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Abstract In this article, an internal model control plus

proportional-integral-derivative (IMC–PID) tuning proce-

dure for cascade control systems is proposed based on the

gain and phase margin specifications of the inner and outer

loop. The internal model control parameters are adjusted

according to the desired frequency response of each loop

with a minimum interaction between the inner and outer

PID controllers, obtaining a fine tuning and the desired gain

and phase margins specifications due to an appropriate

selection of the PID controller gains and constants. Given

the design specifications for the inner and outer loop, this

tuning procedure adjusts the IMC parameter of each con-

troller independently, with no interference between the

inner and outer loop obtaining a robust method for cascade

controllers with better performance than sequential tuning

or other frequency domain-based methods. This technique

is accurate and simple, providing a convenient technique

for the PID tuning of cascade control systems in different

applications such as mechanical, electrical or chemical

systems. The proposed tuning method explained in this

article provides a flexible tuning procedure in comparison

with other tuning procedures because each loop is tuned

simultaneously without modifying the robustness charac-

teristics of the inner and outer loop. Several experiments

are shown to compare and validate the effectiveness of the

proposed tuning procedure over other sequential or cascade

tuning methods; some experiments under different condi-

tions are done to test the performance of the proposed

tuning technique. For these reasons, a robustness analysis

based on sensitivity is shown in this article to analyze the

disturbance rejection properties and the relations of the

IMC parameters.

Keywords PID control � IMC control � Robust control �
Cascade control � Robustness

1 Introduction

Cascade control has been implemented in industry and

different applications [3, 13, 16] due to their disturbance

rejection, faster response and other advantages over single-

loop control systems. Usually, they are tuned sequentially,

the inner loop controller is tuned first to give a faster

response than the outer loop, and then, the outer loop

controller is tuned according to the resulting system.

Apart from sequential tuning, there are some control

strategies that are suitable for cascade control design such

as the internal model control (IMC) [18, 21, 22, 28, 34] and

Smith predictor [7], due to their flexibility in the tuning

parameters. These methods provide a better system

response than sequential tuning due to the adjustment of

the inner loop has minimum effects on the outer loop.

Tuning methods for proportional-integral-derivative

(PID) controllers based on the frequency characteristics for

single loop systems have some advantages over other

methods due to the robustness parameter selection such as

gain margin and phase margin [4, 9, 23] or the system

sensitivity [33].

Exploiting the flexibility of the IMC due to its tuning

parameter and the robustness characteristics of the
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frequency-based tuning algorithm, an IMC–PID/PID tun-

ing method for cascade process with phase margin and gain

margin specifications is proposed in this article.

There are limited tuning methods found in the literature

related to the tuning of cascade process with frequency

domain specifications, but with this approach, an appro-

priate tuning method for nested systems is developed, in

which the robust design is necessary to avoid loop inter-

action in the adjustment procedure and obtain a system

with disturbance rejection properties.

The methods based on relay tuning [8, 19] give a

practical solution for this problem, but they do not give an

analytical solution. Therefore, an analytical tuning formu-

lae based on IMC–PID control are presented in this article.

A second-order plus dead time model is employed on the

inner loop SOPTD, and a first-order plus dead time model

FOPTD is implemented in the outer loop.

The internal model controller parameters for the inner

and outer loop are adjusted by the tuning formulae based on

the gain margin and phase margin specification for each

loop. The internal model controller for cascade process

[10, 18, 21] is related to the frequency domain specifications

by the gain margin and phase margin properties of feedback

systems given by the characteristics of the frequency

response. Therefore, the tuning parameters of the PID/PID

controllers are adjusted, taking into account the effects on

the sensitivity for each loop obtaining the required system

response and the specified gains and phase margins. Apart

from traditional tuning procedures for single loop and cas-

cade control systems, there are some IMC strategies based

on intelligent control and optimization such as [12] where an

IMC controller design is performed using ARX —artificial

neural networks—for MIMO nonlinear systems is pre-

sented; in Bin et al. [5], an IMC controller design with PLS

(partial least square) is shown where a predictor is imple-

mented to adjust the controller parameters to stabilize the

process. Even when intelligent control strategies for similar

problems are found in the literature, the classic control

techniques are still in use and they are very useful as

explained in this section; therefore, the proposed control

strategy explained in this article is suitable for the inde-

pendent tuning of cascade control systems.

The theoretical background of this technique is based on

the internal stability properties of closed-loop systems [32]

where a stabilizing controller is obtained based on the

characteristics of the plant, but this model is extended to

cascade control systems providing a convenient method-

ology for this kind of control architecture. The frequency

domain tuning parameters, such as the gain margin and

phase margin, allow the designer to select the relative

stability characteristics of the cascade system with high

accuracy, exploiting the properties of these parameters

[20]. The main idea of the proposed control technique is

based on pole/zero cancellation, taking into account that

the IMC–PID controller works as a lead-lag compensator

for the inner and outer loop [31] selecting the appropriate

gains and time constants for each controller. Finally, the

selected controllers provide robust closed loop systems [1]

where the unmodeled dynamics do not affect the system

response in a wide range of the IMC–PID controller

parameters, which allow the designer to select the optimal

controller ensuring robust stability and robust performance.

The explanations of the theory and development of this

procedure are evinced in the rest of the article. In Sect. 2, a

review of the previous related work is presented. In Sect. 3,

the design of the internal model controller for parallel

process is shown. In Sect. 4, the derivation of the frequency

domain tuning formulae based on gain and phase margin is

presented. In Sect. 5, a robustness analysis is done. In Sect.

6, simulations and analysis of several examples are

developed. Finally, the conclusions of the obtained results

are shown in Sect. 7.

2 Related work

As explained in the previous section, there are limited

contributions found in the literature related to the proposed

technique, but there is some related work for the inde-

pendent tuning of cascade control systems; most of this

work refers to the sequential tuning of each loop. Even

when these tuning procedures are not designed for cascade

control systems, they are an important theoretical back-

ground for this kind of nested architecture. A robust PID

controller design for single loop system is found in Wang

[31] where a gain and phase margin design procedure is

presented based on optimization. Another tuning procedure

based on this approach is found in Li [20] where a PID

tuning procedure is designed based on nonlinear optimi-

zation, taking into account the phase margin, gain margin

and bandwidth specifications. The tuning of PID control-

lers for cascade control systems is mainly done by two

strategies: One of these is by the relay method [8] where

even when this method is more practical than theoretical,

an analytical solution could be approximated as shown [4];

the other strategy is based on the Smith predictor [7].

Some related work can be found in Kaya and Atherton

[15], where an optimal controller tuning for cascade sys-

tems for FOPTD and SOPTD based on optimality is done.

Another approach for the tuning of cascade control systems

is shown in Alfaro et al. [2] where a cascade control system

tuning technique for 2-DOF systems is designed. Another

contribution in this field is shown in Visioli and Piazzi [30]

where a disturbance rejection design is developed for the

PID tuning of cascade control systems. As mentioned

before, another strategy used is the Smith predictor [7],
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which is a popular control technique for this kind of

architecture; in Kaya [14], there is another example of the

tuning of cascade control systems with Smith predictor

where some control strategies are proposed for this kind of

systems.

Some authors propose PID tuning strategies imple-

menting artificial intelligence techniques, which provides a

flexible solution for some kinds of systems where the

complexity of the problem does not allow the designer to

use traditional techniques [24], which explains a tuning

technique for cascade control systems using genetic algo-

rithms. This method is useful when the system is too

complex due to nonlinearities, but it could be applied in

noncomplex systems. Another approach using artificial

intelligence is found in Shenglin et al. [26], where an IMC–

PID tuning technique for single loop controller with neural

network is proposed; in this case, an adaptive controller is

tuned with a neural network architecture. In Huang et al.

[11], a tuning procedure for cascade systems using intel-

ligent control strategies is shown, and a fuzzy logic tuning

procedure is developed with a fuzzy PID-like controller.

Even when these strategies are very innovative and useful,

the tuning of PID cascade control systems with robustness

parameters is still necessary, due to the effectiveness and

flexibility of the relative stability parameters; especially,

when a transfer function representation of the plant is

obtained by experimentation or system identification,

reducing the complexity of the problem.

3 Internal model design for cascade process

An IMC for a cascade process as shown in Fig. 1 is nec-

essary before deriving the frequency-based tuning formu-

lae. The IMC controller is based on the models proposed by

Dola and Majhi [6], Lee and Park [18], Morari and Zafiriou

[21], obtaining the tuning rules for the inner and outer loop

of the cascade process.

In Fig. 1, C1(s) is the PID controller for the inner loop,

G1(s) is the process plant for the inner loop given as a

second order plus time delay model (SOPTD), C2(s) is the

PID controller for the outer loop, G2(s) is the process plant

for the outer loop given as a first order plus time delay

(FOPTD) model, including the disturbance inputs as stan-

dard cascade architecture.

The equivalent closed loop transfer function for the

inner loop is shown in (1)

Y1

R1

¼ C1 sð ÞG1 sð Þ
1þ C1 sð ÞG1 sð Þ ð1Þ

The equivalent closed loop transfer function for the

outer loop is shown in (2)

Y2

R2

¼
C2 sð Þ Y1

R1

� �
G2 sð Þ

1þ C2 sð Þ Y1

R1

� �
G2 sð Þ

ð2Þ

Using the transfer function relations for the inner and

outer loops, the respective IMC controllers are derived to

satisfy the set point and disturbance rejection requirements.

3.1 IMC controller design for the inner loop

For the inner loop IMC–PID controller design, an optimal

controller must be selected in order to minimize the error

on a set point change and reduce the effects of the dis-

turbances on the inner loop. The inner loop can be

designed without interacting with the performance of the

outer loop.

Consider the stable function Gi(s) [21], where i = 1

denotes the inner loop transfer function and i = 2 denotes

the outer loop transfer function.

Gi sð Þ ¼ GiA sð ÞGiM sð Þ i ¼ 1; 2 ð3Þ

where

GiA sð Þ ¼ e�shi

Y�sþ fi

sþ fH
i

i ¼ 1; 2 ReðfiÞ; hi [ 0 ð4Þ

H denotes complex conjugate.

GiM(s) has the invertible part of the model, and GiA(s)

include all the right half plane zeros and delays of Gi(s).

GiA jxð Þj j ¼ 1 ð5Þ

The feedback controller of the inner loop is given by (6)

as defined in Lee and Park [18], Morari and Zafiriou [21]

where q1 is the IMC controller and it is H2 optimal for a

particular input.

C1 ¼
q1

1� G1q1

ð6Þ

Based on the inner loop error, set point and disturbance

input, the variable ~q1 is obtained and then augmented by a

filter as shown in (7), (8) and (9)

~q1 ¼ G�1
1MðsÞ ð7Þ

q1 ¼ ~q1f ð8ÞFig. 1 Cascade control system
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where the filter

f ¼ 1

k1sþ 1ð Þn ð9Þ

k1 and n must be selected to ensure that the IMC con-

troller is proper. k1 adjusts the speed of the closed

response in the inner loop. Later, this parameter k1 will be

adjusted according to the gain and phase margin specifi-

cations of the inner loop, resulting in a convenient tuning

method.

The main objective of the feedback controller of the

inner loop is to follow the desired closed loop response

[18] obtained from (1) and shown in (10)

Y1

R1

¼ G1AðsÞ
k1sþ 1ð Þn ð10Þ

Then, the feedback controller of the inner loop is

obtained from (6) to meet the requirements of (10)

C1ðsÞ ¼
G�1

1mðsÞ
ðk1sþ 1Þn � G1AðsÞ

ð11Þ

Based on (11), the IMC–PID controller rules will be

derived, obtaining the formulae for the gains and constants of

the inner loop feedback controller that will be used in the

tuning method based on gain and phase margin specifications.

3.2 IMC controller design of the outer loop

The IMC controller design of the outer loop is done in a

similar fashion as the inner loop. The desired closed loop

response of the inner loop must be considered in the design

of the outer loop controller. Then, the process of the outer

loop, as shown in Fig. 1, is given by Gp2(s)

Gp2 sð Þ ¼ Y1

R1

G2 sð Þ ¼ G1AðsÞ
k1sþ 1ð Þn G2 sð Þ ð12Þ

Gp2(s) can be partitioned into two portions, similar as

G1(s), where Gp2M(s) has the invertible part of the model

and Gp2A(s) include all the right half plane zeros and delays

of Gp2(s).

The feedback controller C2(s) for the outer loop can be

designed without effects on the closed loop performance.

C2(s) is defined by (13)

C2 ¼
q2

1� Gp2q2

ð13Þ

Based on the outer loop error, set point and disturbance

input, the variable ~q2 is obtained and then augmented by a

filter as shown in (14), (15) and [16, 17]

~q2 ¼ G�1
p2MðsÞ ð14Þ

q2 ¼ ~q2f ð15Þ

where the filter

f ¼ 1

k2sþ 1ð Þn ð16Þ

k2 is the IMC parameter of the outer loop that will be

adjusted later according to the gain and phase margin

specifications. The speed of response of the closed loop

cascade control system can be adjusted with k2, but as it is

explained later in this article, there is a minimum interac-

tion between the inner and outer loop.

The feedback controller C2(s) of the outer loop is

designed to follow the desired closed loop response [18]

obtained from (2) and given in (17)

Y2

R2

¼ Gp2AðsÞ
k2sþ 1ð Þn ð17Þ

The feedback controller for the outer loop is obtained

from (13) following the desired closed loop response given

in (17) and the equivalent cascade process set point set-

tings. C2(s) is given in (18)

C2ðsÞ ¼
G�1

p2mðsÞ
ðk2sþ 1Þn � Gp2AðsÞ

ð18Þ

With C2(s), the IMC controller for the outer loop can be

approximated by a PID controller, obtaining the gains and

constants dependent of the IMC parameters which will be

used for the PID controller tuning according to the fre-

quency domain specifications.

The disturbance rejection and set point tracking of the

inner and outer loop depend on the adjustment of the IMC

parameters according to the frequency domain specifica-

tions of the controllers C1(s) and C2(s).

3.3 IMC–PID controller design

The IMC–PID controller design of the inner loop is done

based on the SOPTD model approximation of G1(s), which

can be obtained by the half rule [27]. The SOPTD is

described in (19)

G1 sð Þ ¼ K1e�h1s

ðs1sþ 1Þðs2sþ 1Þ ð19Þ

where h1 is the delay of the process, K1 is the gain, and s1

and s2 are the respective time constants.

Applying (11) for the feedback controller and using the

Taylor series expansion of e�h1s [27] yields the IMC–PID

controller for the inner loop C1(s)

C1 sð Þ ¼ ðs1sþ 1Þðs2sþ 1Þ
K1ðk1 þ h1Þs

ð20Þ
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where the IMC–PID’s gain and constants of the of the inner

loop are given by (21)–(23)

Kc1 ¼
s1

K1ðk1 þ h1Þ
ð21Þ

si1 ¼ s1 ð22Þ
sd1 ¼ s2 ð23Þ

The IMC–PID outer loop controller is designed based on

the feedback controller for C2(s) described in (18). For the

system G2(s), an FOPTD model is used approximated by

the half rule [27].

G2 sð Þ ¼ K2e�h2s

ðs3sþ 1Þ ð24Þ

Then, in order to follow the closed loop response of the

outer loop, an equivalent transfer function Gp2(s) for the

outer loop must be obtained from (12) as shown in (25)

Gp2 sð Þ ¼ K2e�ðh1þh2Þs

ðk1sþ 1Þðs3sþ 1Þ ð25Þ

Applying the portions Gp2M and Gp2A in the feedback

controller for the outer loop C2(s) described in (18) yields

the IMC–PID controller of the outer loop, where the gains

and constants can be obtained for the design of the fre-

quency response-based method.

The feedback controller C2(s) is shown in (26)

C2 sð Þ ¼ ðk1sþ 1Þðs3sþ 1Þ
K2ðk2 þ ðh1 þ h2ÞÞs

ð26Þ

where the gain and constants of the IMC–PID controller of

the outer loop are as follows:

Kc2 ¼
k1

K2ðk2 þ ðh1 þ h2ÞÞ
ð27Þ

si2 ¼ k1 ð28Þ
sd2 ¼ s3 ð29Þ

Based on the IMC–PID controllers defined for the inner

and outer loop, the tuning rules with gain and phase margin

specifications can be derived because of the relations of the

controller parameters in the frequency domain as explained

in the next section.

4 Tuning procedure for cascade process based on gain

and phase margin specifications

As explained in the previous section, there are limited

tuning methods for cascade process described in the liter-

ature and even less, those related to frequency domain

specifications. IMC for cascade process offers some

advantages over other methods for the tuning of cascade

systems, due to the flexibility of the IMC parameters. For

this reason, their frequency domain characteristics are

implemented to get a flexible tuning method.

This tuning method is based on the gain and phase

margin properties of feedback systems, given by the

Nyquist theorem and according to the crossover frequen-

cies of the inner and outer loop. Applying these properties

and analyzing the maximum sensitivity on each loop, a fine

tuning formulae can be obtained for the inner and outer

loop, adjusting the IMC parameters based on the frequency

response parameters. In the following subsections, the

derivation of the tuning formulae for the inner and outer

loop will be explained.

4.1 Derivation of the tuning procedure for the inner

loop

The frequency domain properties of the inner loop [9, 10,

20] for the gain and phase margins are defined in (30)–(33),

where i = 1 denotes the controller and transfer function for

the inner loop and i = 2 denotes the controller and plant of

the outer loop.

1

Ci jxpi

� �
GiðjxpiÞ

�� �� ¼ Ami ð30Þ

arg Ci jxpi

� �
GiðjxpiÞ

�� �� ¼ �p ð31Þ

Ci jxgi

� �
GiðjxgiÞ

�� �� ¼ 1 ð32Þ

arg Ci jxgi

� �
G1ðjxgiÞ

�� ��þ p ¼ /mi ð33Þ

where Am1 is the gain margin of the inner loop, /m1 is the

phase margin of the inner loop, and xp1 and xg1 are the

crossover frequencies for the inner loop.

The PID feedback controller for the inner loop has the

form defined in (20), and the plant transfer function G1(s) is

defined in (19)

C1 sð Þ ¼ Kc1 1þ 1

sTi1

� �
ð1þ ssd1Þ ð34Þ

The obtained formulae for the IMC tuning parameter

and the crossover frequencies xp1 and xg1 for the inner

loop are given by (60) and (61) in Appendix 1. The IMC

parameter in terms of the gain margin Am1 is given by

k1 ¼
Am1

xp1

� h1 ð35Þ

The parameter k1 is found according to the desired

crossover frequency and gain margin. The desired phase

margin is obtained in accordance with the sensitivity

of the inner loop (63) as shown in Appendix 1,

where the derivations of the controller parameters are

described.

Neural Comput & Applic (2014) 25:983–995 987

123



The requirements for the IMC–PID tuning method of the

inner loop are a phase margin Am1 and a phase margin

C/m1, Appendix 1.

4.2 Derivation of the tuning procedure for the outer

loop

The derivation of the tuning procedure for the outer loop is

done considering the frequency domain properties of the

gain and phase margins for the equivalent close loop pro-

cess. This frequency domain tuning method for the outer

loop allows selecting an independent IMC parameter value

from the inner loop, obtaining a very accurate frequency

response for the cascade process. This is a very important

consideration related to the robustness of the cascade sys-

tem that is very difficult to manipulate with other control

techniques for similar control systems or even sequential

tuning.

In order to design the tuning method for the outer loop,

the equivalent process Gp2(s) (25) must be considered. The

frequency domain properties of the outer loop [9, 10, 20]

for the gain and phase margin are defined by (30)–(33),

where i = 2 denotes the controller and plant of the outer

loop.

Am2 is the gain margin of the outer loop, /m2 is the phase

margin of the outer loop, and xp2 and xg2 are the crossover

frequencies.

The PID controller for the outer loop C2(s) is repre-

sented by (36)

C2 sð Þ ¼ Kc2 1þ 1

sTi2

� �
ð1þ ssd2Þ ð36Þ

The IMC parameter for the outer loop k2 is shown in

(37) and the respective crossover frequencies xp2 and xg2

are shown in (72) and (73) in Appendix 2.

k2 ¼
Am2

xp2

� ðh1 þ h2Þ ð37Þ

The IMC parameters k1 and k2 are now adjusted

according to the desired gain margins and phase margins at

a specified crossover frequencies. These IMC parameters

give the required values of the gains and constants of the

feedback controllers, adjusted to give the required fre-

quency response for the inner and outer loop without tun-

ing or detuning the feedback controllers of the cascade

process sequentially.

5 Robustness analysis

In the previous section, the sensitivity of the closed loop

system for the inner and outer loop was used to establish a

bound for the phase margin for each loop. The sensitivity

function provides information about the robustness of the

control systems in terms of the relative stability, especially,

when the system is tuned with frequency domain specifica-

tions. As it was explained before, the IMC parameters for

each loop are adjusted based on the gain and phase margin

specifications for each loop; therefore, the robustness ana-

lysis is done to test the robust stability and robust perfor-

mance on each loop for different gain margins specifications.

The IMC controller tuning based on frequency domain

specifications is analyzed due to uncertainties of the model

that interfere the performance of the system.

The complementary sensitivity function of the inner

loop is used in the robust stability analysis [21, 31, 35], and

it is defined in (38)

T1 sð Þ ¼ C1 sð ÞG1ðsÞ
1þ C1 sð ÞG1ðsÞ

ð38Þ

For the feedback controller C1(s) and process plant

G1(s), the IMC controller gains and constants are given by

the formulae in the previous section, and the IMC param-

eter is adjusted according to the frequency domain

specifications.

The inner loop feedback system is robustly stable [21,

35] if

jjT1ðjxÞ�‘m1jj1 ¼ sup
x

T1ðjxÞ�‘m1

�� ��\1 ð39Þ

Where the uncertainty �‘m1is given by the set of stable

plants described by:

G1 jxð Þ � ~G1 jxð Þ
~G1 jxð Þ

����
����\�‘m1ðxÞ ð40Þ

where ~G1 jxð Þ is the nominal plant of the inner loop.

Robust stability establishes that a given controller C1(s)

stabilizes the nominal plant ~G1 jxð Þ if the condition (39) is

met.

For the outer loop, the robust stability is also analyzed,

obtaining a complementary sensitivity function with the

equivalent process model Gp2(s) and the feedback con-

troller C2(s).

T2 sð Þ ¼ C2 sð ÞGp2ðsÞ
1þ C2 sð ÞGp2ðsÞ

ð41Þ

The IMC parameter is adjusted according to the fre-

quency domain specifications of the outer loop and the

equivalent cascade process.

The robust stability bound for the outer loop is given by:

jjT2ðjxÞ�‘m2jj1 ¼ sup
x

T2ðjxÞ�‘m2

�� ��\1 ð42Þ

where the uncertainty �‘m2 is given by the set of stable

plants described by:
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Gp2 jxð Þ � ~Gp2 jxð Þ
~Gp2 jxð Þ

�����

�����\�‘m2ðxÞ ð43Þ

~Gp2 jxð Þ is the nominal plant of the inner loop.

In Figs. 2 and 3, the robust stability bound plots for the

inner and outer loop are shown. In Fig. 2 is plotted the

robust stability bound for the inner loop with different

values of the delay constant h1 and the IMC parameter k1

adjusted by the desired gain margin range. As can be

noticed, the minimum peaks occur on the relatively low

values of k1 which is proportional to the gain margin of the

inner loop Am1. Analyzing Fig. 2, the range k1

h1
[ 0:3 and

the gain margin Am1 is the allowed region where stable

controllers for the nominal process of the type �‘m1, can be

obtained.

The robust stability bound for the outer loop with dif-

ferent values of h1 and h2 is shown in Fig. 3. The IMC

parameter k2 is adjusted according to the gain margin

specification of the outer loop Am2, and as shown in Fig. 3,

there is a minimum interaction on the robust stability of the

inner and outer process due to the independence of their

IMC parameters k1 and k2. The minimum peaks for robust

stability of the outer loop occur at relative low values of k2,

and the range is approximately k2

ðh1þh2Þ [ 0:8, which

depends on the specification parameter Am2. The robust

stability bounds for the outer loop are smaller than the

robust stability bounds for the inner loop, but for both

loops, they are optimal and provide robustly stable con-

trollers for the cascade process under uncertainties.

Although robust stability is the minimum requirement

for the cascade systems under uncertainties, the robust

performance of the inner and outer loop is considered for

this analysis.

For the inner loop, the bound that guarantees robust

performances for an H1 PID controller is [21, 35]

T1ðjxÞ�‘m1

�� ��þ W1ðjxÞS1ðjxÞj j\1 ð44Þ

where S1ðjxÞ is the sensitivity function defined in (63)

(Appendix 1) and W1ðjxÞ is a weighting function that in

this case, a Butterworth filter is selected as shown in (45)

W1 sð Þ ¼ 0:4208s� 0:4208

sþ 0:1584
ð45Þ

The closed loop system met the following condition

jjW1ðjxÞS1ðjxÞjj1 ¼ sup
x

W1ðjxÞS1ðjxÞj j\1 ð46Þ

where W1(s) is selected based on the H2 optimal sensitivity

function with a specific input.

Robust performance of the inner loop assumes robust

stability of the inner loop, and the robust performance

bound depends on the IMC parameter k1 adjusted by the

gain margin specifications.

The bound that guarantees robust performance for the

outer loop is

T2ðjxÞ�‘m2

�� ��þ W2ðjxÞS2ðjxÞj j\1 ð47Þ

where S2ðjxÞ is the sensitivity function defined in

Appendix 2 (75) and W2ðjxÞ is a weighting function, and

it is selected as a Butterworth filter as shown in (48)

W2 sð Þ ¼ 0:5792s� 0:5792

sþ 0:1584
ð48Þ

The closed loop system met the following condition

W2ðjxÞS2ðjxÞ1 ¼ sup
x

W2ðjxÞS2ðjxÞj j\1 ð49Þ

In Fig. 4, the robust performance bound for the inner

loop is shown, for different values of k1 and the time delay

constant h1. The minimum robust performance peaks are

found for relatively high values of k1, in the range of
k1

h1
[ 1:5, as it depends on the gain margin specification of

the inner loop. It can be noticed the relation between the

robust stability and robust performance, because the robust

performance depends on the robust stability bound.

In Fig. 5, the robust performance for the outer loop is

shown, for different values of k2 and the time delay constants

h1 and h2. The minimum robust performance bounds for the

outer loop occur at relatively low values of k2 depending on

the gain margin specifications of the inner loop, in the range

Fig. 2 Robust stability margin for the inner loop

Fig. 3 Robust stability margin for the outer loop
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of k2

ðh1þh2Þ [ 0:8. As in the case of robust stability, the robust

performance bounds for the inner and outer loops are inde-

pendent and do not mutually affect their performance. The

robust performance bound for the outer loop is slightly lower

than the bounds for the inner loop obtaining a better equiv-

alent cascade process performance with uncertainties.

It is clear that with this tuning method, it is possible to

design controllers for the inner and outer loop, which meets

the robustness requirements. Basically, selecting the

appropriate gain and phase margin specifications for both

loops according to the robustness requirements related to

the IMC parameters, the specified robust controllers for

both loops are obtained.

6 Numerical examples and discussion

In order to verify the performance of the proposed tuning

procedure, an illustrative example is shown in this section

with an analysis of the results and the employed

methodology.

In this example, the proposed method is compared with

other frequency domain-based methods, and the objective

of this example is to implement three tuning procedures

and the proposed one to test their performance when a

desired set point needs to be tracked and when there are

disturbances on the system. Then, a comparison of the

three tuning methods for cascade process [4, 25, 29] with

the proposed procedure is done examining their system

response, robustness and relative stability.

The transfer functions for the inner and outer loops are

as follows:

G1 sð Þ ¼ 100

Sþ 1ð Þ 0:001Sþ 1ð Þ2
ð50Þ

G2 sð Þ ¼ 50

0:12Sþ 1ð Þ 0:75Sþ 1ð Þ ð51Þ

Approximated by a SOPDT and FOPDT models,

respectively, using the half rule

G1 sð Þ ¼ 100

Sþ 1ð Þ 0:0015Sþ 1ð Þ e
�0:0005 ð52Þ

G2 sð Þ ¼ 20

0:4950Sþ 1ð Þ e
�0:375 ð53Þ

The IMC controller used in the benchmark of this

example use the IMC formulae from Morari and Zafiriou

[21] and is tuned according to the robustness chart as

mentioned [29]. The other tuning procedures are explained

in Sanchis et al. [25] and Åström and Hägglund [4] where

the design parameters for the cascade control system are

shown in Tables 1 and 2 for the inner and outer loop,

respectively.

Fig. 4 Robust performance bound for the inner loop Fig. 5 Robust performance bound for the outer loop

Table 1 Desired and obtained specifications of the inner loop

Gain margin (dB) Phase margin

(degrees)

Sensitivity

Desired Obtained Desired Obtained

Proposed 8.9432 8.1820 37.4987 103.3166 1.6979

Balaguer 1.7000 6.9660 – – 2.4675

Astrom 10.8814 11.4198 – 33.4728 1.4002

Tan et al.

[29]

– 11.3091 – -180 1.3903

Table 2 Desired and obtained specifications of the outer loop

Gain margin (dB) Phase margin

(degrees)

Sensitivity

Desired Obtained Desired Obtained

Proposed 9.5424 8.9888 19.1881 130.9536 1.6294

Balaguer 0.0400 0.6655 – – 1.8583

Astrom 3.5218 8.5137 – 45.0351 2.2765

Tan et al.

[29]

– 0.0994 – 2.8845 3.9295
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The desired gain and phase margin with the proposed

method for the inner and outer loop are shown in Tables 1

and 2.

The integral of the time-weighted error (ITAE) is

implemented to measure the error signal when a set point

has to be followed; therefore, the performance of every

controller is analyzed. This performance index is shown in

(54)

ITAE ¼
Z1

0

t eðtÞj jdt ð54Þ

The resulting step response for the proposed and the

other tuning procedures [4, 25, 29] is shown in Fig. 6

where the performance of the proposed method is better

due to the smaller overshoot and settling time. The dis-

turbance response for d1 and d2 are shown in Fig. 7 and

Fig. 8 where the system tuned with the proposed method

has a smaller overshoot and better performance in com-

parison with the other tuning procedures as shown in the

following analysis. The obtained IMC parameters for the

inner and outer loop k1 = 0.0455 and k2 = 0.1842 then the

controller parameters are found by (21)–(23) and (27)–

(29), respectively.

In Tables 1 and 2, the resulting gain margin and phase

margin for the inner and outer loop are shown, where the

proposed method gives more accurate results of gain and

phase margin for the inner and outer loop in comparison

with the other tuning procedures shown in this example.

Although the method [29] yields the maximum sensitivity

result for the outer closed loop system, the proposed

method yields a smaller ITAE, as shown in Table 3, and

the outer closed loop system has a small sensitivity Ms in

comparison with the other tuning procedures, as confirmed

in Fig. 9. This relation between the ITAE and the sensi-

tivity Ms is very common in different control systems; this

means that a higher sensitivity implies a lower ITAE and

vice versa, as shown in Tables 1, 2 and 3. It is important to

notice that the tuning procedure of Åström and Hägglund

[4] and Sanchis et al. [25] is precise in the frequency

Fig. 6 Step response

Fig. 7 Closed loop response

when a disturbance is applied

on d1
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response specifications, but they yield a higher ITAE, as

shown in Table 3, than the other tuning procedures.

7 Conclusions

In this paper, an IMC tuning method based on gain and

phase margin specifications for cascade control systems

has been presented. The gain and phase margin specifi-

cations for the inner and outer loop are selected inde-

pendently by the designer, and there is a negligible

interaction between the closed loop characteristics of each

loop due to the adjustment of the IMC parameters

according to the frequency domain specifications. One of

the characteristics of the frequency domain methods for

single loops is that the system can be designed in terms of

robustness specifications, with this proposed tuning

method, the cascade control process can now be tuned

with robustness properties according to their sensitivity

and frequency domain specifications, and as it was shown

in this article, it provides excellent robust stability and

robust performance bounds.

There are limited tuning methods found in the literature

for cascade control systems, and sequential tuning is the

recommended procedure for this kind of systems. Some

methods, especially frequency domain-based methods, are

suitable for cascade systems, but there are other methods

which are difficult to apply. The tuning method proposed

in this paper yields very accurate frequency domain

specifications, provides a wide range of gain and phase

margin values before the cascade system becomes unstable

and has low performance index values for the system

response and excellent disturbance rejection in comparison

with other tuning methods.

Future work aims toward the design of PID controllers

with other control techniques in the frequency domain,

like loop shaping, for cascade control systems. Apart from

this strategy, future research will be oriented to the ana-

lysis and design of PID controllers with robust specifica-

tions like sensitivity-based controllers for cascade control

systems. Finally, the analysis of other effects on PID

cascade control systems will be studied, like the effects on

the system with saturated inputs and other nonlinearities

that can be found in electrical, mechanical and other kind

of systems.

Fig. 8 Closed loop response

when a disturbance is applied

on d2

Table 3 ITAE for the cascade control system of example 1

ITAE inner loop ITAE outer loop

Proposed 0.7540 0.3616

Balaguer 27.9705 5.4138

Astrom 8.1564 9 107 9.8000 9 1011

Tan et al. [29] 0.6770 1.5092

Fig. 9 Robustness analysis of the overall cascade process
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Appendix 1

The derivations of the inner loop IMC parameters are

obtained by substituting (19) and (20) in (30)–(33) obtaining

s1xp1

Kc1K1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1x
2
p1 þ 1

� �
ðs2

2x
2
p1 þ 1Þ

x2
p1s

2
i1 þ 1

� �
ðs2

d1x
2
p1 þ 1Þ

vuuut ¼ Am1 ð55Þ

� p
2
þ arctanðsi1xp1Þ þ arctanðsd1xp1Þ þ � arctanðs1xp1Þ
� arctanðs2xp1Þ � xp1h1 þ p
¼ 0

ð56Þ
p
2
þ arctanðsi1xg1Þ þ arctanðsd1xg1Þ þ � arctanðs1xg1Þ

� arctanðs2xg1Þ � xg1h1

¼ /m1

ð57Þ

Kc1K1

s1xg1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

g1s
2
i1 þ 1

� �
ðs2

d1x
2
g1 þ 1Þ

s2
1x

2
g1 þ 1

� �
ðs2

2x
2
g1 þ 1Þ

vuuut ¼ 1 ð58Þ

Therefore, the relations of the gain and phase margin

with the controller parameters are obtained. These equa-

tions provide all the relations between the gain and phase

margin and their respective crossover frequencies, neces-

sary for the design of the IMC–PID tuning method for the

inner loop feedback controller.

Substituting the IMC–PID gains and constants for the

feedback controller C1(s) defined in (21)–(23) yields

Am1 ¼
xp1

xg1

ð59Þ

With the crossover frequency xp1

xp1 ¼
p
2

h1

ð60Þ

And

xg1 ¼
p
2
� /m1

h1

ð61Þ

The IMC parameter in terms of the gain margin Am1 is

given by

k1 ¼
Am1

xp1

� h1 ð62Þ

The IMC parameter k1 is now adjusted according to the

desired gain margin and phase margin specifications. The

resulting inner loop feedback system is tuned independently

of the outer loop, and the robustness requirements can be

analyzed with the sensitivity peak of the inner given in (63)

Ms1 ¼ max
x

S1ðjxÞj j ¼ max
x

1

1þ C1 jxð ÞG1ðjxÞj j ð63Þ

The gain margin of the inner loop process can be defined

in terms of the maximum sensitivity peak as

Am1 ¼
1

C1 jxp1

� �
G1ðjxp1Þ

�� �� ¼
Ms1 � 1

Ms1

ð64Þ

A lower bound for the phase margin of the inner loop

tuning method can be established using the relation

between the phase margin and the maximum sensitivity

peak given in (64)

/m1� 2 sin�1 1

2Ms1

� �
ð65Þ

Using (64) and the crossover frequency xp1 (60), the

lower bound for the phase margin /m1 is given by

/m1� 2 sin�1 0:5 1� Kc1K1

xp1sI1

� �� �
ð66Þ

Appendix 2

The outer loop IMC parameters are obtained by substitut-

ing (25) and (36) in the properties of the gain and phase

margin (30)–(33) with i = 2 yields

si2xp2

Kc2K2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1x
2
p2 þ 1

� �
ðs2

3x
2
p2 þ 1Þ

s2
i2x

2
p2 þ 1

� �
ðs2

d2x
2
p2 þ 1Þ

vuuut ¼ Am2 ð67Þ

� p
2
þ arctanðsi2xp2Þ þ arctanðsd2xp2Þ þ � arctanðk1xp2Þ
� arctanðs3xp2Þ � xp2ðh1 þ h2Þ þ p
¼ 0

ð68Þ
p
2
þ arctanðsi2xg2Þ þ arctanðsd2xg2Þ þ � arctanðk1xg2Þ
� arctanðs3xg2Þ � xg2ðh1 þ h2Þ
¼ /m2

ð69Þ

Kc2K2

si2xg2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

i2x
2
g2 þ 1

� �
ðs2

d2x
2
g2 þ 1Þ

k2
1x

2
g2 þ 1

� �
ðs2

3x
2
g2 þ 1Þ

vuuut ¼ 1 ð70Þ

Substituting the IMC–PID gains and constants for the

feedback controller C2(s) described in (27)–(29) yields the

following relations

Am2 ¼
xp2

xg2

ð71Þ
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With the crossover frequency xp2

xp2 ¼
p
2

ðh1 þ h2Þ
ð72Þ

And

xg2 ¼
p
2
� /m2

h1 þ h2

ð73Þ

The tuning parameter of the IMC–PID controller for the

outer loop k2 is adjusted in terms of the specified gain

margin for the outer loop, and as it can be seen, this tuning

parameter is independent of the tuning parameters of the

inner loop, so as it can be seen on the following section, the

calculated values for the tuning parameters for k1 and k2

yield an independent frequency domain controller design

methodology for the inner and outer loop taking into

account the robustness considerations.

The controller parameter k2 is adjusted by the formulae

(74)

k2 ¼
Am2

xp2

� ðh1 þ h2Þ ð74Þ

The bounds for the gain and phase margin for the tuning

method of the outer loop can be obtained from the maxi-

mum sensitivity peak of the equivalent cascade process.

For the outer loop, the gain and phase margin relations of

the tuning method obtained from the maximum sensitivity

peak of the equivalent cascade process are derived from the

equivalent system C2(s)Gp2(s) as it is shown in (75)

Ms2 ¼ max
x

S2ðjxÞj j ¼ max
x

1

1þ C2 jxð ÞGp2ðjxÞ
�� �� ð75Þ

Then, the gain margin in terms of the maximum sensi-

tivity peak is given by

Am2 ¼
1

C2 jxp2

� �
Gp2ðjxp2Þ

�� �� ¼
Ms2 � 1

Ms2

ð76Þ

The phase margin lower bound for the tuning method of

the outer loop in terms of the maximum sensitivity peak is

given by

/m2� 2 sin�1 1

2Ms2

� �
ð77Þ

Using (76) and xp2 described in (72), the lower bound

for the phase margin of the inner loop feedback controller

is as follows:

/m2� 2 sin�1 0:5 1� Kc2K2

xp2sI2

� �� �
: ð78Þ
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