
ORIGINAL ARTICLE

Convergence and stability analysis of a novel iteration method
for fractional biological population equation

Abdon Atangana

Received: 28 February 2014 / Accepted: 25 March 2014 / Published online: 13 April 2014

� Springer-Verlag London 2014

Abstract We put into action new analytical technique for

solving nonlinear fractional partial differential equations

arising in biological population dynamics system. We

present in details the stability, the convergence, and the

uniqueness analysis by constructing a suitable Hilbert

space. Some exact analytical solutions are given, and a

quantity of properties gives you an idea about signs of

biologically practical reliance on the parameter values. The

regularity of this course of action and the diminution in

computations confer a wider applicability. In all examples,

in the limit of infinitely, many terms of the series solution

yield the exact solution.

Keywords Iteration method � Fractional biological

population equation � Fractional derivative � Convergence

and uniqueness � Exact solutions

1 Introduction

In recent years, fractional calculus have been employed in

many areas such as electrical networks, control theory of

dynamical systems, probability and statistics, electro-

chemistry of corrosion, chemical physics, optics, engi-

neering, acoustics, viscoelasticity, material science, and

signal processing can be successfully modeled by linear or

nonlinear fractional order differential equations [1–9]. But

these nonlinear fractional differential equations are difficult

to get their exact solutions [10].

Late eighteenth-century biologists began to develop

techniques in population modeling in order to understand

the dynamics of growing and shrinking populations of

living organisms. Thomas Malthus was one of the first to

note that populations grew with a geometric pattern while

contemplating the fate of humankind [11]. One of the most

basic and milestone models of population growth was the

logistic model of population growth formulated by Pierre

Francois Verhulst in 1838. The logistic model takes the

shape of a sigmoid curve and describes the growth of a

population as exponential, followed by a decrease in

growth, and bound by a carrying capacity due to environ-

mental pressures [12]. Population modeling became of

particular interest to biologists in the twentieth century as

pressure on limited means of sustenance due to increasing

human populations in parts of Europe was noticed by

biologist such as Raymond Pearl. In 1921, Pearl invited

physicist Alfred J. Lotka to assist him in his laboratory.

Lotka developed paired differential equations that showed

the effect of a parasite on its prey. Mathematician Vivo

Volterra equated the relationship between two species

independent from Lotka. Together, Lotka and Volterra

formed the Lotka–Volterra model for competition that

applies the logistic equation to two species illustrating

competition, predation, and parasitism interactions

between species [3]. In 1939, contributions to population

modeling were given by Patrick Leslie as he began work in

biomathematics.

In this paper, we extend the make use of a modified

iteration method to the time-fractional biological popula-

tion model [13], and a representative biological population

diffusion equation is ut(x, y, t) = ux,x
2 ? uy,y

2 ? r(u) where

u(x, y, t) denotes the population density and r(u) represents

the population supply due to births and deaths. In this

paper, a generalized time-fractional nonlinear biological
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population diffusion equation of the following form is

considered:

oauðx; y; tÞ
ota

¼ o2u2ðx; y; tÞ
ox2

þ o2u2ðx; y; tÞ
oy2

þ huaðx; y; tÞ 1� rubðx; y; tÞ
� �

ð1Þ

Subject to the initial condition

u x; y; 0ð Þ ¼ gðx; yÞ ð2Þ

where a, b, r, and h are real numbers, and according to

Malthusian law and Verhulst law, we consider a more

general form of r(u) as

r uð Þ ¼ hua x; y; tð Þ 1� rubðx; y; tÞ
� �

ð3Þ

The derivative in Eq. (1) is the Caputo derivative. Linear

and nonlinear population systems were solved in [13] and

[14] by using variational iteration method (VIM) and

Adomian decomposition method (ADM). However, one

of the disadvantages of ADM is the inherent difficulty in

calculating the Adomian polynomials, VIM, the Lagrange

multiplier, and the so-called correctional function. In this

letter, we are interested in extending the applicability of

HDM to population systems of fractional differential

Eq. (1). The homotopy decomposition method (HDM)

was recently proposed by Atangana [15–17] to solve

fractional derivatives equation. To demonstrate the

effectiveness of the HDM algorithm, several numerical

examples of fractional biological population systems shall

be presented.

2 Fundamental characters of the homotopy

decomposition method

To exemplify the fundamental suggestion of this method,

we think about a universal nonlinear nonhomogeneous

fractional partial differential equation with initial condi-

tions of the following form [15, 16]

oaUðx; tÞ
ota

¼ L U x; tð Þð Þ þ N U x; tð Þð Þ þ f x; tð Þ; a[ 0 ð4Þ

Subject to the initial condition

Da�k
0 U x; 0ð Þ ¼ fk xð Þ; k ¼ 0; . . .; n� 1ð Þ;

Da�n
0 U x; 0ð Þ ¼ 0 and n ¼ a½ �

Dk
0U x; 0ð Þ ¼ gk xð Þ; k ¼ 0; . . .; n� 1ð Þ;

Dn
0U x; 0ð Þ ¼ 0 and n ¼ a½ �

Where oa

ota
denotes the Caputo or Riemann–Liouville

fractional derivative operator, f is a known function, N is

the general nonlinear fractional differential operator, and L

represents a linear fractional differential operator. The

technique first movement here is to change the fractional

partial differential equation to the fractional partial integral

equation by applying the inverse operator oa

ota
of on both

sides of Eq. (4) to obtain: In the case of Riemann–Liouville

fractional derivative

U x; tð Þ ¼
Xn�1

j¼1

fj xð Þ
Cða� jþ 1Þ t

a�j þ 1

CðaÞ

Z t

0

t � sð Þa�1

� LðUðx; sÞÞ þ NðUðx; sÞÞ þ f ðx; sÞ½ �ds

ð5Þ

In the case of Caputo fractional derivative

U x; tð Þ ¼
Xn�1

j¼1

gj xð Þ
Cða� jþ 1Þ t

a�j þ 1

CðaÞ

Z t

0

t � sð Þa�1

� LðUðx; sÞÞ þ NðUðx; sÞÞ þ f ðx; sÞ½ �ds

or in general by putting

Xn�1

j¼1

fj xð Þ
Cða� jþ 1Þ t

a�j ¼ f x; tð Þ or f x; tð Þ

¼
Xn�1

j¼1

gj xð Þ
Cða� jþ 1Þ t

a�j

We obtain the following:

U x; tð Þ ¼ Tðx; tÞ þ 1

CðaÞ

Z t

0

t � sð Þa�1

� LðUðx; sÞÞ þ NðUðx; sÞÞ þ f ðx; sÞ½ �ds

ð6Þ

In the HDM, the basic assumption is that the solutions can

be written as a power series in p

Uðx; t; pÞ ¼
X1

n¼0

pnUn x; tð Þ; ð7Þ

U x; tð Þ ¼ lim
p!1

Uðx; t; pÞ ð8Þ

and the nonlinear term can be decomposed as

NU x; tð Þ ¼
X1

n¼0

pnHnðUÞ ð9Þ

where p
R
ð0; 1� is an embedding parameter. HnðUÞ [21, 22]

is the He’s polynomials that can be generated by

Hn U0; . . .;Unð Þ ¼ 1

n!

on

opn
N
X1

j¼0

p jUjðx; tÞ
 !" #

; n ¼ 0; 1; 2. . .

 !

ð10Þ

The HDM is obtained by means of the refined combination

of homotopy technique with He’s polynomials and is given

by
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X1

n¼0

pnUnðx; tÞ � T x; tð Þ ¼ p

CðaÞ

Z t

0

t � sð Þa�1

f x; sð Þ þ L
X1

n¼0

pnUnðx; sÞ
 !

þ N
X1

n¼0

pnUnðx; sÞ
 !" #

ds

ð11Þ

Comparing the terms of same powers of p gives solutions

of various orders with the first term:

U0 x; tð Þ ¼ Tðx; tÞ: ð12Þ

3 Convergence and uniqueness analysis

In the literature, there exist a lot of papers dealing with

solutions of nonlinear differential equation. However, the

stability and uniqueness analysis are not presented, and

this leads to thing that these classes of papers are just a

high school exercise since there is no piece of mathe-

matics in, just presentation of some examples and figures.

It is perhaps important to point out that the most difficult

task after presenting these examples is to prove the sta-

bility of the method. We will devote this section to the

analysis of the convergence of the method used for frac-

tional biological equation and the uniqueness of the spe-

cial solution obtained by using this method. We shall start

this section by presenting the following useful definition

(Fig. 1).

Definition 1 Let X ¼ ½ab� �1� a\b�1ð Þ be a finite

or infinite interval of real axis R ¼ �1;1ð Þ. We denote

by Lp a; bð Þ 1� p�1ð Þ the set of those Lebesgue complex-

valued measurable functions f on X for which fk kp\1;
where

fk kp¼
Zb

a

f ðtÞj jpdt

0

@

1

A

1
p

1� p�1ð Þ ð13Þ

We shall in addition of the above definition present, the

following useful theorem.

Theorem 1 If hðtÞ 2 L1 Rð Þ and h1ðtÞ 2 Lp Rð Þ, then their

convolution h � h1ð Þ xð Þ 2 Lp Rð Þ 1� p�1ð Þ, and the fol-

lowing inequality holds [3]:

f h � h1ð Þ xð Þk kp\ hk k1 h1k kp ð14Þ

In particular, if hðtÞ 2 L1 Rð Þ and h1ðtÞ 2 L2 Rð Þ, then their

convolution h � h1ð Þ xð Þ 2 L2 Rð Þ then,

f h � h1ð Þ xð Þk k2\ hk k1 h1k k2:

There exists a vast literature on different definitions of

fractional derivatives. The most popular ones are the Rie-

mann–Liouville and the Caputo derivatives. For Caputo,

we have

C
0 Da

x f xð Þð Þ ¼ 1

Cðn� aÞ

Zx

0

x� tð Þn�a�1dnf ðtÞ
dtn dt ð15Þ

For the case of Riemann–Liouville we have the following

definition

Da
x f xð Þð Þ ¼ 1

Cðn� aÞ
dn

dxn

Zx

0

x� tð Þn�a�1
f ðtÞdt ð16Þ

Each one of these fractional derivative presents some

compensations and weakness [2, 6]. The Riemann–

Fig. 1 Absolute value of

approximate solution for

a ¼ 0:8
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Liouville derivative of a constant is not zero, while Cap-

uto’s derivative of a constant is zero but demands higher

conditions of regularity for differentiability [2, 6]: To

compute the fractional derivative of a function in the

Caputo sense, we must first calculate its derivative. Caputo

derivatives are defined only for differentiable functions,

while functions that have no first-order derivative might

have fractional derivatives of all orders less than one in the

Riemann–Liouville sense [18, 19]. Recently, Guy Jumarie

(see [20]) proposed a simple alternative definition to the

Riemann–Liouville derivative.

Da
x f xð Þð Þ ¼ 1

Cðn� aÞ
dn

dxn

Zx

0

x� tð Þn�a�1
f tð Þ � f ð0Þf gdt

ð17Þ

His modified Riemann–Liouville derivative seems to have

advantages of both the standard Riemann–Liouville and

Caputo fractional derivatives: It is defined for arbitrary

continuous (nondifferentiable) functions, and the fractional

derivative of a constant is equal to zero. However, from its

definition, we do not actually give a fractional derivative

of a function says f(x) but the fractional derivative of

f(x) - f(0) and always leads to fractional derivative that is

not defined at the origin for some function that does not

exist at the origin.

Lemma 1 [3] the fractional integration operators with

<ðaÞ[ 0 are bounded in Lp a; bð Þ 1� p�1ð Þ

Ia
a f

�� ��
p
�K fk kp;K ¼

b� að Þ<ðaÞ

<ðaÞ C að Þj j ð18Þ

To prove the convergence and the uniqueness, let us con-

sider equation in the Hilbert space H ¼ L2 g; kð Þ � 0; T½ �ð Þ,
defined as

H ¼ u; vð Þ : g; kð Þ � 0; T½ �with;

Z
uvdidj\1

� �

Then, the operator is of the form

R uð Þ ¼ o2u2

ox2
þ o2u2

oy2
þ hua 1� rub

� �
ð19Þ

The projected investigative is convergent if the subsequent

necessities are congregated.

Proposition 1 There is a possibility for us to establish a

positive constant says b such that the inner product holds in

H
R uð Þ � R vð Þ; u� vð Þ� b u� vk k; for all v; u 2 H ð20Þ

Proposition 2 To the extent that for all v; u 2 H are

circumscribed entailing, we can come across a positive

constant says v such that: uk k; vk k� v, then we can dis-

cover U vð Þ[ 0 such that

R uð Þ � R vð Þ;mð Þ�U vð Þ u� vk k mk k; for all m 2 H

We can as a result shape the ensuing theorem for the suf-

ficient condition for the convergence of Eq. (1)

Theorem 2 Let us think about

R uð Þ ¼ oau

ota
¼ o2u2

ox2
þ o2u2

oy2
þ hua 1� rub

� �

and consider the initial and boundary condition for Eq. (1),

then the proposed method leads to a special solution of Eq.

(1). We shall present the proof of this theorem by just

verifying the hypothesis 1 and 2.

Proof 1 Using the defined operator, we obtain the

following

R uð Þ � R vð Þ ¼ o2

ox2
u2 � v2
� �

þ o2

oy2
u2 � v2
� �

þ h ua � va½ �

þ hr vaþb � uaþb
� �

ð21Þ

With the above reduction in hand, it is therefore possible

for us to evaluate the following inner product

R uð Þ � R vð Þ; u� vð Þ ¼ o2

ox2
u2 � v2
� �

; u� v

	 


þ o2

oy2
u2 � v2
� �

; u� v

	 

þ h ua � va½ �; u� vð Þ

� hr uaþb � vaþb
� �

; u� v
� �

ð22Þ

We shall assume that u; v are bounded, and we can find a

positive constant l such that their inner product is bounded

as u; vð Þ; v; vð Þand u; uð Þ\l. By employing the so-called

Schwartz inequality, we obtain first

o2

ox2
u2 � v2
� �

; u� v

	 

� u2 � v2
� �

xx

�� �� u� vk k ð23Þ

And in view of the fact that, we are able to find two

positive constant q1; q2 such that u2 � v2ð Þxx

�� ��

� q1q2 u2 � v2
�� �� in addition to this, since (u, u) \ l, then

we have the following

u2 � v2
� �

xx

�� ��� 4l2q1q2 ð24Þ

So that

o2

ox2
u2 � v2
� �

; u� v

	 

� 4l2q1q2 u� vk k ð25Þ

In the same manner, we obtain that
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o2

oy2
u2 � v2
� �

; u� v

	 

� 4l2q3q4 u� vk k ð26Þ

Let us take care of the following expression (h[ua -

va], u - v), now using again the Schwartz inequality

h ua � va½ �; u� vð Þ� h ua � vak k u� vk k ð27Þ

Note that,

ua � va ¼ u� vð Þ
Xa�1

k¼0

a

k

	 

ukva�1�k;

a

k

	 


¼ C aþ 1ð Þ
k!C a� k þ 1ð Þ ;C xð Þ ¼

Z1

0

tx�1e�tdz ð28Þ

Therefore, using the fact that u; vð Þ; v; vð Þand u; uð Þ\l.

Then, we can obtain the following inequality

h ua � va½ �; u� vð Þ� 2hla
Xa�1

k¼0

C aþ 1ð Þ
k!C a� k þ 1ð Þ

�����

�����
u� vk k

ð29Þ

In the similar manner, we can obtain

hr vaþb � uaþb
� �

; u� v
� �

� 2hlaþb

Xa�1

k¼0

C aþ bþ 1ð Þ
k!C aþ b� k þ 1ð Þ

�����

�����
u� vk k

ð30Þ

We can therefore conclude without fear that

R uð Þ � R vð Þ; u� vð Þ�
 

4l2q1q2 þ 4l2q3q4 þ 2hla

Xa�1

k¼0

C aþ 1ð Þ
k!C a� k þ 1ð Þ

�����

�����
þ 2hlaþb

Xa�1

k¼0

C aþ bþ 1ð Þ
k!C aþ b� k þ 1ð Þ

�����

�����

!

u� vk k ð31Þ

Take now

b ¼ 4l2q1q2 þ 4l2q3q4 þ 2hla
Xa�1

k¼0

C aþ 1ð Þ
k!C a� k þ 1ð Þ

�����

�����

þ 2hlaþb
Xa�1

k¼0

C aþ bþ 1ð Þ
k!C aþ b� k þ 1ð Þ

�����

�����
ð32Þ

We conclude that

R uð Þ � R vð Þ; u� vð Þ� b u� vk k; for all v; u 2 H

Then, proposition 1 is verified. Let us handle now propo-

sition 2. To do this, we compute

R uð Þ � R vð Þ;mð Þ ¼ o2

ox2
u2 � v2
� �

;m

	 


þ o2

oy2
u2 � v2
� �

;m

	 

þ h ua � va½ �;mð Þ

� hr uaþb � vaþb
� �

;m
� �

�U vð Þ u� vk k mk k

ð33Þ

With

U vð Þ ¼ 2vq1q2 þ 2vq3q4 þ 2hva�1
Xa�1

k¼0

C aþ 1ð Þ
k!C a� k þ 1ð Þ

�����

�����

þ 2hlaþb�1
Xa�1

k¼0

C aþ bþ 1ð Þ
k!C aþ b� k þ 1ð Þ

�����

�����

And proposition 2 is also verified. Now, in the light of theorem

1, proposition 1, and 2 together with lemma 1, we can happily

conclude that the decomposition method used here works

perfectly for fractional biological population equation.

Theorem 3 Taking into account the initial conditions for

Eq. (1) then the special solution of Eq. (1) uesp to which u

convergence is unique.

Proof 3 Assuming that we can find another special

solution say vesp, then by making use of the inner product

together with hypothesis (1), we have the following

RðuespÞ � R vesp

� �
; uesp � vesp

� �� �
� b uesp � vesp

�� �� ð34Þ

using the fact that we can find a small natural number m1

for which we can find a very small number e such

respecting the following inequality

uesp � u
�� ��� e

2b
ð35Þ

Also, we can find another natural number m2 for which we

can find a very small positive number e that can respect the

fact that

vesp � u
�� ��� e

2b
ð36Þ

taking therefore m ¼ max m1;m2ð Þ we have without fear

that,

R uesp

� �
� R vesp

� �
; uesp � vesp

� �� �
� b uesp � vesp

�� ��

¼ b uesp � uþ u� vesp

�� �� ð37Þ

Making use of the triangular inequality, we obtain the

following

R uesp

� �
� R vesp

� �
; uesp � vesp

� �� �
� b uesp � u

�� ���

þ vesp � u
�� ���� e:

It therefore turns out that
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R uesp

� �
� R vesp

� �
; uesp � vesp

� �� �
¼ 0: ð38Þ

But according to the law of the inner product, the above

equation implies that

R uesp

� �
� R vesp

� �
¼ 0or uesp � vesp

� �
¼ 0

This concludes the uniqueness of our special solution.

4 Application of algorithm

In this section, we apply this method for solving fractional

biological population equation with time- and space-frac-

tional derivatives.

Example 1 Consider (1) with a = 1, r = 0, correspond-

ing to Malthusian law, we have the following fractional

biological population equation:

oau

ota
¼ o2u2

ox2
þ o2u2

oy2
þ hu ð39Þ

Subject to the initial condition

u x; y; 0ð Þ ¼ ffiffiffiffiffi
xy
p ð40Þ

According to the HDM that was presented earlier in Sect.

3, we obtain the following equation.

X1

n¼0

pnun x; y; tð Þ ¼ u x; y; 0ð Þ

þ p

CðaÞ

Z t

0

oxx

X1

n¼0

pnun x; y; tð Þ
 !2

þ oyy

X1

n¼0

pnun x; y; tð Þ
 !2

þh
X1

n¼0

pnun x; y; tð Þ

ð41Þ

Comparing the terms of the same power of p yields:

p0 : u0 x; y; tð Þ ¼ u x; y; 0ð Þ ¼ ffiffiffiffiffi
xy
p

p1 : u1 x; y; tð Þ ¼ 1

CðaÞ

Z t

0

ox;xu2
0 x; y; sð Þ þ oy;yu2

0 x; y; sð Þ

þ hu0 x; y; sð Þds; u1 x; y; 0ð Þ ¼ 0

pn : un x; y; tð Þ ¼ 1

CðaÞ

Z t

0

Xn�1

j¼0

uj

� �
xx

un�j�1

� �
xx

þ
Xn�1

j¼0

uj

� �
yy

un�j�1

� �
yy
þhun�1 x; y; sð Þds;

un x; y; 0ð Þ ¼ 0; n� 2 ð42Þ

The following solutions are obtained

u0 x; y; tð Þ ¼ u x; y; 0ð Þ ¼ ffiffiffiffiffi
xy
p

u1 x; y; tð Þ ¼ hta

Cð1þ aÞ
ffiffiffiffiffi
xy
p

u2 x; y; tð Þ ¼ h2t2a

Cð1þ 2aÞ
ffiffiffiffiffi
xy
p

u3 x; y; tð Þ ¼ h3t3a

Cð1þ 3aÞ
ffiffiffiffiffi
xy
p

u4 x; y; tð Þ ¼ h4t4a

Cð1þ 4aÞ
ffiffiffiffiffi
xy
p

..

.

un x; y; tð Þ ¼ hntna

Cð1þ naÞ
ffiffiffiffiffi
xy
p

:

ð43Þ

It follows that for N = n the approximated solution from

HDM is

uN¼n x; y; tð Þ ¼
XN

n¼0

hntna

Cð1þ naÞ
ffiffiffiffiffi
xy
p

; ð44Þ

therefore

u x; y; tð Þ ¼
X1

n¼0

hntna

Cð1þ naÞ
ffiffiffiffiffi
xy
p ¼ ffiffiffiffiffi

xy
p

EaðhtaÞ ð45Þ

Here, Ea(hta) is the Mittag–Leffler function, defined as

X1

n¼0

xna

Cð1þ naÞ ¼ EaðxaÞ ð46Þ

Now, notice that if a = 1, Eq. (46) is reduced to the

following:

u x; y; tð Þ ¼
X1

n¼0

hntn

Cð1þ nÞ
ffiffiffiffiffi
xy
p ¼ ffiffiffiffiffi

xy
p

ExpðhtÞ ð47Þ

This is the exact solution for example 1 when a = 1. The

following figures show the graphical representation of the

approximated solution (45) and the exact solution for dif-

ferent values of a. It is easy to conclude that the approxi-

mate solution of fractional biological population model is

continuous increasing function of alpha, as the parameter

alpha is decreasing (Fig. 2).

Example 2 Let us consider the following fractional bio-

logical population model

oa
t u x; y; tð Þ ¼ oxxu2ðx; y; tÞ þ oyyu2ðx; y; tÞ

� uðx; y; tÞ 1þ 8

9
uðx; y; tÞ

	 

ð48Þ

Subject to the initial condition

u x; y; 0ð Þ ¼ exp
1

3
xþ y

	 

ð49Þ

Following the discussion presented earlier in Sect. 3, we

arrive to the following:
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p0 : u0 x; y; tð Þ ¼ u x; y; 0ð Þ ¼ exp
1

3
xþ y

	 


p1 : u1 x; y; tð Þ ¼ 1

CðaÞ

Z t

0

ox;xu2
0 þ oy;yu2

0

� u0 1þ 8

9
u0

	 

ds; u1 x; y; 0ð Þ ¼ 0

pn : un x; y; tð Þ ¼ 1

CðaÞ

Z t

0

Xn�1

j¼0

uj

� �
xx

un�j�1

� �
xx

þ
Xn�1

j¼0

uj

� �
yy

un�j�1

� �
yy
�un�1

� 8

9

Xn�1

j¼0

ujun�j�1ds; un x; y; 0ð Þ ¼ 0; n� 2:

ð50Þ

The following solutions are obtained

u x; y; 0ð Þ ¼ exp
1

3
xþ y

	 


u1 x; y; tð Þ ¼ �ta

Cð1þ aÞ exp
1

3
xþ y

	 


u2 x; y; tð Þ ¼ t2a

Cð1þ 2aÞ exp
1

3
xþ y

	 


u3 x; y; tð Þ ¼ �t3a

Cð1þ 3aÞ exp
1

3
xþ y

	 


ð51Þ

u4 x; y; tð Þ ¼ t4a

Cð1þ 4aÞ exp
1

3
xþ y

	 


..

.

un x; y; tð Þ ¼ ð�1Þntna

Cð1þ naÞ exp
1

3
xþ y

	 

ð51Þ

It follows that for N = n the approximated solution from

HDM is

uN¼n x; y; tð Þ ¼
XN

n¼0

ð�1Þntna

Cð1þ naÞ exp
1

3
xþ y

	 

ð52Þ

Therefore,

u x; y; tð Þ ¼
X1

n¼0

ð�1Þntna

Cð1þ naÞ exp
1

3
xþ y

	 


¼ exp
1

3
xþ y

	 

Eað�taÞ ð53Þ

Now, notice that if a = 1, Eq. (4) is reduced to the

following:

u x; y; tð Þ ¼ exp
1

3
xþ y� t

	 

ð54Þ

This is the exact solution for example 2 when a = 1.

Example 3 Consider (1.1) with a ¼ 1; r ¼ 0 and h ¼ 1,

corresponding to Malthusian law, we have the following

fractional biological population equation:

Fig. 2 Absolute value of

approximated solution or exact

solution a ¼ 1
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oau

ota
¼ o2u2

ox2
þ o2u2

oy2
þ u ð55Þ

Subject to the initial condition

u x; y; 0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ sinðyÞ

p
ð56Þ

According to the HDM that was presented earlier in Sect.

3, we obtain the following equation.

X1

n¼0

pnun x; y; tð Þ ¼ u x; y; 0ð Þ

þ p

CðaÞ

Z t

0

oxx

X1

n¼0

pnun x; y; tð Þ
 !2

þ oyy

X1

n¼0

pnun x; y; tð Þ
 !2

þ
X1

n¼0

pnun x; y; tð Þ

ð57Þ

Comparing the terms of the same power of p yields:

p0 : u0 x; y; tð Þ ¼ u x; y; 0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ sinðy

p
Þ

p1 : u1 x; y; tð Þ ¼ 1

CðaÞ

Z t

0

ox;xu2
0 x; y; sð Þ þ oy;yu2

0 x; y; sð Þ

þ u0 x; y; sð Þds; u1 x; y; 0ð Þ ¼ 0

..

.

pn : un x; y; tð Þ ¼ 1

CðaÞ

Z t

0

Xn�1

j¼0

uj

� �
xx

un�j�1

� �
xx

þ
Xn�1

j¼0

uj

� �
xx

un�j�1

� �
xx
þun�1 x; y; sð Þds; un x; y; 0ð Þ ¼ 0;

n� 2 ð58Þ

The following solutions are obtained

u0 x; y; tð Þ ¼ u x; y; 0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ sinðyÞ

p

u1 x; y; tð Þ ¼ ta

Cð1þ aÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ sinðyÞ

p

u2 x; y; tð Þ ¼ t2a

Cð1þ 2aÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ sinðyÞ

p

u3 x; y; tð Þ ¼ t3a

Cð1þ 3aÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ sinðy

p

..

.

un x; y; tð Þ ¼ tna

Cð1þ naÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ sinðyÞ

p

ð59Þ

It follows that for N = n the approximated solution from

HDM is

uN¼n x; y; tð Þ ¼
XN

n¼0

tna

Cð1þ naÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ sinðyÞ

p
ð60Þ

Therefore

u x; y; tð Þ ¼
X1

n¼0

tna

Cð1þ naÞ
ffiffiffiffiffi
xy
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ sinðyÞ

p
EaðtaÞ

ð61Þ

Now notice that if a = 1, Eq. (1) is reduced to the

following:

u x; y; tð Þ ¼
X1

n¼0

tn

Cð1þ nÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ sinðyÞ

p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ sinðyÞ

p
ExpðtÞ ð62Þ

This is the exact solution for example 3 when a = 1. The

following mure show the graphical representation of the

approximated solution (62) when a = 1 (Fig. 3)

Example 4 Consider (1.1) with a = 1, b = 1, corre-

sponding to Malthusian law, we have the following frac-

tional biological population equation:

oau

ota
¼ o2u2

ox2
þ o2u2

oy2
þ hu 1� ruð Þ ð63Þ

Subject to the initial condition

u x; y; 0ð Þ ¼ exp

ffiffiffiffiffi
hr

8

r

xþ yð Þ
 !

ð64Þ

Following the discussion presented earlier in Sect. 3, we

arrive to the following:

u0 x; y; tð Þ ¼ u x; y; 0ð Þ ¼ exp

ffiffiffiffiffi
hr

8

r

xþ yð Þ
 !

u1 x; y; tð Þ ¼ hata

Cð1þ aÞ exp

ffiffiffiffiffi
hr

8

r

xþ yð Þ
 !

u2 x; y; tð Þ ¼ h2at2a

Cð1þ 2aÞ exp

ffiffiffiffiffi
hr

8

r

xþ yð Þ
 !

u3 x; y; tð Þ ¼ h3at3a

Cð1þ 3aÞ exp

ffiffiffiffiffi
hr

8

r

xþ yð Þ
 !

..

.

un x; y; tð Þ ¼ hnatna

Cð1þ naÞ exp

ffiffiffiffiffi
hr

8

r

xþ yð Þ
 !

ð65Þ

It follows that for N = n the approximated solution from

HDM is

uN¼n x; y; tð Þ ¼
XN

n¼0

hnatna

Cð1þ naÞ exp

ffiffiffiffiffi
hr

8

r

xþ yð Þ
 !

Therefore,
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u x; y; tð Þ ¼
X1

n¼0

hnatna

Cð1þ naÞ exp

ffiffiffiffiffi
hr

8

r

xþ yð Þ
 !

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

exp

ffiffiffiffiffi
hr

8

r

xþ yð Þ
 !vuut EaðhataÞ ð66Þ

Now, notice that if a = 1, Eq. (4) is reduced to the

following:

u x; y; tð Þ ¼
X1

n¼0

hntn

Cð1þ nÞ exp

ffiffiffiffiffi
hr

8

r

xþ yð Þ
 !

¼ exp

ffiffiffiffiffi
hr

8

r

xþ yð Þ
 !

expðhtÞ ð67Þ

This is the exact solution for example 4 when a = 1.

5 Conclusion

Although many analytical techniques have been proposed

in the recent decade to deal with nonlinear equations, most

of them have their weakness and limitations. In this paper,

we put into operation new analytical techniques, the

HDM, for solving nonlinear fractional partial differential

equations arising in biological population dynamics sys-

tem. Population biology is a study of populations of

organisms, exceptionally the adaptation of population size;

life history traits for instance clutch size; and extinction.

The expression population biology is frequently used

interchangeably with population ecology, even though

population biology is supplementary generally used when

studying diseases, viruses, and microbes, and population

ecology is used more frequently when studying plants and

animals.

The most challenging part while using iteration method

is to provide the stability of the method on one hand, and

the other to show in detail the convergence and the

uniqueness analysis. We have in this paper with care pre-

sented the stability, the convergence, and the uniqueness

analysis. We have shown some example analytical solu-

tions, and some properties of these solutions show signs of

biologically matter-of-fact reliance on the parameter val-

ues. The uniformity of this procedure and the lessening in

computations award a wider applicability. In all examples,

in the limit of infinitely many terms of the series solution

yields the exact solution.
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