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Abstract In this paper, the accuracy of He’s energy balance

method for the analysis of conservative nonlinear oscillator is

improved based on combining features of collocation method

and Galerkin–Petrov method. In order to demonstrate the

effectiveness of proposed method, Duffing oscillator with

cubic nonlinearity, double-well Duffing oscillator, and non-

linear oscillation of pendulum attached to a rotating support

are considered. Comparison of results with ones achieved

utilizing other techniques shows improved energy balance

method can very effectively reduce the error of simple energy

balance method. Also, results show in large amplitude of

oscillation, and improved energy balance method yields better

accuracy rather than second-order energy balance method

based on collocation and second-order energy balance method

based on Galerkin method. Improved energy balance method

can be successfully used for accurate analytical solution of

other conservative nonlinear oscillator.

Keywords Conservative nonlinear oscillator � Energy

balance method � Improved energy balance method �
Analytical solution

1 Introduction

The nonlinear problem often arising in exact modeling of

phenomena in mechanics and physics and study of them is

of interest to many researchers. The traditional methods to

solve this nonlinear problem cannot be applied if no small

parameter exists in equation. To overcome the shortcom-

ing, several analytical methods such as energy balance

method [1], homotopy perturbation method [2], harmonic

balance method [3], Hamiltonian approach [4], homotopy

analysis method [5], max–min approach [6], optimal ho-

motopy perturbation method [7], homotopy perturbation

transform method [8], Laplace decomposition method [9],

Adomian decomposition method [10], and coupling of

homotopy-variational method [11] were proposed by

researchers and used for analysis of nonlinear equation

[12–23]. First-order approximation of these methods by

simple calculation yields good accuracy, but interest to

reduce the relative error induced the researchers to

implement higher order of approximations, for example,

Ma et al. [24] applied higher-order homotopy perturbation

method to periodic solutions of nonlinear Jerk equation,

Belendez et al. [25] by second-order harmonic balance

method obtained accurate frequency–amplitude relation for

nonlinear oscillator in which the restoring force is inversely

proportional to the dependent variable, and Pirbodaghi

et al. [26] obtained an accurate analytical solution for

Duffing equations with cubic and quintic nonlinearities

using the homotopy analysis method.

Energy balance method was first proposed by professor

He [1]; in this method, a variational principle for the non-

linear oscillation is established, and then, a Hamiltonian is

constructed, from which the angular frequency can be readily

obtained by collocation method. First-order energy balance

method yields accurate solution in comparison with first-

order approximation of other techniques. Durmaz et al. [27]

obtain higher-order approximation of energy balance

method based on collocation approach for nonlinear Duffing

oscillator. Sfahani et al. [28] improved the accuracy of
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energy balance method using a new trial function. Durmaz

and Kaya [29] used Galerkin method as weighting function

and obtain higher-order approximations.

In the present study, the accuracy of He’s energy bal-

ance method for analysis of conservative nonlinear oscil-

lator is improved based on combining features of

collocation method and Galerkin–Petrov method [30].

Results shows that this approach very effectively reduce

relative error of first-order energy balance method.

2 The basic idea of He’s energy balance method

Consider a general form on nonlinear oscillator with initial

conditions in the form

€uþ f ðuÞ ¼ 0; uð0Þ ¼ A; _uð0Þ ¼ 0: ð1Þ

Its variational can be written as

JðuÞ ¼
ZT=4

0

� 1

2
_u2 þ FðuÞ

� �
dt: ð2Þ

where T ¼ 2p
x is period of nonlinear oscillation and

FðuÞ ¼
R

f ðuÞdu.

The Hamiltonian, therefore, can be written in the form

H tð Þ ¼ � 1

2
_uþ F uð Þ ¼ F Að Þ; ð3Þ

Equation (3) yields the following residual

R tð Þ ¼ � 1

2
_uþ F uð Þ � F Að Þ ¼ 0: ð4Þ

We assume the first-order approximate solution as

follows

u tð Þ ¼ A cos xt; ð5Þ

Substituting Eq. (5) into Eq. (4) yields the following

residual

RðtÞ ¼ 1

2
A2x2 sin2 xt þ FðA cos xtÞ � FðAÞ ¼ 0: ð6Þ

And finally collocation at xt ¼ p
4

gives

x ¼ 2

A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F Að Þ � F

ffiffiffi
2
p

2
A

� �s
: ð7Þ

3 Improved energy balance method

In order to improve the accuracy of energy balance

method, we consider the solution of Eq. (1) as follows

u tð Þ ¼ b cos xt þ b1 cos 3xt; ð8Þ

Equation (8) must satisfy initial conditions; therefore, we have

A ¼ bþ b1; ð9Þ

It should be noted that method does not have any lim-

itation for trial solution, and other functions could be

considered as trial solution in Eq. (8). Other possible trial

functions could be found in [31].

Now, by using Eq. (9), we can rewrite Eq. (8) as follows

u tð Þ ¼ b cos xt þ A� Bð ÞðA� bÞ cos 3xt: ð10Þ

By inserting Eq. (10) into Eq. (4), residual are obtained.

Obtained residual contain two unknown parameters, one of

them is x and other is b. In order to determine unknown

parameters, we need two equations; the first equation

obtained based on collocation method as follows

Lim
xt!p

4

R tð Þ ¼ 0; ð11Þ

Also, the second equation obtained based on Galerkin–

Petrov method [30] as follows

ZT=4

0

R tð Þ cos xtdt ¼ 0: ð12Þ

Finally, by simultaneously solution of Eqs. (11) and

(12), unknown parameters are determined for different

value of A.

4 Application

4.1 Example 1

Consider Duffing oscillator with cubic nonlinear term in

the following form

€uþ uþ eu3 ¼ 0; u 0ð Þ ¼ A; _u 0ð Þ ¼ 0: ð13Þ

The variational of Eq. (13) is given as follows

JðuÞ ¼
Z t

0

� _u2

2
þ u2

2
þ e

u4

4

� �
dt ð14Þ

Its Hamiltonian, therefore, can be written in the form

H ¼ _u2

2
þ u2

2
þ e

u4

4
¼ A2

2
þ e

A4

4
ð15Þ

In order to determine residual, we substitute Eq. (10) into

Eq. (15), and then, we have

RðtÞ ¼ 1

2
�b sin xtð Þx� 3 A� bð Þ sin 3xtð Þxð Þ2

þ 1

2
b cos xtð Þ þ A� Bð Þ cos 3xtð Þð Þ2

þ 1

4
e b cos xtð Þ þ A� bð Þ cos 3xtð Þð Þ4

� 1

2
A2 � 1

4
eA4; ð16Þ
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Based on collocation method, we have

Lim
xt!p

4

R tð Þ ¼ b2x2 � 3bx2Aþ 9

4
x2A2 þ b2 � bA� 1

4
A2

þ eb4 � 2eb3Aþ 3

2
eb2A2 � 1

2
ebA3

� 3

16
eA4 ¼ 0; ð17Þ

Also, based on Galerkin–Petrov method [30], we have

ZT
4

0

R tð Þcosxtdt¼� 1

180180x
43758A2þ27549eA4
�

þ679536bx2A�82368b2�71680eb4

þ68640bA�393822x2A2�315744b2x2

�140544eb2A2þ52096ebA3

þ153600eb3AÞ¼0: ð18Þ

By solving Eqs. (17) and (18) simultaneously, one can

obtain amplitude–frequency relation. Simple energy bal-

ance method based on collocation method yields the fol-

lowing amplitude–frequency relation [27] for this example

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3

4
eA2

r
: ð19Þ

Comparisons between approximate frequencies obtained

by different techniques are given in Table 1.

Consider a case with e = 10 and A = 5; for this case by

using Eq. (19), simple EBM solution was obtained in the

following form

u tð Þ ¼ 5 cos 13:7295tð Þ; ð20Þ

Also, improved EBM solution was obtained as follows

u tð Þ ¼ 4:8285 cos 13:3692tð Þ þ 0:1715 cos 40:1076tð Þ:
ð21Þ

The comparison between analytic solutions obtained in

Eqs. (20) and (21) in conjunction with fourth-order Runge–

Kutta numerical solution was presented in Fig. 1. Com-

parison between phase-plane diagram obtained with

analytical and numerical solution was presented in Fig. 2.

The difference between analytical and numerical solution

is plotted in Fig. 3. As seen in Table 1 and Figs. 1, 2 and 3,

the results obtained by improved energy balance method

yield very good accuracy and are in better agreement with

numerical solution.

4.2 Example 2

The Duffing equation with a double-well potential (with a

negative linear stiffness) is an important model. One

physical realization of such a Duffing oscillator model is a

Table 1 Comparisons between

frequencies obtained by

different techniques for

example 1

eA2 Exact Simple EBM [27]

|Error %|

Second-order EBM

based on collocation

method [27]

|Error %|

Second-order EBM

based on Galerkin

method [29]

|Error %|

Improved EBM

|Error %|

1 1.3178 1.3229 (0.387 %) 1.3161 (0.129 %) 1.3164 (0.110 %) 1.3154 (0.182 %)

5 2.1504 2.1795 (1.353 %) 2.1406 (0.456 %) 2.1426 (0.363 %) 2.1416 (0.409 %)

10 2.8666 2.9155 (1.705 %) 2.8500 (0.579 %) 2.8536 (0.455 %) 2.8536 (0.453 %)

100 8.5336 8.7178 (2.158 %) 8.4700 (0.745 %) 8.4843 (0.579 %) 8.4922 (0.485 %)

1,000 26.8107 27.4044 (2.214 %) 26.6055 (0.765 %) 26.6519 (0.592 %) 26.6800 (0.487 %)

5,000 59.9157 61.2454 (2.219 %) 59.4559 (0.767 %) 59.5599 (0.594 %) 59.6234 (0.487 %)

Fig. 1 A comparison between the simple EBM and improved EBM in

conjunction with the fourth-order Runge–Kutta method for example 1

Fig. 2 Phase-plane diagram obtained by analytical and numerical

solution for example 1
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mass particle moving in a symmetric double-well potential.

This form of the equation also appears in the transverse

vibrations of a beam when the transverse and longitudinal

deflections are coupled [32, 33]. Double-well Duffing

oscillator is in the following form

€u� uþ u3 ¼ 0; u 0ð Þ ¼ A; _u 0ð Þ ¼ 0: ð22Þ

When A [ 2, oscillation occurs between symmetric

limits [- A, A]. For the case 1 \ A \ 2, the oscillation

occurs around stable equilibrium points u = ?1 and is

asymmetric about it. In the present study, we consider first

case with A [ 2.

The variational of Eq. (22) is given as follows

J uð Þ ¼
Z t

0

� _u2

2
� u2

2
þ u4

4

� �
dt; ð23Þ

Its Hamiltonian, therefore, can be written in the form

H ¼ _u2

2
� u2

2
þ u4

4
¼ �A2

2
þ A4

4
; ð24Þ

In order to determine residual, we substituting Eq. (10) into

Eq. (24); then, we have

R tð Þ ¼ 1

2
�b sin xtð Þx� 3 A� bð Þ sin 3xtð Þxð Þ2

� 1

2
b cos xtð Þ þ A� bð Þ cos 3xtð Þð Þ2

þ 1

4
b cos xtð Þ þ A� bð Þ cos 3xtð Þð Þ4

þ 1

2
A2 � 1

4
A4; ð25Þ

Based on collocation method, we have

Lim
xt!p

4

R tð Þ ¼ b2x2 � 3bx2Aþ 9

4
x2A2 � b2 þ bAþ 1

4
A2

þ b4 � 2b3Aþ 3

2
b2A2 � 1

2
bA3

� 3

16
A4 ¼ 0; ð26Þ

Also, based on Galerkin–Petrov method [30], we have

ZT
4

0

R tð Þcosxtdt¼� 1

180180x
�43758A2þ27549A4
�

þ679536bx2Aþ82368b2�71680b4

�68640bA�393822x2A2�315744b2x2

�140544b2A2þ52096bA3þ153600b3A
�
¼0:

ð27Þ

By solving Eqs. (26) and (27) simultaneously, one can

obtain amplitude–frequency relation. Simple energy bal-

ance method based on collocation method yields the fol-

lowing amplitude–frequency relation [33] for this example

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1þ 3

4
eA2

r
: ð28Þ

Comparisons between approximate periods obtained by

simple and improved energy balance method and exact

period are given in Table 2. Frequency and period of

oscillation have the following relation with together

T ¼ 2p
x
: ð29Þ

When A = 1.7, by using Eq. (28), simple EBM solution

obtained in the following form

u tð Þ ¼ 1:7 cos 1:08053tð Þ; ð30Þ

And improved EBM solution obtained as follows

u tð Þ ¼ 1:6059 cos 0:99809tð Þ þ 0:0941 cos 2:99427tð Þ:
ð31Þ

Also, when A = 10, by using Eq. (28), simple EBM

solution obtained in the following form

u tð Þ ¼ 10 cos 8:60239tð Þ; ð32Þ

For this case, improve EBM solution obtained as follows

u tð Þ ¼ 9:65168 cos 8:36893tð Þ þ 0:34832 cos 25:10679tð Þ: ð33Þ

The comparison between analytic solutions obtained in

Eqs. (30), (31), (32), and (33) in conjunction with fourth-

order Runge–Kutta numerical solution was presented in

Figs. 4 and 5. The results show that the improved energy

balance method very effectively reduce error and yields

better accuracy.

4.3 Example 3

Mathematical model of the nonlinear oscillation of pen-

dulum attached to a rotating support [34–36] is in the

following form

€hþ sin hð Þ 1� K cos hð Þð Þ ¼ 0; h 0ð Þ ¼ A; _h 0ð Þ ¼ 0: ð34Þ

Fig. 3 Difference between analytical and numerical solution for

example 1
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where K is a function of rotating support angular velocity, the

acceleration of gravity, and length of pendulum. Without

loss of generality, we set K = 1. In order to solve Eq. (34) by

improved energy balance method, we rewrite this equation

based on Taylor expansion in the following form

€hþ h3

2
� h5

8
þ h7

80
¼ 0; h 0ð Þ ¼ A; _h 0ð Þ ¼ 0: ð35Þ

The variational of Eq. (35) is given as follows

J uð Þ ¼
Z t

0

� 1

2
_h2 þ h4

8
� h6

48
þ h8

640

� �
dt; ð36Þ

Its Hamiltonian, therefore, can be written in the form

H ¼ 1

2
_h2 þ h4

8
� h6

48
þ h8

640
¼ A4

8
� A6

48
þ A8

640
; ð37Þ

In order to determine residual, we substituting Eq. (10) into

Eq. (37); then, we have

R tð Þ ¼ 1

2
�b sin xtð Þx� 3 A� bð Þ sin 3xtð Þxð Þ2

þ 1

8
b cos xtð Þ þ A� bð Þ cos 3xtð Þð Þ4� 1

48
b cos xtð Þð

þ A� bð Þ cos 3xtð ÞÞ6þ 1

640
b cos xtð Þ þ A� bð Þ cos 3xtð Þð Þ8

� 1

8
A4 þ 1

48
A6 � 1

640
A8;

ð38Þ

Based on collocation method, we have

Lim
xt!p

4

R tð Þ ¼ 9

4
x2A2 � 3

2048
A8 � 7

160
b3A5 � 7

40
b5A3

� 1

10
b7Aþ 7

64
b4A4 þ 7

40
b6A2 � 1

640
bA7 þ 7

640
b2A6

þ b2x2 þ 3

4
b2A2 � b3A� 1

4
bA3 þ 1

32
bA5 � 5

32
b2A4

þ 5

12
b3A3 þ 1

2
b5A� 5

8
b4A2 � 3

32
A4 þ 7

384
A6

þ 1

2
b4 þ 1

40
b8 � 3bx2A� 1

6
b6 ¼ 0;

ð39Þ

Also based on Galerkin–Petrov method [30], we have

ZT
4

0

R tð Þ cos xtdt ¼� 1

1070845776000x

ð�2340562910400x2A2 þ 1197025389A8:

þ50757697536b3A5 þ 12994058646b5A3

þ50381979648b7A� 101033246720b4A4

�106092822528b6A2 þ 2845175808bA7

�16206962688b2A6 � 1876529740800b2x2

�417640550400b2A2 þ 456437760000b3A

þ154808473600bA3 � 32421094400bA5

þ136065792000b2A4 � 288370688000b3A3

�237404160000b5Aþ 355446784000b4A2

þ81864608400A4 � 15065943000A6

�213004288000b4 � 10796138496b8

þ4038618355200bx2Aþ 69638553600b6
�
¼ 0:

ð40Þ

Table 2 Comparison between

simple and improved EBM in

conjunction with exact period

A 1.42 1.45 1.5 1.7 2 10 100

Exact [32] 15.0844 11.2132 9.22366 6.35285 4.68568 0.747096 0.0741684

Simple EBM

[33]

TSEBM=TSEBM

	 

8.77821

(0.5819)

8.27259

(0.8297)

7.57769

(0.8654)

5.8149

(0.9253)

4.4429

(0.9519)

0.7304

(0.9783)

0.072553

(0.9788)

Improved EBM

TSEBM=TSEBM

	 
 10.43967

(0.6921)

9.63415

(0.8591)

8.60592

(0.9330)

6.29516

(0.9909)

4.69385

(1.0017)

0.75077

(1.0049)

0.074531

(1.0049)

Fig. 4 A comparison between the simple EBM and improved EBM

in conjunction with the fourth-order Runge–Kutta method for

example 2 (A = 1.7)

Fig. 5 A comparison between the simple EBM and improved EBM

in conjunction with the fourth-order Runge–Kutta method for

example 2 (A = 10)
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By solving Eqs. (39) and (40) simultaneously, one can

obtain amplitude–frequency relation. Simple energy bal-

ance method based on collocation method yields the fol-

lowing amplitude–frequency relation [36] for this example

x ¼ 2

A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos

ffiffiffi
2
p

2
A

� �
� 1

4
cos

ffiffiffi
2
p

A
	 


� cos Að Þ þ 1

4
cos 2Að Þ

s
:

ð41Þ

When A = 1, by using Eq. (41), simple EBM solution

obtained in the following form

y ¼ cos 0:55468tð Þ; ð42Þ

And improve EBM solution obtained as follows

y ¼ 0:96382 cos 0:54117tð Þ þ 0:03618 cos 1:62351tð Þ;
ð43Þ

Comparison between simple EBM, improved EBM, and

numerical solution has been done in Table 3; as can been

seen, improved EBM solution yields better accuracy, and

results are in good agreement with numerical solution.

When A = 1.5, by using Eq. (41), simple EBM solution

obtained in the following form

y ¼ 1:5 cos 0:73132tð Þ; ð44Þ

And improved EBM solution obtained as follows

y ¼ 1:44376 cos 0:72016tð Þ þ 0:05624 cos 2:16048tð Þ;
ð45Þ

The comparison between analytic solutions obtained in

Eqs. (44) and (45) in conjunction with the fourth-order

Runge–Kutta numerical solution was presented in Fig. 6.

5 Conclusion

In this study, accuracy of He’s energy balance method is

improved for the analysis of conservative nonlinear oscil-

lator. To illustrate the accuracy of proposed method, three

examples are considered. Obtained results are in very good

agreement with those obtained via numerical solution, and

error of simple energy balance method is very effectively

reduced. We conclude this method is very effective and

convenient for analysis of conservative nonlinear oscillators.
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