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Abstract In this paper, a feedback controller is proposed

for the synchronization of memristive competitive neural

networks with different time scales. By constructing a

proper Lyapunov–Krasovskii functional, as well as

employing differential inclusions theory, a feedback con-

troller is designed to achieve the asymptotical synchroni-

zation of coupled competitive neural networks. The

proposed synchronization algorithm is simple and can be

easily realized. A simulation example is given to show the

effectiveness of the theoretical results.

Keywords Memristor � Competitive neural network �
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1 Introduction

As a contraction of memory and resistor, memristor was

introduced by Prof. Chua in 1971 [1]. He reasoned that the

memristor was a similarly fundamental device for provid-

ing conceptual symmetry with resistor, inductor and

capacitor. In 2008, the Hewlett-Packard Laboratory team

announced they invented a practical memristor device in

Nature [2, 3].

The memristor’s memory characteristic and nanometer

dimensions attracted much attention. Currently, many

researchers attempt to build an electronic intelligence that

can mimic the awesome power of a brain by mean of the

crucial electronic components—memristors [2–10]. From

the previous work, it can be see that the memristor exhibits

features just as the neurons in the human brain have.

Because of this feature, we can apply this device to build a

new model of neural networks to emulate the human brain,

and its potential applications are in next generation com-

puters and powerful brain-like neural computers.

There are some existing works about the memristor-

based nonlinear circuit networks [6–10] and neural net-

works [11–16]. Since Meyer-Bäse et al. proposed the

competitive neural networks with different time scales in

[17]. The synchronization problems of competitive neural

networks have been intensively investigated [20–24].

However, so far, there are very few works dealing with

the synchronization control of the memristor-based com-

petitive neural networks. Motivated by the above discus-

sions, in this paper, we propose the memristor-based

competitive neural networks with different time scales as

follows:

STM : e _xiðtÞ ¼ �xiðtÞ þ
Xn

j¼1

aijðxiÞfjðxjðtÞÞ

þ
Xn

j¼1

bijðxiÞfjðxjðt � sðtÞÞÞ þ HisiðtÞ;

j ¼ 1; 2; . . .; n;

LTM : _siðtÞ ¼ siðtÞ þ fiðxiðtÞÞ; i ¼ 1; 2; . . .; n;

ð1Þ

where aij represent the connection weight between the ith

neuron and the jth neuron; bij denote the synaptic weight of

delayed feedback.

aijðxiÞ ¼ aijðxiðtÞÞ ¼
âij; jxiðtÞj[ Ti;

b
^

ij; jxiðtÞj �Ti;

(

bijðxiÞ ¼ bijðxiðtÞÞ ¼
b̂ij; jxiðtÞj[ Ti;

b
^

ij; jxiðtÞj �Ti;

(
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in which switching jumps Ti [ 0; âij; �aij; b̂ij; �bij are all

constant numbers and sðtÞ corresponds to the transmission

time-varying delay and satisfies 0� sðtÞ� s. Where e [ 0

is the time scale of STM state; n denotes the number of

neurons. xðtÞ ¼ x1ðtÞ; x2ðtÞ; . . .; xnðtÞð ÞT ; xiðtÞ is the neuron

current activity level. fjðxjðtÞÞ is the output of neurons,

f ðyðtÞÞ ¼ f1ðx1ðtÞÞ; f2ðx2ðtÞÞ; . . .; fnðxnðtÞÞð ÞT : siðtÞ is the

synaptic efficiency, sðtÞ ¼ ðs1ðtÞ; s2ðtÞ; . . .; snðtÞÞT . Hi is

the strength of the external stimulus.

Remark 1 The memristive competitive neural network

model (1) is basically a state-dependent nonlinear switch-

ing dynamical system, which is a general class of com-

petitive neural network.

2 Preliminaries

Throughout this paper, solutions of all the systems con-

sidered in the following are intended in the Filippovs sense

[25]. Rn and Rn�n denote the n-dimensional Euclidean

space and the set of all n� n real matrices, respectively.

P [ 0 means that is a real positive definite matrix. ½�; ��
represents the interval. In Banach space of all continuous

functions Cð½�s; 0�;RnÞ equipped with the norm defined by

k/k ¼ sup�s� t� 0

Pn
i¼1 j/iðtÞj2

h i1=2

for all / ¼ ð/1ðtÞ;
/2ðtÞ; . . .;/nðtÞÞ 2 Cð½�s; 0�;RnÞ; co½ai; �ai� denotes the

convex hull. For vector xðtÞ ¼ x1ðtÞ; x2ðtÞ; . . .; xnðtÞð ÞT2
Rn; kxk denotes the Euclidean vector norm,

kxk ¼
Pn

i¼1 j/iðtÞj2
h i1=2

.

Definition 1 Let E � Rn; x 7!FðxÞ be called a set-valued

map from E,!Rn, if to each point x of a set E � Rn, there

corresponds a nonempty set FðxÞ � Rn.

Definition 2 For the system dx
dt
¼ gðxÞ; x 2 Rn , with

discontinuous right-hand sides, a set-valued map is defined

as

/ðxÞ ¼
\

d [ 0

\

lðNÞ¼0

co½gðBðx; dÞÞ n N�

where co½E� is the closure of the convex hull of set

E; Bðx; dÞ ¼ fy : ky� xk� dg and lðNÞ is a Lebesgue

measure of set N. A solution in Filippovs sense [25] of the

Cauchy problem for this system with initial condition

xð0Þ ¼ x0 is an absolutely continuous function

xðtÞ; t 2 ½0; T�, which satisfies xð0Þ ¼ x0 and the differen-

tial inclusion:

dx

dt
2 /ðxÞ; for a.e. t 2 ½0; T �:

By applying the theories of set-valued maps and differen-

tial inclusions above, the memristor-based neural network

(1) can be written as the following differential inclusion:

STM : e _xiðtÞ 2 �xiðtÞ þ
Xn

j¼1

co½aij; �aij�fjðxjðtÞÞ

þ
Xn

j¼1

co½bij; �bij�fjðxjðt � sðtÞÞÞ þ HisiðtÞ;

LTM : _siðtÞ ¼ �siðtÞ þ fiðxiðtÞÞ; i ¼ 1; 2; . . .; n;

ð2Þ

where �aij ¼ max âij; �aij

� �
; aij ¼ min âij; �aij

� �
; �bij ¼ max

b̂ij; �bij

� �
; bij ¼ min b̂ij; �bij

� �
. And from [25–27], there exist

~aij 2 co½�aij; âij�; ~bij 2 co½�bij; b̂ij�, such that

STM : e _xiðtÞ ¼ �xiðtÞ þ
Xn

j¼1

~aijfjðxjðtÞÞ

þ
Xn

j¼1

~bijfjðxjðt � sðtÞÞÞ þ HisiðtÞ;

LTM : _siðtÞ ¼ �siðtÞ þ fiðxiðtÞÞ; i ¼ 1; 2; . . .; n:

ð3Þ

Throughout this paper, we consider system (2) or (3) as the

drive system and corresponding response system are as

follows:

STM : e _yiðtÞ 2 �yiðtÞ þ
Xn

j¼1

co½aij; �aij�fjðyjðtÞÞ

þ
Xn

j¼1

co½bij; �bij�fjðyjðt � sðtÞÞÞ þ HiriðtÞ þ uiðtÞ;

LTM : _riðtÞ ¼ �riðtÞ þ fiðyiðtÞÞ; i ¼ 1; 2; . . .; n:

ð4Þ

or equivalently, there exist ~aij 2 co½�aij; âij�; ~bij 2 co½�bij; b̂ij�,
such that

STM : e _yiðtÞ ¼ �yiðtÞ þ
Xn

j¼1

~aijfjðyjðtÞÞ

þ
Xn

j¼1

~bijfjðyjðt � sðtÞÞÞ þ HiriðtÞ þ uiðtÞ;

LTM : _riðtÞ ¼ �riðtÞ þ fiðyiðtÞÞ; i ¼ 1; 2; . . .; n:

ð5Þ

where yðtÞ 2 Rn is the state vector of the response system,

uðtÞ is the control input to be designed.

Let the error eðtÞ ¼ yðtÞ � xðtÞ and hðtÞ ¼ rðtÞ � sðtÞ,
then the error system is given as follows:

STM : e _eiðtÞ 2 �eiðtÞ þ
Xn

j¼1

co½aij; �aij�gjðejðtÞÞ

þ
Xn

j¼1

co½bij; �bij�gjðejðt � sðtÞÞÞ þ HihiðtÞ þ uiðtÞ;

LTM : _hiðtÞ ¼ �hiðtÞ þ giðeiðtÞÞ; i ¼ 1; 2; . . .; n;

ð6Þ
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or equivalently, there exist ~aij 2 co½�aij; âij�; ~bij 2 co½�bij; b̂ij�,
such that

STM : e _eiðtÞ ¼ �eiðtÞ þ
Xn

j¼1

~aijgjðejðtÞÞ

þ
Xn

j¼1

~bijgjðejðt � sðtÞÞÞ þ HihiðtÞ þ uiðtÞ;

LTM : _hiðtÞ ¼ �hiðtÞ þ giðeiðtÞÞ; i ¼ 1; 2; . . .; n;

ð7Þ

where gðeðtÞÞ ¼ f ðyðtÞÞ � f ðxðtÞÞ; gðeðt � sðtÞÞÞ ¼ f ðyðt�
sðtÞÞÞ � f ðxðt � sðtÞÞÞ.

In our paper, the control inputs in the response system

(4) or (5) are taken as follows:

uðtÞ ¼ K1eðt; xÞ þ K2eðt � sðtÞÞ; ð8Þ

where K1 and K2 are the controller gains to be determined.

Definition 3 The trivial solution of system (6) or (7) is

said to be globally asymptotically stable if for any given

initial conditions they satisfy:

lim
t!1
keðtÞk2 ¼ 0; lim

t!1
khðtÞk2 ¼ 0:

Throughout this paper, we make the following

assumptions.

Assumption 1 There exists a diagonal matrix

L ¼ diagðl1; l2; . . .; lnÞ, satisfying

0� fjðuÞ � fjðvÞ
u� v

� lj;

for all u; v 2 R; j ¼ 1; 2; . . .; n:

Assumption 2 There exist positive constants s; c such that

0\sðtÞ� s; _sðtÞ� c\1:

Lemma 1 For any vector x; y 2 Rn and a positive con-

stant a, the following matrix inequality holds

2xT y� axT xþ a�1yT y:

3 Main results

Theorem 1 Under Assumptions 1–2, the two coupled

delayed neural networks (2) and (4) or (3) and (5) can be

synchronized with control inputs (8), if there exist con-

stants r1; r2; r3; r4 [ 0, diagonal matrix Q [ 0 and K1;K2

such that

T [ 0;

where T ¼ 2
e I � 2

e K1 � r1

e ð~BLÞTð~BLÞ � Q� 2
e

~AL� r2

e HT H

� r3

e KT
2 K2 � r4

e LT L:

Proof Consider the following Lyapunov–Krasovskii

function for system (7) as

Vðt; eðtÞÞ ¼ eTðtÞeðtÞ þ hTðtÞhðtÞ þ
Z t

t�sðtÞ

eTðsÞQeðsÞds:

ð9Þ

Then, it follows from (6) to (7) and assumption 2 that

_Vðt; eðtÞÞ� 2eTðtÞ 1
e
�eðtÞ þ ~AgðeðtÞÞ þ ~Bgðeðt � sðtÞÞÞ
�

þHhðtÞ þ K1eðtÞ þ K2eðt � sðtÞÞ�

þ 2hTðtÞ �hðtÞ þ gðeðtÞÞ½ �

þ eTðtÞQeðtÞ � ð1� cÞeTðt � sðtÞÞQeðt � sðtÞÞ

¼ � 2

e
eTðtÞeðtÞ þ 2

e
eTðtÞ~AgðeðtÞÞ

þ 2

e
eTðtÞ~Bgðeðt � sðtÞÞÞ þ 2

e
eTðtÞHhðtÞ

þ 2

e
eTðtÞK1eðtÞ þ 2

e
eTðtÞK2eðt � sðtÞÞ

� 2hTðtÞhðtÞ þ 2hTðtÞgðeðtÞÞ þ eTðtÞQeðtÞ

� ð1� cÞeTðt � sðtÞÞQeðt � sðtÞÞ:
ð10Þ

By Assumption 1 and Lemma 1, it can be seen that there

exist positive scalars r1; r2; r3; r4 [ 0, it follows

eTðtÞ~AgðeðtÞÞ� eTðtÞ~ALeðtÞ; ð11Þ

2eTðtÞ~Bgðeðt � sðtÞÞÞ� 1

r1

eTðt � sðtÞÞeðt � sðtÞÞ

þ r1eTðtÞð~BLÞTð~BLÞeðtÞ;
ð12Þ

2eTðtÞHhðtÞ� r2eTðtÞHT HeðtÞ þ 1

r2

hTðtÞhðtÞ; ð13Þ

2eTðtÞK2eðt � sðtÞÞ� r3eTðtÞKT
2 K2eðtÞ

þ 1

r3

eTðt � sðtÞÞeðt � sðtÞÞ;
ð14Þ

2hTðtÞgðeðtÞÞ� 1

r4

hTðtÞhðtÞ þ r4eTðtÞLT LeðtÞ: ð15Þ

Substituting (11)–(15) into (10) we have
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_Vðt; eðtÞÞ� � eTðtÞ 2I

e
� 2

e
K1 �

r1

e
ð~BLÞTð~BLÞ � Q� 2

e
~AL

�

� r2

e
HT H � r3

e
KT

2 K2 �
r4

e
LT L

i
eðtÞ

þ eTðt � sðtÞÞ I

er1

þ I

er3

� ð1� cÞQ
� �

eðt � sðtÞÞ

þ hTðtÞ �2I þ 1

er2

þ 1

r4

� �
hðtÞ;

ð16Þ

where I is the identity matrix of appropriate dimension.

It is easy to know that there are real numbers r2 and r4

such that

I

er2

þ I

r4

� 2\0: ð17Þ

Letting

ð1� cÞQ ¼ I

er1

þ I

er3

k ¼ min kminðTÞ; 2�
1

er2

� 1

r4

� �
:

ð18Þ

From (16)–(18), it can be seen that

_Vðt; eðtÞÞ� � kðkeðtÞk2 þ khðtÞk2Þ: ð19Þ

Moreover, in (19), the equality holds if and only if

keðtÞk2 þ khðtÞk2 ¼ 0, i.e.,keðtÞk2 ¼ 0 and khðtÞk2 ¼ 0. It

can be concluded from Lyapunov stability theory that

lim
t!1
keðtÞk2 ¼ 0; lim

t!1
khðtÞk2 ¼ 0:

According to Definition 3, the trivial solution of system (8) or

(9) is globally asymptotically stable. We can conclude that the

neural networks (4) and (6) or (5) and (7) can be synchronized

with control inputs (10). The proof is complete.

Remark 2 When system (1) does not exhibit memristive,

system (1) is a continuous system without switching

jumps, Theorem 1 in this paper is similar to of Theorem 1

in [22–24].

Corollary 1 Under assumptions 1–2, when sðtÞ ¼ s[ 0;

systems (2) and (4) or (3) and (5) can be synchronized with

control inputs (8), if there exist constants r1; r2; r3; r4 [ 0,

diagonal matrix Q [ 0 and K1;K2 such that

T [ 0;

where T ¼ 2
e I � 2

e K1 � r1

e ð~BLÞTð~BLÞ � Q� 2
e

~AL� r2

e HT H

� r3

e KT
2 K2 � r4

e LT L:

Proof We can obtain Corollary 1 directly from Theo-

rem 1 by taking Q ¼ I
er1
þ I

er3
.

4 Numerical example

In the following, we give some numerical simulations to

illustrate the results above. Consider the following memr-

istor-based competitive neural networks with different time

scales:

STM : e _xiðtÞ ¼ �xiðtÞ þ
Xn

j¼1

aijðxiÞfjðxjðtÞÞ

þ
Xn

j¼1

bijðxiÞfjðxjðt � sðtÞÞÞ þ HisiðtÞ; j ¼ 1; 2;

LTM : _siðtÞ ¼ �siðtÞ þ fiðxiðtÞÞ; i ¼ 1; 2;

ð20Þ

let e ¼ 0:8; sðtÞ ¼ 0:5 sin tj j; f ðxðtÞÞ ¼ tanhðxðtÞÞ; H1 ¼
1:6; H2 ¼ 0:3, with initial values with initial values

x1ðhÞ ¼ �0:4; x2ðhÞ ¼ 0:5; s1ðhÞ ¼
0:5; s2ðhÞ ¼ �0:3; 8h 2 ½�0:5; 0�.

a11ðx1Þ ¼
2:5; x1j j[ 1;

2:0; x1j j � 1;

�
; a12ðx1Þ ¼

�0:1; x1j j[ 1;

�0:05; x1j j � 1;

�
;

a21ðx2Þ ¼
�0:15; x2j j[ 1;

�0:1; x2j j � 1;

�
;

a22ðx2Þ ¼
3:5; x2j j[ 1;

3:0; x2j j � 1;

�
; b11ðy1Þ ¼

�2:0; y1j j[ 1;

�1:5; y1j j � 1;

�
;

b12ðy1Þ ¼
�0:5; y1j j[ 1;

�0:3; y1j j � 1;

�
;

b21ðy2Þ ¼
�0:3; y2j j[ 1;

�0:2; y2j j � 1;

�
; b22ðy2Þ ¼

�2:0; y2j j[ 1;

�1:5; y2j j � 1;

8
><

>:
:

STM : e _yiðtÞ ¼ �yiðtÞ þ
Xn

j¼1

~aijfjðyjðtÞÞ

þ
Xn

j¼1

~bijfjðyjðt � sðtÞÞÞ þ HiriðtÞ þ uiðtÞ;

LTM : _riðtÞ ¼ �biriðtÞ þ fiðyiðtÞÞ; i ¼ 1; 2; . . .; n:

ð21Þ

with initial values y1ðhÞ ¼ 0:3; y2ðhÞ ¼ �0:5; r1ðhÞ ¼

0:2; r2ðhÞ ¼ �0:6; 8h 2 ½�0:5; 0�; uðtÞ ¼ K1eðt; xÞ þ

K2eðt � sðtÞÞ; K1 ¼
�1 0

0 � 1

	 

; K2 ¼

1 0

0 1

	 

.

Figure 1a–d depicts the synchronization errors of state

variables between drive and response systems. According

to Theorem 1, the response system and the drive system

with the controller uðtÞ can be globally asymptotically

synchronized.
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5 Conclusions

The memory property of memristor enables us to build a

new model of competitive neural networks with different

time scales. By constructing a proper Lyapunov–Krasov-

skii functional, as well as employing differential inclusions

theory, a feedback controller is designed to achieve the

asymptotical synchronization of coupled competitive neu-

ral networks. The proposed synchronization algorithm is

simple and can be easily realized. A simulation example is

given to show the effectiveness of the theoretical results.
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17. Meyer-Bäse A, Ohl F, Scheich H (1996) Singular perturbation

analysis of competitive neural networks with different time

scales. Neural Comput 8:1731–1742

18. Wang G, Shen Y (2013) Exponential synchronization of coupled

memristive neural networks with time delays. Neural Comput

Appl. doi:10.1007/s00521-013-1349-3

19. Zhang GD, Shen Y (2013) New algebraic criteria for synchro-

nization stability of chaotic memristive neural networks with

time-varying delays. IEEE Trans Neural Netw Learn Syst

24:1701–1707
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