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Abstract In this paper, we proposed a linear discriminant

approach, namely global–local Fisher discriminant analysis

(GLFDA) that explicitly considers both the local and glo-

bal discriminant structures embedded in data. To be spe-

cific, GLFDA constructs two graphs to, respectively, model

the global and local discriminant structures and then

incorporates discriminant structures and local intrinsic

structure, which characterizes the within-class compact-

ness, into the objective function for dimensionality reduc-

tion. Thus, GLFDA well encodes the discriminant

information, especially the local discriminant information

of data. Experimental results on AR, YALE, and UMIST

databases show the effectiveness of the proposed

algorithm.

Keywords Manifold learning � Discriminant analysis �
Global and local geometrical structures � Face recognition

1 Introduction

Many previous works have demonstrated that manifold

learning can effectively improve the image recognition

accuracy [1–6]. Manifold learning technique constructs an

adjacency graph over the training data to model the geo-

metrical relationship of data and maps nearby data points in

the high-dimensional data space to nearby data in the

reduced space. It intuitively preserves the intrinsic structure

of data and has been widely used in image recognition,

clustering, image retrieval, and data classification. Locality

Preserving Projection (LPP) [1, 7] is one of the prevalent

approaches and has proven its effectiveness in face rec-

ognition, document clustering, and image retrieval. How-

ever, LPP neglects the label of samples when learning the

intrinsic structure of data. This may impair the recognition

accuracy.

Motivated by LPP and linear discriminant analysis

(LDA) [8], many discriminant approaches based on mani-

fold learning have been developed for linear dimensional-

ity reduction [9–14], among which the representative

approaches are Marginal Fisher Analysis (MFA) [2], Local

Discriminant Embedding (LDE) [9], Local Fisher Dis-

criminant Analysis (LFDA) [11, 12]. MFA, LFDA, and

LDE represent the intraclass compactness by LPP [7]

which maps nearby data points in the observed data space

to nearby data with the low-dimensional representation.

Different from MFA and LDE, which represent the

between-class separability by maximizing the sum of dis-

tances among nearby data with different labels and char-

acterize the local discriminant structure of data, LFDA

represents the interclass separability by maximizing the

sum of distances of data from different classes and detects

the global discriminant structure of data. Moreover, the

data pairs with large distance will dominate the global

discriminant structure of data. This may impair the local

discriminant structure.

Although the motivations of the above-mentioned dis-

criminant approaches are different, they can be unified

within the Graph Embedding Framework (GEF) that was

proposed by Yan et al. [2]. GEF constructs two adjacency

graphs, namely intrinsic graph and penalty graph, to

model the intrinsic geometric structure and discriminant
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geometric structure of the data, respectively. However,

GEF only considers the local or global discriminant

structure of data and does not simultaneously consider

them for dimensionality reduction. In real cases, the

intrinsic structure of data is unknown and complex, and

testing data are usually different from the training data due

to many factors. Thus, only local or global discriminant

structure of data is not sufficient to guarantee the recog-

nition accuracy [3, 15–17]. It indicates that the recognition

accuracy of above-mentioned discriminant approaches is

not good enough on testing data.

In this paper, motivated by [17], we propose a novel

discriminant approach, namely global–local Fisher dis-

criminate analysis (GLFDA), for dimensionality reduction.

To be specific, GLFDA constructs two adjacency graphs to

model the local intrinsic geometric structure and discrim-

inant geometric structure of data, respectively, and then

integrates the global discriminant structure that is learned

by LDA, local discriminant structure and intrinsic structure

into the objective function of dimensionality reduction.

Experimental results on AR, YALE, and UMIST databases

demonstrate the effectiveness of the proposed approach.

The rest of the paper is organized as follows. Section 2

introduces our GLFDA approach. Section 3 provides some

experimental results. We conclude the paper in Sect. 4.

2 Global–local fisher discriminant analysis

2.1 Motivation

According to above-mentioned analysis, graph embedding

framework only encodes the local or global discriminating

information, which will reduce the flexible of the algorithm

and impair the recognition accuracy. In this section, we

learn a novel dimensionality reduction approach, namely

GLFDA, which explicitly considers both the global and

local discriminating information of data. To be specific, we

construct three adjacency graphs, namely intrinsic graph,

global penalty graph, and local penalty graph, to model the

intrinsic and discriminant geometrical structures of the data

manifold. The global penalty graph encodes the global

discriminating information of data and maps the large

distance pairs from different classes to be faraway in the

reduced space. The local penalty graph encodes the local

discriminating information and maps nearby points from

different classes to be faraway in the reduced space. Thus,

the discriminant structure of data can be effectively char-

acterized by local and global penalty graph. The intrinsic

graph maps nearby data points from the same class to

nearby points with the low-dimensional representation. In

the following section, we first describe the intrinsic graph

of data.

2.2 Intrinsic graph

Suppose, we have a set of p-dimensional samples

X = {x1, x2, ���, xn}, belonging to C classes. We construct

an adjacency graph Gw ¼ X;Wf g, namely intrinsic graph,

with a vertex set X and weight matrix W to learn the

similarity of data from the same class, which characterizes

the intrinsic structure. The elements Wij in W are defined as

follows:

Wij ¼
Aij=nc; if si ¼ sj ¼ c;
0; if si 6¼ sj

�
ð1Þ

where the elements Aij are 1 if xj is the k1-nearest neighbor

of xi or vice versa; otherwise Aij = 0, nc denotes the

number of samples in class c, si, and sj denote the class

label of data xi and xj, respectively.

Intrinsic graph aims to map nearby data points from the

same class in the observed space to nearby data in the

reduced space. As it happens, a reasonable criterion for

choosing a good map is to optimize the following objective

function

min
X

ij

ðyi � yjÞ2Wij ð2Þ

where yi = aTxi denotes the one-dimensional representa-

tion of xi, a is the transformation vector.

The objective function (2) with our choice of symmetric

weight matrix Wij incurs a heavy penalty, if nearby points

xi and xj, which are close or very close to each other and

share the same label, are mapped far apart. Therefore,

minimizing Eq. (2) is an attempt to ensure that if xi and xj

are close, then yi and yj are also close. Thus, the intrinsic

structure of the data manifold, which characterizes the

similarity of data, is well preserved by Eq. (2).

2.3 Local penalty graph

Likewise, we construct an adjacency graph GB = {X, B},

namely local penalty graph, with a vertex set X and weight

matrix B to encode the discriminating information

embedded in nearby data from different classes. The ele-

ments Bij in B can be defined as follows:

Bij ¼
1

nc

if xi 2 Nk2
xj

� �
or xj 2 Nk2

xið Þ and si 6¼ sj

0 else
;

(

ð3Þ

where Nk2
xið Þ denotes the set of k2 nearest neighbors of xi.

Local penalty aims to find a map so that the connected

data in the adjacency graph GB stay as distant as possible.

Suppose yi is a map of training data xi (i = 1, 2, ���, n), a

reasonable map is to optimize the following objective

function:
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max
X

ij

ðyi � yjÞ2Bij ð4Þ

The objective function (4) on the graph GB incurs a

heavy penalty if nearby two points xi and xj are mapped

close together while they actually belong to different

classes. So, maximizing Eq. (4) is an attempt to ensure that

if xi and xj are close but have different labels, then yi and yj

are also far apart. Thus, we can well detect the local dis-

criminant geometrical structure of data by Eq. (4) which

encodes the local discriminating information.

Obviously, the objective function (4) does not explicitly

consider the data points which are not in the local neigh-

borhood and have different labels. In other words, these

data points may be mapped to be close to each other in the

reduced space. This impairs the global discriminant struc-

ture of data, resulting in not better recognition accuracy for

the algorithm. In Sect. 2.4, we construct a global graph,

namely global penalty graph, to address this problem.

2.4 Global penalty graph

Motivated by Fisher discriminant analysis, we construct a

global graph, namely global penalty graph, Gg = {X, F}

with a vertex set X and weight matrix F to model the global

discriminant structure that encodes the global discrimi-

nating information of data. The elements Fij in F can be

defined as follows:

Fij ¼
1=n; if si 6¼ sj

0; Otherwise

�
ð5Þ

The global penalty graph seeks to find a map so that the

data points, which have different labels, can be mapped to

be faraway in the reduced space. Suppose yi is a map of

training data xi (i = 1, 2, ���, n), a reasonable map is to

optimize the following objective function:

max
X

ij

ðyi � yjÞ2Fij ð6Þ

The objective function (6) on the graph Gg incurs a

heavy penalty if two points xi and xj are mapped close

together while they actually belong to different classes. So,

maximizing Eq. (6) is an attempt to ensure that if xi and xj

have different labels, then yi and yj are far apart. Thus, we

can well detect the global discriminant geometrical struc-

ture of data by Eq. (6).

Moreover, the objective function (6) emphasizes the

large distance pairs and guarantees that the larger the dis-

tance between two data points is, the farther they are

embedded in the reduced space. It means that Eq. (6) maps

data points, which are in the un-local neighborhoods and

have different labels, to be still distant in the reduced space.

This effectively avoids the disadvantage caused by Eq. (4).

2.5 Objective function

In this section, we describe the GLFDA approach that

solves the objective functions (2), (4), and (6). Suppose a is

a projection vector, substituting yi = aTxi into the objective

function (2), and following some simple algebraic steps,

we can see thatX
ij

ðyi � yjÞ2Wij ¼
X

ij

ðaT xi � aT xjÞ2Wij

¼ 2aT
X

j

xix
T
i Wii �

X
ij

xix
T
j Wij

 !
a

¼ 2aT XðDw �WÞXTa

¼ 2aT XLwXTa

ð7Þ

where Lw = Dw - W, Dw is a diagonal matrix whose

entries are column (or row, since W is symmetric) sum of

W, i.e., Dw(i, i) =
P

jWij.

Substituting yi = aTxi into the objective function (4), we

see thatX
ij

ðyi � yjÞ2Bij ¼
X

ij

ðaT xi � aT xjÞ2Bij

¼ 2aT
X

j

xix
T
i Bii �

X
ij

xix
T
j Bij

 !
a

¼ 2aT XðDb � BÞXTa

¼ 2aT XLbXTa

ð8Þ

where Lb = Db - B, Db is a diagonal matrix whose entries

are column (or row, since B is symmetric) sum of B, i.e.,

Db(i, i) =
P

jBij.

Likewise, substituting yi = aTxi into the objective

function (6), we see thatX
ij

ðyi � yjÞ2Fij ¼
X

ij

ðaT xi � aT xjÞ2Fij

¼ 2aT
X

j

xix
T
i Fii �

X
ij

xix
T
j Fij

 !
a

¼ 2aT XðDf � FÞXTa

¼ 2aT XLf X
Ta

ð9Þ

where Lf = Df - F, Df is a diagonal matrix whose entries

are column (or row, since F is symmetric) sum of F, i.e.,

Df(i, i) =
P

jFij.

Substituting Eqs. (7), (8), and (9) into Eqs. (2), (4),

and (6), respectively, we have several ways to build the

objective function of GLFDA by integrating Eqs. (2),

(4), and (6). The representative one is the Rayleigh

quotients form that is formally similar to LDA [8]. Thus,

we can write the objective function of GLFDA as

follows:
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arg max
a

aT Sb � t þ Sf 1� tð Þ
� �

a

aT Swa
ð10Þ

where t 2 [0, 1] is a parameter and balances the global and

local discriminant information of data. Sb = XLbXT is the

global between-class scatter matrix, Sf = XLfX
T is the local

between-class scatter matrix, and Sw = XLwXT is the local

within-class scatter matrix.

The optimal projection vector a that maximizes Eq. (10)

is given by the maximum eigenvalue solution to the gen-

eralized eigenvalue problem:

t � Sb þ 1� tð ÞSf

� �
a ¼ kSwa ð11Þ

Let the column vector a1, a2, ���, ad be the solution of

(11), ordered according to its eigenvalues, k1 C k2 C ���
C kd [ 0, then the projection matrix P can be written as

P = [a1, a2, ���, ad].

Note that, in face recognition, Sw is singular, and the

optimal projection matrix is not directly calculated from

Eq. (11). In this case, many approaches have been devel-

oped to solve the optimal projection vector a. In the

experiments, we simply choose the same way as in Fish-

erface [8] for its simplicity, i.e., PCA is first used to reduce

dimension such that XLwX is nonsingular, then solving the

Eq. (11) in the PCA space.

2.6 Algorithm

Given training data set X = [x1x2���xn] including C classes.

The algorithmic procedure of GLFDA is summarized as

follows.

2.6.1 Construct intrinsic and penalty graphs

Suppose that Gw = {X, W}, GB ¼ X;Bf g, and Gg ¼
X;Ff g denote local intrinsic graph, local penalty graph,

and global penalty graph, respectively. The weighted

matrices W, B, and F are calculated by Eqs. (1), (3), and

(5), respectively.

2.6.2 Calculate scatter matrices

In this step, we calculate scatter matrices Sw, Sb, and Sf by

Eqs. (7), (8), and (9), respectively.

2.6.3 PCA projection

In this step, we project the data points xi (i = 1, ���, n) into

the PCA subspace. Suppose that the projection matrix of

PCA is WPCA 2 Rp9l, whose columns consist of the

l leading eigenvectors of the covariance matrix of data;

the scatter matrixes Sw, Sb, and Sf become
~Sw ¼ WT

PCAXLwXT WPCA, ~Sb ¼ WT
PCAXLbXT WPCA, and

~Sf ¼ WT
PCAXLf X

T WPCA, respectively, after PCA projection.

Fig. 1 Some images of one subject from the Yale database

Table 1 The top recognition accuracies (%) of the six approaches

and the corresponding number of features on the Yale database

(shown in parentheses)

Training/

testing

numbers

Fisherface DLA LFDA MFA SDA GLFDA

45/120 61.67

(6)

66.67

(15)

70.00

(14)

65.83

(8)

65.00

(14)

72.50

(13)

90/75 77.33

(8)

73.33

(13)

81.33

(10)

77.33

(8)

77.33

(9)

84.00

(34)

135/30 93.33

(12)

96.67

(13)

96.67

(12)

96.67

(18)

96.67

(11)

100.00

(57)
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Fig. 2 The recognition accuracy versus number of projection vector

on the YALE database
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2.7 Compute the projection matrix

Solve the following generalized eigenvector problem:

t � ~Sb þ 1� tð Þ~Sf

� �
a ¼ k~Swa

Let a1, a2, ���, ad be the solutions of the above equa-

tion, ordered according to their eigenvalues, k1 C k2

C ��� C kd. Thus, the projection matrix of GLFDA is

PS = [a1a2_ad].

2.7.1 Linear embedding

In this step, we compute the linear projections. Given an

arbitrary training vector xi, the linear embedding is as

follows:

xi ! yi ¼ PT xi

P ¼ WPCAPS

3 Experiments

In this section, we evaluate the proposed approach on three

well-known face databases (YALE, UMIST, and AR), and

compare its performance with Fisherface [8], MFA [2],

SDA [17], DLA [18], and LFDA [11]. In the experiments,

we use Euclidean metric and nearest classifier for classi-

fication due to the simplicity. In real cases, it is very dif-

ficult to select a suitable neighbor parameter k for MFA,

LFDA, DLA, and GLFDA approaches due to the complex

distribution of training data. Note that the same problem is

often encountered in many manifold learning approaches.

In experiments, we empirically determined a proper

neighbor parameter k within the interval [1, n - 1] for all

approaches, where n denotes the number of training sam-

ples. The parameter t depends on the distribution of data. In

our approaches, we determined t as 0.5, 0.1, and 0.4 for

YALE, UMIST, and AR databases, respectively.

The Yale face database [19] contains 165 images of 15

individuals (each person providing 11 different images)

under various facial expressions and lighting conditions.

In our experiments, each image is manually cropped and

resized to 32 9 32 pixels. Figure 1 shows some images of

one person. In the experiments, the first 3, 6, and 9

images per person are selected for training, respectively,

and the corresponding rest images for testing. Thus, we

have three training sets that include 45, 90, and 135

images, and the corresponding three testing sets including

120, 75, and 30 images. The top recognition accuracies of

the six approaches are shown in Table 1. Figure 2 plots

the curve of recognition accuracy versus number of pro-

jection vectors when the first 6 images per person are

selected for training.

Fig. 3 Some sample images of one subject in the UMIST database

Table 2 The top classification accuracies (%) of the six approaches

and the corresponding number of dimensions on the UMIST database

(shown in parentheses)

Training/

testing

numbers

Fisherface DLA LFDA MFA SDA GLFDA

45/120 70.31

(15)

65.63

(15)

71.56

(15)

69.06

(8)

72.50

(15)

73.44

(15)

90/75 85.38

(9)

73.46

(7)

87.31

(11)

84.23

(13)

85.77

(8)

87.69

(11)

135/30 89.50

(7)

77.00

(13)

90.50

(7)

90.50

(8)

90.00

(7)

92.00

(7)
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Fig. 4 The recognition accuracy versus number of projection vector

on the UMIST database
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The UMIST database [20] is a multi-view database,

consisting of 564 images from 20 individuals under various

poses. Each image is of the 112 9 92 size. In the experi-

ments, the first 19 images per image are selected as gallery.

Figure 3 shows some images of one subject. In experi-

ments, the first 3, 6, and 9 images per person are, respec-

tively, selected as training images and the remaining

images for the corresponding testing images. Thus, we

have three training sets that include 60, 120, and 180

images, and the corresponding three testing sets including

320, 260, and 200 images, respectively. The top recogni-

tion accuracies of the six approaches are shown in Table 2.

Figure 4 plots the curve of the recognition accuracy versus

number of projection vectors of six approaches when the

first 3 images per person are selected for training.

The AR face database [21] is established by American

Purdue University, which contains over 4,000 color face

images of 126 people (70 men and 56 women) including

frontal views of faces with different facial expressions,

lighting conditions, and occlusions. The pictures of most

persons are taken in two sessions (separated by 2 weeks).

Each session contains 13 color images and 120 individuals

(65 men and 55 women) participate in both sessions. In the

experiments, the facial portion of each image is manually

cropped and then normalized to the size of 50 9 40. The

images from the first session with (a) ‘‘neutral expression’’,

(b) ‘‘smile’’, (c) ‘‘anger’’, (d) ‘‘scream’’, (e) ‘‘left light on’’,

(f) ‘‘right light on’’, and (g) ‘‘both side light on’’ are selected

for training, and the corresponding second session images,

i.e., from (n)–(t), are selected for testing. Thus, training set

and testing set both include 840 images. Figure 5 shows

some sample images of one subject. Table 3 lists the top

recognition accuracies of the six approaches. Figure 6 plots

the curve of the recognition accuracy versus number of

projection vectors of the six approaches.

From Tables 1, 2 and 3, Figs. 2, 4, and 6, we can see

that:

1. Our GLFDA approach is superior to Fisherface. This is

probably because that Fisherface does not well encode

the discriminative information embedded in nearby

data from different classes and also does not preserve

the local intrinsic geometrical structure embedded in

Fig. 5 Some sample images of one subject in the AR database

Table 3 The top classification accuracies (%) of the six approaches

and the corresponding number of dimensions on the AR database

(shown in parentheses)

Training/

testing

numbers

Fisherface DLA LFDA MFA SDA GLFDA

840/840 66.90

(66)

67.50

(66)

69.52

(119)

69.17

(125)

65.59

(72)

70.24

(124)
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Fig. 6 The recognition accuracy versus number of projection vector

on the AR database
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nearby data from the same class. This impairs the

recognition accuracy of the algorithm.

2. The top recognition accuracy of GLFDA is also

superior to MFA and DLA. This is probably because

that MFA and DLA only encode the discriminative

information embedded in the nearby data points from

different classes and do not explicitly consider the

global discriminative information embedded in data

points having different labels. This will impair the

recognition accuracy.

3. Global–local Fisher discriminant analysis is also supe-

rior to LFDA. This is probably due to the fact that

LFDA only well detects the global discriminant

structure, which maps data points from different classes

to be faraway in the reduced space by the quadratic

function. However, this quadratic function emphasizes

the large distance pairs and may impair the local

discriminant information of data. This leads to insep-

arability among nearby data from different classes.

4. SDA is inferior to GLFDA. Although SDA considers

both the global and local geometrical structures of

data, it ignores the local discriminant geometrical

structure. This may impair the local discriminating

information of data and lead to inseparability among

nearby data having different labels. In Fig. 4, the

recognition accuracy of GLFDA is not obvious better

than SDA. This is probably because that GLFDA

ignores the un-local intrinsic structure of data.

5. Global–local Fisher discriminant analysis is superior to

the other discriminant approaches. The reason is

probably because that the other discriminant

approaches only encode the global or local discrimi-

nant information of data. In real applications, the

intrinsic structure of data is unknown and complex,

only single structure is not suitable to guarantee the

discrimination ability in the reduced space. Different

from these approaches, GLFDA explicitly considers

both the global and local discriminant information of

data. Thus, GLFDA can well separate the data having

different class labels in the reduced space. We

randomly generate some two-dimensional data points

using MATLAB and show the projection directions of

GLFDA, Fisherface, and MFA in Fig. 7a. We show the

corresponding one-dimensional embedded results in

Fig. 7b–d, respectively. It is easy to see that GLFDA

well encodes the more discriminant information

embedded in data than Fisherface and MFA.

4 Conclusion

In this paper, we propose a novel dimensionality reduction

approach, namely GLFDA. GLFDA explicitly considers the

local intrinsic structure, global discriminant structure, and

local discriminant structure of the data manifold by con-

structing three adjacency graphs and then incorporates them

into one objective function for dimension reduction. In this

way, GLFDA well encodes the discriminative information.

Experiments on the YALE, UMIST, and AR databases

show the effectiveness of the proposed GLFDA approach.
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