In addition to [1, 2], the performance comparison among

the proposed method and other genetic watermarking

Table 1 Performance of the proposed method comparing to [1] and

[2]

Test

image

Watermarking

scheme

JPEG

(Q = 30)

(%)

Gaussian

filtering

(%)

Sharpening

(%)

Lena The proposed

scheme

85.7 90.5 99.8

[1] 83.4 88.0 99.8

[2] 76.6 83.1 99.7

Baboon The proposed

scheme

95.3 93.2 99.0

[1] 95.0 92.4 98.6

[2] 94.8 91.8 98.2

F16 The proposed

scheme

83.3 88.3 99.1

[1] 82.4 87.5 99.1

[2] 82.1 87.2 99.0

Fishing

Boat

The proposed

scheme

87.6 87.2 98.6

[1] 86.7 86.1 98.4

[2] 86.3 85.4 98.3

Pentagon The proposed

scheme

89.6 87.8 97.6

[1] 88.9 87.2 96.4

[2] 88.7 86.8 95.9

Peppers The proposed

scheme

76.0 81.6 97.5

[1] 75.4 80.7 96.9

[2] 75.2 80.3 96.6

The results shown in the table are percentage of survival watermark

bits after three image processing operations were applied on water-

marked test images

Table 2 Performance of the proposed method comparing to [1] and

[2]

Watermarking

scheme

Statistical

indicator

JPEG

(Q = 30)

Gaussian

filtering

Sharpening

The proposed

scheme

Mean 87.8 % 86.5 % 98.6 %

Variance 11.6 13.3 0.71

[1] Mean 85.1 % 83.7 % 96.9 %

Variance 11.4 12.5 0.92

[2] Mean 86.2 % 85.8 % 97.4 %

Variance 12.0 12.8 0.78

The results shown in the table are mean and variance of percentage of

survival watermark bits after three image processing operations were

applied on 100 watermarked test images

Fig. 6 The watermarked image with PSNR = 44.6, obtained with the

proposed CCGA watermarking scheme
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approaches are also provided. Because the experimental

results may be different while genetic algorithm are used

for watermark embedding, the results used in comparison

are all from the original articles. In order to demonstrate

the best PSNR that can be achieved by the proposed

method, the PSNR values of the watermarked images while

n is assigned to 2 and d ¼ 1 is assigned to 1 are also

provided. As shown in Table 3, watermarks embedded by

the proposed scheme would survive even the JPEG com-

pression quality factor (Q) is assigned to 15. Thus, it can be

claimed that for specific image processing methods, the

proposed method can select a best WPT basis and subbands

to increase watermark robustness. Furthermore, image

fidelity and watermark robustness could be adjusted with

parameter n and d, so the proposed scheme are also

flexible.

4 Conclusion

Embedding watermarks into images can be referred to as

an optimization problem. Therefore, cooperative coevalu-

tionary genetic algorithm is used to solving this problem in

this paper. The cooperative coevolutionary genetic algo-

rithm would select an appropriate basis from permissible

bases of wavelet packet transform and select proper sub-

bands for watermark embedding. Experimental results

demonstrate that proposed method increase the capability

to resist specific image processing methods while keeping

quality of the watermarked image acceptable. Moreover,

the architecture of cooperative coevalutionary genetic

algorithm is particularly suitable in distributed computing

environment. This characteristic would make genetic

watermarking schemes more applicable in real-world

applications.
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