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Abstract In this paper, we propose a fast and robust face

recognition method named enhancing sparsity via full rank

decomposition. The proposed method first represents the

test sample as a linear combination of the training data as

the same as sparse representation, then make a full rank

decomposition of the training data matrix. We obtain the

generalized inverse of the training data matrix and then

solve the general solution of the linear equation directly.

For obtaining the optimum solution to represent the test

sample, we use the least square method to solve it. We

classify the test sample into the class which has the mini-

mal reconstruction error. Our method can solve the opti-

mum solution of the linear equation, and it is more suitable

for face recognition than sparse representation classifier.

The extensive experimental results on publicly available

face databases demonstrate the effectiveness of the pro-

posed method for face recognition.

Keywords Sparse representation � Face recognition �
Full rank decomposition � Generalized inverse

1 Introduction

For the importance of face recognition, most techniques of

face recognition have been used in pattern recognition

[1, 2], image processing [3], and machine learning [4, 5].

Over the last decade, many algorithms have been pro-

posed for face recognition, such as Fisherface [6], Eigenface

[7], and graph manifold learning [8]. In face recognition,

appearance-based methods represent an image of size

n 9 m by a vector in the n 9 m dimensional space and

then produce lower-dimensional features of the face image

for better classifying it [9]. In the application of face rec-

ognition, these n 9 m dimensional spaces are too large to

allow robust and fast face recognition. Dimensionality

reduction is a common way to attempt to resolve this

problem. Many dimensionality reduction methods have

been proposed to produce lower-dimensional features, such

as principal component analysis (PCA) [10], linear dis-

criminant analysis (LDA) [11], and 2D-PCA [12]. PCA

performs dimensionality reduction by projecting the ori-

ginal data on a much lower-dimensional linear subspace

spanned by the leading eigenvectors of the covariance

matrix of the origin data. LDA searches for the project axes

on which data points of the same class are close to each

other and data points of different classes are far from each

other. The basic idea of 2D-PCA is to directly use 2D

matrices to represent face image which improves the

computational efficiency and increases face recognition

rate because of the preservation of image structural

information.

Sparsity could be a useful principle in neuroscience,

information theory, and signal processing over the past few

decades [13–15]. Sparse representation encodes an image

using only a small number of atoms parsimoniously chosen

from an overcomeplete dictionary. It has been developed in

computer vision and pattern recognition with promising

results [16]. Sparse representation classifier (SRC) [17] has

been successfully used for robust face recognition. SRC is

a nonparametric learning method similar as nearest

neighbor (NN) [18] and nearest subspace (NS) [19].

The basic idea of SRC is to represent a test sample as a

linear combination of all training samples and then classify

the test sample into the class which has the minimal
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reconstruction error. SRC uses l1 minimization instead of

the l0 minimization to seek for the sparse solution for its

computational convenience and efficiency.

For the efficiency of SRC in face recognition, many

extended work have been proposed. In [20], Gao et al.

proposed kernel sparse representation, which is the sparse

coding in the mapped high-dimensional feature space. In

[21], the authors indicated a more general case where

features lie in a union of low-dimensional linear subspaces.

He et al. [22] incorporated the non-negativity constraint

into sparse graph to learn the probabilistic latent clustering

relationship between data. Yang et al. proposed robust

sparse representation [23].

Although there are so many applications of SRC, l1

minimization does not always yield sufficiently sparse

solution. In [24], the authors proposed lp(0 \ p \ 1) sparse

representation-based classification (lp-SRC) to seek for the

optimal sparse representation of a test image. However,

how to get the optimal parameter p is still an open problem.

If we can solve the solution of the sparse system directly

without iterative steps, we can save much time and

improve the accuracy of classification.

In this paper, we propose a novel method named

enhancing sparsity via full rank decomposition (ES-FRD)

for face recognition, which first represents the test sample

as a linear combination of the training data as the same as

sparse representation, then make a full rank decomposition

of the training data matrix. Since, we can obtain the gen-

eralized inverse of the training data matrix and solve the

general solution of the linear equation directly. For

obtaining the optimum solution to represent the test sam-

ple, we use the least square method to solve it. We classify

the test sample into the class which has the minimal

reconstruction error. The contributions of the proposed

method are as follows:

1. Computational efficiency. By introducing the general

solution of linear equation, we can obtain the optimum

solution. Without counting the norm minimization, the

proposed method is more efficient than SRC.

2. Open solution. As we know, the state-of-the-art

algorithms of SRC have no open solution to solve

norm minimization problem. The proposed method has

an open solution.

3. More sparse. Our method introduces full rank decom-

position, which factorizes the image database into two

low-rank matrices. It is helpful for obtaining much

sparser solution.

The rest of this paper is organized as follows: We review

the related works on sparse representation in Sect. 2. In

Sect. 3, we give the details of the proposed method. Sec-

tion 4 gives the experimental results on three public face

image data sets. Finally, we conclude the paper in Sect. 5.

2 Related work

In this section, we briefly review SRC and lp(0 \ p \ 1)-

SRC.

2.1 Sparse representation classification (SRC)

Assuming that there are n training samples from c object

classes, A ¼ ½A1;A2; . . .;Ac� 2 Rm�n denotes the entire

training set, where m is the dimension of sample, and Ai

(i = 1, 2, …, c) is the set of training samples from the ith

object class. Given a test sample y 2 Rm of the ith class, the

goal is exactly to predict the label of y from the given c

class training samples. The linear representation of y can be

written in terms of all training samples A as [17]

y ¼ Ax ð1Þ

where x is the vector of coefficients. If the test sample

y belongs to the ith class, then the entries of x are expected

to be zero except some of those associated with this class.

In SRC, the problem of finding the coefficient vector is

formulated as a convex programming problem

min
x

xk k1 subject to y ¼ Ax ð2Þ

where �k k denotes the l1 norm. The sparsity of the coeffi-

cient vector can be measured by l0 norm. However, l0 norm

minimization is a NP-hard problem. Some recent studies

[25, 26] show that if the solution of x is sparse enough, the

l1 minimization can be employed to seek for the sparse

solution for its computational convenience and efficiency.

After obtaining x of Eq. (2), the class reconstruction

residual is used to design a sparse representation-based

classification (SRC). For each class i, let di : Rn ! Rn be

the characteristic function which selects the coefficients

associated with the ith class. For x 2 Rn, di 2 Rn is a new

vector whose nonzero entries are the entries in x that are

associated with class i. The test sample y can be

approximated by ŷi ¼ AdiðxÞ which uses the vector di

from each class. The reconstruction residual for class i is

defined as:

riðyÞ ¼ y� ŷik k2 ð3Þ

We classify the given test sample y to the class i associated

with the minimal reconstruction residual. We give the

algorithm of SRC as follows.
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Algorithm of SRC

2.2 lp(0 \ p \ 1) sparse representation for face

recognition

The optimization problem of l1 minimization cannot

always obtain the sparsest solution. In recent,

lp(0 \ p \ 1)-norm has been used as an alternative to l0

norm for sparse signal recovery. The lp(0 \ p \ 1) sparse

representation-based classification seeks for the optimal

sparse representation of a test image by choosing the most

suitable parameter p. The following is the lp minimization

problem:

min
x

xk kp subject to Ax ¼ y ð4Þ

The authors first proposed an iterative algorithm for solv-

ing the non-convex system (4) in [24].

An iterative algorithm for lp minimization (0 \ p \ 1)

Step

1:

Initialize the iteration count t = 0 and coding

coefficients x0
i ¼ 1; i ¼ 1; 2; � � � ; n

Step

2:

Update the coding vector xt?1 by solving the

weighted l1 minimization problem

xtþ1 ¼ arg min
Xn

i

xij j
ð xt

i þ ltj jÞ1�p
subject to

Ax ¼ y

ð5Þ

Step

3:

Terminate on convergence or when reaches the

maximal number of iteration tmax. Otherwise, let

t = t ? 1, and go to step 2

The solution of lp minimization is sought by the iterative

l1 minimization algorithm. In the first step, the coding

coefficients are initialized by x0
i ¼ 1; i = 1, 2, …, n. Step 2

is to solve a weighted l1 minimization where the weights

wtþ1
i ¼ 1=ð xt

i

�� ��þ ltÞ1�p
(i ¼ 1; 2; � � � ; n) depend on the

solution of the previous iteration. The weights in Eq. (5)

relate inversely to the magnitude of the coefficients, so lp

minimization can partially counteract the influence of the

coefficient magnitude on the l1 penalty function [27].

The residuals are computed by

ri ¼ y� Aix̂ik k2 ð6Þ

The test sample y is classified to the object class that has

the minimize residual.

The state-of-the-art algorithms of sparse representation

use norm minimization to get a coefficient vector. Among

lp(0 \ p \ 1) minimization, l1 minimization and l2 mini-

mization, which one is the sparsest is still unknown. Which

norm minimization is best suit for sparse representation is

still an open problem in theory. In the next section, by

introducing the full rank decomposition of the dictionary

matrix, we solve the sparse representation system directly,

precisely, and computationally efficiently.

The algorithm of lp(0 \ p \ 1) SRC as follows.

3 The proposed method

In this section, we present the proposed method and give

analysis of it. The main steps of the proposed method are as

follows. First, we approximately obtain the full rank

decomposition of the training data matrix. Second, we

solve the general solution of Eq. (1) and calculate the

minimum residual solution. Finally, we classify the test

sample into the class that has the minimal residual.

3.1 Full rank decomposition and general solution

of the linear equation in our method

In the linear equation y = Ax, no matter what the dimen-

sion of A is, there is always a general solution of it. We

present the details to obtain the general solution of a linear

equation as follows.

Definition 1 (full rank decomposition) A 2 Rm�n is a

matrix of which rank is r. If A = FG, rank(F) = r, and

rank (G) = r, A = FG is the full rank decomposition of

matrix A.

By exploiting the full rank decomposition, we can

obtain the generalized inverse matrix of A by Eq. (7).

Definition 2 is the generalized inverse matrix of the

matrix A.

Definition 2 (Generalized inverse matrix) A 2 Rm�n is a

matrix which rank is r, and its full rank decomposition is

1. Input: The training data matrix A ¼ ½A1;A2; . . .;Ac� 2 Rm�n for

c classes, a test sample y

2. Solve the l1-minimization:

min
x

xk k1 subject to Ax ¼ y

3. Then compute the residuals riðyÞ ¼ y� ŷik k2

4. Output the identify of y as: Identity (y) = arg mini{ri(y)}

Algorithm of lp(0 \ p \ 1) SRC

1. Input: The training data matrix A ¼ ½A1;A2; . . .;Ac� 2 Rm�n for

c classes, a test sample y and the error tolerance e� 0

2. Solve the following lp minimization problem

min
x

xk kp subject to Ax ¼ y

3. Then compute the residuals ri ¼ y� Ai � x̂ik k2, i ¼ 1; 2; . . .; c:

4. Output the identify of y as: Identity (y) = arg mini rif g
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A = FG, F 2 Rm�r is full column rank, G 2 Rr�n is full

row rank, the generalized inverse matrix of A is

A� ¼ GTðFT AGTÞ�1
FT ð7Þ

We can compute a general solution of the linear equation

y = Ax by Eq. (8) after solving the generalized inverse matrix

of A. Definition 3 defines general solutions of linear equation.

Definition 3 (General solution of linear equation) If

A� 2 Rm�n is a generalized inverse matrix of A 2 Rm�n,

then the general solution of linear equation y = Ax is

x ¼ A�yþ ðI � A�AÞz; ð8Þ

where z 2 Rn�1 is a random vector.

3.2 The optimum solution in the proposed method

for face recognition

Let A ¼ ½A1;A2; . . .;Ac� 2 Rm�n denote the entire training

set, in which Ai 2 Rm�ni are training samples of the ith object

classes, where c is the number of class. For any test sample

y 2 Rm, the linear representation of y can be written as

y ¼ Ax ð1Þ

where x is the coefficient vector. By full rank decomposi-

tion, we find two matrix factors F and G whose product is

an approximation of the matrix A, represented as

A ¼ FG ð9Þ

By Eq. (7), we solve the generalized inverse matrix of A,

that is A� ¼ GTðFT AGTÞ�1
FT . We obtain the general

solution of linear equation y = Ax by Eq. (8), i.e.,

x ¼ A�yþ ðI � A�AÞz. Because z is a random vector, the

general solution of the linear equation y = Ax is not the

optimum. We use the least square to solve the optimum

solution of Eq. (1). The details as follow: Let

W ¼ y� Axk k2
2 ð10Þ

substituting Eq. (8) into (10), we obtain

W ¼ y� Axk k2
2

¼ ðy� AxÞTðy� AxÞ
¼ ðyT � xT ATÞðy� AxÞ
¼ yTy� 2xT AT yþ xT AT Ax

¼ yTy� 2ðA�yþ ðI � A�AÞzÞT AT y

þ ðA�yþ ðI � A�AÞzÞT AT AðA�yþ ðI � A�AÞzÞ

Since Eq. (10) is convex and differentiable, any stationary

point is a global minimizer of it. Requiring that the deri-

vation of W with respect to z to be zero, we get the fol-

lowing equation

W 0ðzÞ ¼ � 2ðI � A�AÞT AT yþ 2AT AðI � A�AÞ
� ðA�yþ ðI � A�AÞzÞ ¼ 0

ð11Þ

We can derive from Eq. (11)

z ¼ ðI � A�AÞ�1ððAT AðI � A�AÞÞ�1ðI � A�AÞT AT y

� A�yÞ: ð12Þ

The Eq. (12) is an optimal coefficient vector for the test

sample y.

Then, we calculate the residual by

riðyÞ ¼ y� Ax̂k k2 ð13Þ

Input the 

training 

matrix A

Compute the 

full rank 

decomposition 

of A

Solve the optimum 

solution by Eqs. (8) 

and (11)

Calculate  ultimate residual

and classify the test sample 

into  the  class  that  has  the 

minimum ultimate residual

Fig. 1 Flowchart of the proposed method

Fig. 2 Example FERET images used in our experiments. (Images of a subject from the FERET database)
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If r̂k ¼ arg mini rif g; i ¼ 1; 2; . . .; c, we classify y into the

kth class, c is the number of distinguished classes.

The classification procedure of the proposed method is

shown in Algorithm 1.

Algorithm 1 Algorithm of the Proposed Method

Figure 1 describes the flowchart of the proposed

method.

3.3 Analysis of the proposed method

In this section, we analyze the characteristics, rationale,

and potential advantages of our method. Our method dif-

fers from SRC and lp(0 \ p \ 1) SRC as follows: Our

method uses full rank decomposition to represent the

training data matrix approximately and then best represents

the test sample as a linear combination of the training data.

Here, the ‘‘best’’ means that the residual between the

obtained linear combination and the test sample is the

smallest. SRC and lp(0 \ p \ 1) SRC are all use norm

minimization to obtain an approximately solution for

classifying a new test sample.

The proposed method represents the training data matrix

by full rank decomposition and then expresses the test

sample as a linear combination of the training data. We use

generalized inverse of matrix to solve the minimum norm

solution of the linear equation. We classify the test sample

by evaluating the reconstruction error class by class. Our

method can be also viewed as a method that exploits a

linear combination of all training samples to represent the
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b Fig. 3 Face recognition rate on FERET database. We randomly

select three (a), four (b), and five (c) images from each subject to

construct the training set and the rest used for testing. We conduct five

trials for each partition and compare the performance of different

algorithms based on the averaged accuracy of the five trials on each

dimension for each type of the partition

1. Input: a set of training samples A ¼ ½A1;A2; . . .;Ac� 2 Rm�n for c

classes, a test sample y 2 Rm

2. Normalize the columns of A.

3. Compute the full rank decomposition of A

4. Compute the generalized inverse matrix of A by Eq. (7)

5. Compute the general solution of linear equation y = Ax (1) by

Eq. (8)

6. Solve the optimal solution bx for y = Ax (1) by (11)

7. Compute the residuals riðyÞ ¼ y� Ax̂k k2, i ¼ 1; 2; � � � ; c:
8. Output: identity(y) = arg miniri(y).
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test sample and calculate the solution of this linear repre-

sentation. The underlying rationale is that for different test

samples, the coefficients of the linear representation are

different. We can solve the optimal solution of Eq. (8) for

the linear representation with the different test samples.

The advantages of our work are as follows:

1. The proposed method introduces the full rank decom-

position, which factorizes the image database into two

low-rank matrices. It is helpful for obtaining much

sparser solution.

2. By introducing the general solution of the linear

equation, we can find the optimum solution for the

sparse system (1). There is no need to solve the norm

minimization problem in the proposed method, thus

leading to more efficient procedures.

3. To our knowledge, there is no method can directly

solve the solution of SRC. The state-of-the-art algo-

rithms of SRC use norm minimization to solve the

coefficient vector. Collaborative representation-based

classification (CRC) uses l2 norm to solve the sparse

solution of the linear equation. It obtains dominant

performance for face recognition, but it should

consider the distribution of data [28]. The proposed

method can solve the linear representation solution

directly and efficiently and not need consider the

distribution of the data. That is to say, our method can

directly applied data with any distribution.

4 Experimental results and analysis

We use the FERET [29], ORL [30], and AR databases [31]

to evaluate the performance of the proposed method for

face recognition. We compare our method with NN, NS,

SRC, and lp(0 \ p \ 1) SRC. For all above learning

algorithms, we test the classification performance with the

feature subspace dimensions of 36, 49, 64, 81, and 100.

The parameters set as Refs. [17] and [24].

4.1 Evaluation on the FERET database

The FERET database [29] was acquired without any

restrictions imposed on facial expression and with at least

two frontal images shot at different times during the same

photo session. The image sets used for evaluating face

recognition algorithms displays diversity across gender,

ethnicity, and age. For the FERET face database, we only

use a subset made up of 1,400 images from 200 individuals

with each subject providing seven images [32]. We crop

and normalize all the face images of FERET in 40 9 40.

We random select different number (3, 4, 5) of images

from each subject to construct the training set, and the rest

images make up the test set. Figure 2 shows some example

images used in our experiments. Figure 3 is the result of

NN, NS, SRC, lp(0 \ p \ 1) SRC and our method con-

ducted on FERET face database.

From Fig. 3, the classification accuracy of the proposed

method is higher than other comparison methods. In par-

ticular, when the data dimension is 81 and we random

choose 3 samples as training samples, our method achieves

13 % than SRC.

4.2 Evaluation on the ORL database

The ORL database [30] contains images from 40 individ-

uals, each providing 10 different images. All subjects are in

up-right, frontal position (with tolerance for some side

movement). The size of each face image is 112 9 92, and

the resulting standardized input vectors are of dimension-

ality 10,304. In the experiment, the images are converted

into the size of 40 9 40. Figure 4 shows images of the

same subject of ORL. Figure 5 is the result of NN, NS,

SRC, lp(0 \ p \ 1) SRC and our method conducted on

ORL face database.

From Fig. 5, the accuracy of classification of the pro-

posed method is higher than other comparison methods.

Fig. 5b shows that at the data dimension is 81 and when we

random choose 5 samples as training samples, our method

achieves 1.5 % than SRC.

4.3 Evaluation on the AR database

The AR [31] database consists of more than 4,000 face

images of 126 subjects (70 men and 56 women). The

database characterizes divergence from ideal conditions by

incorporating various facial expressions (neutral, smile,

anger, and scream), occlusion modes (sunglass and scarf),

and luminance alterations (left light on, right light on, and

Fig. 4 Images of one subject in ORL
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all side lights on). Each individual participated in two

sessions, separated by 2 weeks (14 days). In the experi-

ments, we exploited cropped face images of 100 subjects

(50 men and 50 women). We crop and normalize all the

face images of AR in 40 9 40. We test the robust perfor-

mance of the proposed method on AR database. The

experiments are conducted for variations in facial expres-

sion, variations in lighting condition, and contiguous

occlusion.
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(c)

b Fig. 5 Face recognition rate on ORL database. We randomly select

four (a), five (b), and six (c) images from each subject to construct the

training set and the rest used for testing. We conduct five trials for

each partition and compare the performance of different algorithms

based on the averaged accuracy of the five trials on each dimension

for each type of the partition

Fig. 6 Facial expression variation in the AR database. a–d and

e–h correspond to two different sessions incorporating neutral, happy,

angry, and screaming expressing, respectively
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Fig. 7 Face recognition rate for testing variations in facial expres-

sion. We conduct five trials for each partition and compare the

performance of different algorithms based on the averaged accuracy

of the five trials on each dimension for each type of the partition
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4.3.1 Variations in facial expressions

We selected a subset database in which involves variations

in facial expressions. Figure 6 shows images used for

testing variations in facial expression of one subject.

Figure 6a, e is used for training and the others are used for

testing. The number of training sample is 240 and the

number of test sample is 720. Figure 7 shows the results of

variations in facial expressions.

From Fig. 7, we can see that SRC has better classifica-

tion performance on facial expression than lp(0 \ p \ 1)

SRC. Our method has the best performance among all the

comparison methods.

4.3.2 Variations in lighting conditions

We selected images which involves lighting change on left,

right, and all sides as a subset for test variations in lighting

conditions. Figure 8a, e is used for training and the rest

images of Fig. 8 are used for testing. Thus, the total

number of training samples is 240 and the total number of

test samples is 720. Figure 9 shows the experimental

results of lighting variation tested on AR database.

From Fig. 9, we can see our method has the best per-

formance among all the comparison methods. SRC has

Fig. 8 Lighting variations images in the AR database. a–d and

e–h correspond to two different sessions incorporating neutral, left

light on, right light on, and all sides light on, respectively
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Fig. 9 Face recognition rate for testing variations in lighting

condition. We conduct five trials for each partition and compare the

performance of different algorithms based on the averaged accuracy

of the five trials on each dimension for each type of the partition

Fig. 10 Images of sunglasses occlusion in AR database. b–d and

f–h are sunglasses occlusion images of one individual

Fig. 11 Images of scarf occlusion in AR database. b–d and f–h are

scarf occlusion images of one individual
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better classification performance on lighting condition than

lp(0 \ p \ 1) SRC.

4.3.3 Contiguous occlusion

The problem of face identification in the presence of con-

tiguous occlusion is arguably one of the most challenging

paradigms in the context of robust face recognition [33]. For

testing the performance of ES-FRD on the contiguous

occlusion, we make two parts of experiments in this section.

We test the occlusion with sunglasses and scarf, respectively.

Figures 10 and 11 are used to test the occlusion with sun-

glasses and scarf, respectively. Figure 10a, e is used for

training and the others are used for testing. Thus, the total

number of training samples is 240. The experiment scheme

of scarf occlusion is all the same as sunglasses occlusion.

From the Figs. 7, 9 and 12, we verify the robust per-

formance of the proposed method. The proposed method

has better classification performance for variations in facial

expression, lighting variations, and contiguous occlusion in

AR database.

4.4 Sparsity evaluation

In this section, we evaluate the sparsity of the proposed

algorithm. According to the Ref [34], the sparseness can be

calculated by the equation defined as:

sparsenessðmÞ ¼
ffiffi
t
p
�
P

i mij j
� �

=
ffiffiffiffiffiffiffiffiffiffiP

m2
i

p
ffiffi
t
p
� 1

where t is the dimensionality of vector v. From Table 1, we

can see that the proposed method has more sparseness than

other comparison methods.

5 Conclusion

Sparse representation-based classification (SRC) has been

successfully applied for face recognition. SRC seeks the

sparsest linear combination of training sample for any test

samples, but it is time consuming for counting the norm

minimization solution of the associated coding coefficients.

In the paper, we propose a novel method for face recog-

nition, which need not count norm minimization problem.

The proposed method first approximately represents the

training data matrix by full rank decomposition, then rep-

resents the test sample as a linear combination of the

training data. The generalized inverse of matrix is used for

solving the solution of linear equation. We classify the test

sample into the class which has the minimum residual. The

experiment results suggest that the proposed method

achieves higher accuracy for face recognition.
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Table 1 Sparseness of SRC, lp(0 \ p \ 1) SRC, and our method on

ORL, FERET database

Database l0 SRC l0.1 SRC l0.5 SRC SRC Our method

ORL 0.6052 0.7011 0.7311 0.7602 0.7806

FERET 0.5942 0.6432 0.6128 0.7264 0.7427
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Fig. 12 Face recognition rate for testing contiguous occlusion. We

conduct five trials for each partition and compare the performance of

different algorithms based on the averaged accuracy of the five trials

on each dimension for each type of the partition. a Sunglasses

occlusion. b Scarf occlusion
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