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Abstract In this paper, the robust synchronization for

static neural networks with nonlinear coupling and time-

varying delay is studied. By constructing the appropriate

augmented Lyapunov–Krasovskii functional, utilizing the

theory of Kronecker product and the linear matrix

inequality technique, we obtain the delay-dependent syn-

chronization conditions which ensure the nonlinear cou-

pled static neural networks with uncertainties in coupling

matrices terms robust synchronization. The robust syn-

chronization problem for the nonlinear hybrid coupled

static delayed neural networks is first time investigated in

this paper. At last, numerical example is provided to

illustrate the effectiveness of the proposed results.

Keywords Robust synchronization � Static neural

networks � Linear matrix inequality � Nonlinear hybrid

coupling

1 Introduction

In the past few decades, complex networks have attracted

great attention from researchers in various fields. The main

reason is that many real systems, such as electrical power

grids, food webs, World Wide Web and social networks,

can be described as complex dynamical networks [1–4].

Recently, there has been a growing number of studies in

the synchronization of the complex networks [5–25].

The coupled neural networks, as a special case of

complex networks, have been found to exhibit complex

behavior, and their synchronization has been investigated

[16–24]. Due to the historical observation of Huygens on

pendulum clocks, it has been reported that there are syn-

chronization phenomena in many real systems, such as in

language emergence and development as well as in an

array composing of identical delayed neural networks [20].

The synchronization problems for fractional order systems

have been investigated by different methods in [26, 27].

There are many benefits of having synchronization in

coupled networks and systems in engineering applications

such as secure communication, harmonic oscillation gen-

eration and signal generators design, which has taken a

very special position in science and technology [2, 5, 16,

20]. On the other hand, it has been well known that the

network traffic congestions and the finite speed of signal

transmission over the links may lead to the oscillation

phenomenon or instability of the networks [28, 29], and

therefore, synchronization problem for complex networks

with time delays has gained increasing research attention

[16–24]. For example, the global exponential synchroni-

zation in arrays of coupled identical delayed neural net-

works with constant and delayed coupling was investigated

[16, 18]. The globally exponential synchronization for

linearly coupled neural networks with time-varying delay

and impulsive disturbances was studied [19]. In [25], the

problem of non-fragile synchronization control for com-

plex networks with time-varying coupling delay and

missing data was investigated. As a particular kind of time

delay, the distributed time delay has also received much

attention since a network usually has a spatial nature due to

the presence of an amount of parallel pathways of a variety
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of axon sizes and lengths [8, 20]. Note that there are very

few results for synchronization of the neural networks with

distributed time-varying delay nonlinear coupling.

From the practical point of view, the network coupling

and network parameters may be the uncertainties or inac-

curacies, which could break the dynamic behaviors of the

system. In order to deal with this case, robust synchroni-

zation of coupled neural networks with uncertainties

becomes very important [22–24]. In [22], the robust syn-

chronization in arrays of coupled networks with delay and

mixed coupling was studied. In [23], the robust synchro-

nization problem for an array of coupled stochastic dis-

crete-time neural networks with time-varying delay was

investigated. In [24], the synchronization problem for an

array of neural networks with hybrid coupling and interval

time-varying delay was concerned. In [30, 31], the fuzzy

neural control problems for uncertain chaotic systems and

interconnected unknown chaotic systems were studied,

respectively.

According to whether the neuron states (the external

states of neurons) or local field states (the internal states of

neurons) of the neurons are chosen as basic variables to

describe the evolution rule of an neural networks, neural

networks can be classified as static neural networks or local

field neural networks [32]. There are many results for local

field neural networks. In [29], the stability problem of a

class of recurrent neural networks with time-varying delay

was studied by a weighting-delay-based method. In [33], a

non-fragile procedure was introduced to study the problem

of synchronization of neural networks with time-varying

delay. In [34], the synchronization problem for neural

networks with time-varying delay under sampled-data

control was investigated. As a tool for scientific computing

and engineering application, an obvious characteristic of

static neural networks is its capability for implementing a

nonlinear mapping from many neural inputs to many neural

outputs [35]. The static neural network model plays an

important role in many types of problems, for example, the

linear variational inequality problem that contains linear

and convex quadratic programming problems and linear

complementary problems [36]. When static neural net-

works are used to deal with parallel computing, many

calculations are carried out simultaneously and large

problems can often be divided into smaller ones and then

solved concurrently, which causes coupling. By using

parallel algorithm, one not only needs to consider the

problem itself, but also the parallel model and network

connection, which is more effective to solve practical

problem. Most coupled neural network synchronization

problems are about local field neural networks, and there

are few synchronization problems for static neural net-

works. When it comes to parallel computing, the static

neural networks are useful tools, which motivates us to

write this paper.

In [36], a static neural network was shown by

_xðtÞ ¼ �AxðtÞ þ gðWxðt � dðtÞÞÞ;
xðtÞ ¼ uðtÞ; t 2 ½�maxfdðtÞg; 0�;

�

where x(t) is the state vector associated with the n neurons,

A ¼ diagfa1; a2; . . .; ang[ 0;W ¼ ½ŴT
1 ; Ŵ

T
2 ; . . .; ŴT

n �
T

is

the delayed connection weight matrix, gðWxðtÞÞ ¼
½g1ðŴ1xðtÞÞ; g2ðŴ2xðtÞÞ; . . .; gnðŴnxðtÞÞ�T is the activation

function of neurons, uðtÞ is the initial condition, and d(t) is

the time-varying delay.

Motivated by the aforementioned discussions, in this

paper, the robust synchronization problem is studied for an

array of static delayed neural networks with nonlinear hybrid

coupling. We propose a nonlinear hybrid coupled static

delayed neural network model with uncertainties in the

coupling configuration matrices terms, firstly. Secondly, the

new augmented Lyapunov–Krasovskii and free-weighting

matrices are used, which reduce the conservativeness.

Thirdly, the novel delay-dependent robust synchronization

criterion is deduced, which is less conservative, especially

when the time delay is comparatively small.

The rest of this paper is organized as follows. In Sect. 2,

nonlinear hybrid coupled static delayed neural networks

with uncertainties and some preliminaries are introduced.

The robust synchronization criteria for coupled static

neural network are derived in Sect. 3. In Sect. 4, numerical

simulation is given to demonstrate the effectiveness of the

proposed results. Finally, the conclusions are drawn in

Sect. 5.

Notation The notations used throughout this paper are

fairly standard. Rn denotes the n-dimensional Euclidean

space. Rm 9 n is the set of all m 9 n real matrices. The

symbol � is Kronecker product. XT denotes the transpose

of matrix X. X C 0 (X \ 0), where X 2 Rn�n, means that

X is real positive semidefinite matrix (negative definite

matrix). In represents the n-dimensional identity matrix.

For a matrix A 2 Rn�n; kmaxðAÞ and kmin(A) denote the

maximum and minimum eigenvalues of A, respectively.

X Y

� Z

� �
stands for

X Y

YT Z

� �
. diagf� � �g stands for a

block-diagonal matrix. Matrix dimensions, if not explicitly

stated, are assumed to be compatible for algebraic

operations.

2 Problem statement and preliminaries

In this paper, we consider time-varying delayed static neural

networks with uncertainties and nonlinear hybrid coupling
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_xiðtÞ ¼ � AxiðtÞ þ gðWxiðt � sðtÞÞÞ þ
XN

j¼1

tð1Þij ðC1 þ DC1ðtÞÞf ðxjðtÞÞ

þ
XN

j¼1

tð2Þij ðC2 þ DC2ðtÞÞf ðxjðt � sðtÞÞÞ

þ
XN

j¼1

tð3Þij ðC3 þ DC3ðtÞÞ
Z t

t�sðtÞ

f ðxjðsÞÞds; i ¼ 1; 2; . . .;N:

ð1Þ

Here, xiðtÞ ¼ ½xi1ðtÞ; xi2ðtÞ; . . .; xinðtÞ�T 2 Rn is the state

vector associated with the n neurons, A ¼
diagfa1; a2; . . .; ang is diagonal matrix with positive diag-

onal entries. W = (wij)n 9 n is the delayed connection

weight matrix, gðWxiðt� sðtÞÞÞ¼ ½g1ðŴ1xiðt� sðtÞÞÞ;
g2ðŴ2xiðt� sðtÞÞÞ; . . .; gnðŴnxiðt� sðtÞÞÞ�T is the activa-

tion function of neurons. f ðxiðtÞÞ¼ ½f1ðxi1ðtÞÞ; f2ðxi2ðtÞÞ;
. . .; fnðxinðtÞÞ�T 2Rn denotes the coupling function which

is nonlinear functions. s(t) is the time-varying delay, which

satisfies 0 B s(t) B s and _sðtÞ�d; where s and d are

positive real constants. t(r) = (tij
(r))N 9 N, (r = 1, 2, 3) are

the coupling configuration matrices representing coupling

strength and the topological structures of the network and

satisfy the following conditions:

tðrÞij ¼ tðrÞji 	 0 i 6¼ j; tðrÞii ¼ �
XN

i¼1;j 6¼i

tðrÞij : ð2Þ

C1; C2, and C3 2 Rn�n represent the inner coupling

matrices. DC1ðtÞ; DC2ðtÞ, and DC3ðtÞ denote the parameter

uncertainties of the system, which are assumed to have the

following form

½DC1ðtÞ;DC2ðtÞ;DC3ðtÞ� ¼ MrðtÞ½EC1
;EC2

;EC3
�; ð3Þ

where M;EC1
;EC2

;EC3
are known constant matrices and

r(t) is an unknown matrix function satisfying

rT(t)r(t) B In.

Denote xiðsÞ ¼ uiðtÞ 2 Cð½�s; 0�;RnÞ ði ¼ 1; 2; . . .;NÞ
as the initial conditions with system (1), where s ¼
supt2R sðtÞ and Cð½�s; 0�;RnÞ is the set of continuous

functions from [-s, 0] to Rn.

Throughout this paper, the following assumptions are

made.

Assumption 1 [21] For any x1; x2 2 R, there exist con-

stants er
-, er

?, hr
- and hr

? such that

e�r �
grðx1Þ � grðx2Þ

x1 � x2

� eþr ; h�r �
frðx1Þ � frðx2Þ

x1 � x2

� hþr ;

r ¼ 1; 2; . . .; n:

We denote

E1 ¼ diagðeþ1 e�1 ; . . .; eþn e�n Þ; E2 ¼ diagðe
þ
1 þ e�1

2
; . . .;

eþn þ e�n
2
Þ;

H1 ¼ diagðhþ1 h�1 ; . . .; hþn h�n Þ; H2 ¼ diagðh
þ
1 þ h�1

2
; . . .;

hþn þ h�n
2
Þ:

Remark 1 In the system (1), the coupled static neural

networks contain the nonlinear coupling, the discrete-time-

varying delay nonlinear coupling and distributed time-

varying delay nonlinear coupling. Note that in almost all

literature regarding synchronization of neural networks, the

nonlinear coupling phenomenon has been seldom

considered.

Remark 2 The coupled static neural networks can be used

in parallel computing, which can deal with the wireless

network optimization system, image processing and so on.

Remark 3 In the Assumption 1, the er
-, er

?, hr
- and hr

?

are allowed to be positive, negative or zero, which makes

the activation functions more general than nonnegative

sigmoidal functions.

Definition 1 The coupled static neural networks system is

globally synchronized, for any initial conditions

uiðtÞ 2 Cð½�s; 0�;RnÞ ði ¼ 1; 2; . . .;NÞ, if the following

holds limt!1 kxiðtÞ � xjðtÞk ¼ 0.

Lemma 1 [8] Let U ¼ ðuijÞN�N ;P 2 Rn�n; x ¼ ½xT
1 ; x

T
2 ;

. . .; xT
N �

T
, and y ¼ ½yT

1 ; y
T
2 ; . . .; yT

N �
T
, with xk; yk 2 Rn;

ðk ¼ 1; 2; . . .;NÞ. If U = UTand and each row sum of U is

zero, then

xTðU � PÞy ¼ �
XN�1

i¼1

XN

j¼iþ1

uijðxi � xjÞTPðyi � yjÞ:

Lemma 2 [37] Assume that the vector function x :
½0; r� ! Rm is well defined for the following integrations.

For any symmetric matrix W 2 Rm�m and scalar r [ 0, one

has

r

Zr

0

xTðsÞWxðsÞds	
Zr

0

xðsÞds

0
@

1
A

T

W

Zr

0

xðsÞds

0
@

1
A:

Lemma 3 [38] The Kronecker product has the following

properties:

1. (aA) � B = A � (a B),

2. (A ? B) � C = A � C ? B � C,

3. (A � B)(C � D) = (AC) � (BD).

Lemma 4 [39] If U, V, W are real matrices of appro-

priate dimension with M satisfying M = MT, then

M ? UVW ? WTVTUT \ 0, for all VTV B I, and only if

there exists a positive constant e such that

M þ e�1UUT þ eWT W\0:
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3 Main results

In this section, we investigate the robust synchronization

for the hybrid nonlinear coupled time-varying delay static

neural networks. To facilitate further development, let

xðtÞ ¼ ½xT
1 ðtÞ; xT

2 ðtÞ; . . .; xT
NðtÞ�

T ; GððIN �WÞ x ðt�
sðtÞÞÞ ¼ ½gTðWx1ðt �sðtÞÞÞ; gTðWx2ðt � sðtÞÞÞ; � � � ;
gTðWxNðt � sðtÞÞÞ�T ; FðxðtÞÞ ¼ ½f Tðx1ðtÞÞ; f Tðx2ðtÞÞ;
� � � ; f TðxNðtÞÞ�T ; Ĉ1 ¼ C1 þ DC1ðtÞ; Ĉ2 ¼ C2 þ
DC2ðtÞ; Ĉ3 ¼ C3 þ DC3ðtÞ.

Then model (1) can be written as

_xðtÞ ¼ � ðIN � AÞxðtÞ þ GððIN �WÞxðt � sðtÞÞÞ þ ðtð1Þ � Ĉ1ÞFðxðtÞÞ

þ ðtð2Þ � Ĉ2ÞFðxðt � sðtÞÞÞ þ ðtð3Þ � Ĉ3Þ
Z t

t�sðtÞ

FðxðsÞÞds:

ð4Þ

Theorem 1 Under Assumptions 1, the nonlinear hybrid

coupled static delayed neural networks (4) are globally

robustly synchronized, if there exist positive definite

matrices Ri (i = 1, 2, 3), positive definite matrices

P ¼ P11 P12

� P22

� �
, Q ¼ Q11 Q12

� Q22

� �
, positive diagonal

matrices Si(i = 1, 2, 3, 4), real matrices M1, M2, and

positive constant e, such that the following linear matrix

inequalities hold for all 1 B i \ j B N,

Uij11 ¼ �R1A � AT R1 � WT E1S1W � H1S2 þ R2; Uij13 ¼
�MT

1 � AT MT
2 ; Uij14 ¼ WT E2S1; Uij16 ¼ �Nv

ð1Þ
ij

R1C1þH2S2; Uij17 ¼�Nv
ð2Þ
ij R1C2; Uij18 ¼�Nv

ð3Þ
ij R1C3;

Uij22 ¼ �ð1�dÞR2�WTE1S3W�H1S4; Uij25¼WT E2S3;

Uij33 ¼ sR3 �M2 �MT
2 ; Uij36 ¼ �Nv

ð1Þ
ij M2C1; Uij37 ¼

�Nv
ð2Þ
ij M2C2; Uij38¼�Nv

ð3Þ
ij M2C3; Uij44¼P11þsQ11�S1;

Uij46 ¼ P12 þ sQ12; Uij55¼�ð1�dÞP11�S3; Uij57¼
�ð1� dÞ P12; Uij66 ¼ P22þ sQ22� S2þ eðNv

ð1Þ
ij Þ

2
ET

C1
EC1

;

Uij67 ¼ eN2v
ð1Þ
ij v
ð2Þ
ij ET

C1
EC2

; Uij68¼eN2v
ð1Þ
ij v
ð3Þ
ij ET

C1
EC3

;

Uij77 ¼ �ð1�dÞ P22 �S4þ eðNv
ð2Þ
ij Þ

2
ET

C2
EC2

; Uij78¼
eN2v

ð2Þ
ij v
ð3Þ
ij ET

C2
EC3

;Uij88¼ �1
s Q22þ eðNv

ð3Þ
ij Þ

2
ET

C3
EC3

:

Proof From Assumption 1, we can get that

WxiðtÞ �WxjðtÞ
gðWxiðtÞÞ � gðWxjðtÞÞ

� �T �E1S1 E2S1

� �S1

� �
WxiðtÞ �WxjðtÞ

gðWxiðtÞÞ � gðWxjðtÞÞ

� �
	 0;

xiðtÞ � xjðtÞ
f ðxiðtÞÞ � f ðxjðtÞÞ

� �T �H1S2 H2S2

� �S2

� �
xiðtÞ � xjðtÞ

f ðxiðtÞÞ � f ðxjðtÞÞ

� �
	 0;

Wxiðt � sðtÞÞ �Wxjðt � sðtÞÞ
gðWxiðt � sðtÞÞÞ � gðWxjðt � sðtÞÞÞ

� �T �E1S3 E2S3

� �S3

� �

�
Wxiðt � sðtÞÞ �Wxjðt � sðtÞÞ

gðWxiðt � sðtÞÞÞ � gðWxjðt � sðtÞÞÞ

� �
	 0;

xiðt � sðtÞÞ � xjðt � sðtÞÞ
f ðxiðt � sðtÞÞÞ � f ðxjðt � sðtÞÞÞ

� �T �H1S4 H2S4

� �S4

� �

�
xiðt � sðtÞÞ � xjðt � sðtÞÞ

f ðxiðt � sðtÞÞÞ � f ðxjðt � sðtÞÞÞ

� �
	 0;

Uij ¼

Uij11 0 Uij13 Uij14 R1 Uij16 Uij17 Uij18 0 0 R1M

� Uij22 MT
1 0 Uij25 0 H2S4 0 0 0 0

� � Uij33 0 M2 Uij36 Uij37 Uij38 0 M1 M2M

� � � Uij44 0 Uij46 0 0 0 0 0

� � � � Uij55 0 Uij57 0 0 0 0

� � � � � Uij66 Uij67 Uij68 0 0 0

� � � � � � Uij77 Uij78 0 0 0

� � � � � � � Uij88

�1

s
QT

12 0 0

� � � � � � � � �1

s
Q11 0 0

� � � � � � � � � �1

s
R3 0

� � � � � � � � � � �eIn

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

\0; ð5Þ
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which is equivalent to

� ðxiðtÞ � xjðtÞÞT WT E1S1WðxiðtÞ � xjðtÞÞ
þ 2ðxiðtÞ � xjðtÞÞT WT E2S1ðgðWxiðtÞÞ � gðWxjðtÞÞÞ
� ðgðWxiðtÞÞ � gðWxjðtÞÞÞT S1ðgðWxiðtÞÞ � gðWxjðtÞÞÞ	 0;

ð6Þ

� ðxiðtÞ � xjðtÞÞT H1S2ðxiðtÞ � xjðtÞÞ þ 2ðxiðtÞ � xjðtÞÞT H2S2

ðf ðxiðtÞÞ � f ðxjðtÞÞÞ � ðf ðxiðtÞÞ � f ðxjðtÞÞÞT S2ðf ðxiðtÞÞ
� f ðxjðtÞÞÞ	0; ð7Þ

� ðxiðt � sðtÞÞ � xjðt � sðtÞÞÞT WT E1S3Wðxiðt � sðtÞÞ
� xjðt � sðtÞÞÞ þ 2ðxiðt � sðtÞÞ
� xjðt � sðtÞÞÞT WT E2S3ðgðWxiðt � sðtÞÞÞ
� gðWxjðt � sðtÞÞÞÞ � ðgðWxiðt � sðtÞÞÞ
� gðWxjðt � sðtÞÞÞÞT S3ðgðWxiðt � sðtÞÞÞ
� gðWxjðt � sðtÞÞÞÞ	 0; ð8Þ

� ðxiðt � sðtÞÞ � xjðt � sðtÞÞÞT H1S4ðxiðt � sðtÞÞ
� xjðt � sðtÞÞÞ þ 2ðxiðt � sðtÞÞ
� xjðt � sðtÞÞÞT H2S4ðf ðxiðt � sðtÞÞÞ
� f ðxjðt � sðtÞÞÞÞ � ðf ðxiðt � sðtÞÞÞ � f ðxjðt � sðtÞÞÞÞT
� S4ðf ðxiðt � sðtÞÞÞ � f ðxjðt � sðtÞÞÞÞ	 0: ð9Þ

Let j ¼ ð1; 1; . . .; 1ÞT ; JN ¼ jjT be the N by N matrix,

and U = NIN - J. Construct the following Lyapunov–

Krasovskii functional as

VðxðtÞÞ ¼ ½V1ðxðtÞÞ þ V2ðxðtÞÞ þ V3ðxðtÞÞ þ V4ðxðtÞÞ
þ V5ðxðtÞÞ�

ð10Þ

where

V1ðxðtÞÞ ¼ xTðtÞðU � R1ÞxðtÞ; ð11Þ

V2ðxðtÞÞ ¼
Z t

t�sðtÞ

xTðsÞðU � R2ÞxðsÞds; ð12Þ

V3ðxðtÞÞ ¼
Z t

t�sðtÞ

GððIN �WÞxðsÞÞ
FðxðsÞÞ

� �T

U � P11 U � P12

� U � P22

� �
GððIN �WÞxðsÞÞ

FðxðsÞÞ

� �
ds;

ð13Þ

V4ðxðtÞÞ ¼
Z t

t�s

Z t

h

GððIN �WÞxðsÞÞ
FðxðsÞÞ

� �T

U � Q11 U � Q12

� U � Q22

� �
GððIN �WÞxðsÞÞ

FðxðsÞÞ

� �
dsdh;

ð14Þ

V5ðxðtÞÞ ¼
Z t

t�s

Z t

h

_xTðsÞðU � R3Þ _xðsÞdsdh: ð15Þ

Calculating the time derivative of Vi(x(t)), (i =

1, 2, 3, 4, 5) along the complex network (4), we get

_V1ðxðtÞÞ ¼ 2xTðtÞðU � R1Þ _xðtÞ
¼ 2xTðtÞðU � R1Þ �ðIN � AÞxðtÞ½
þGððIN �WÞxðt � sðtÞÞÞ
þðtð1Þ � Ĉ1Þf ðxðtÞÞ þ ðtð2Þ � Ĉ2Þ

f ðxðt � sðtÞÞÞ þ ðtð3Þ � Ĉ3Þ
Z t

t�sðtÞ

f ðxðsÞÞds�

¼ 2
XN�1

i¼1

XN

j¼iþ1

"
ðxiðtÞ � xjðtÞÞTð�R1AÞ

xiðtÞ � xjðtÞÞ þ ðxiðtÞ � xjðtÞÞT R1

�
ðgðWxiðt � sðtÞÞÞ � gðWxjðt � sðtÞÞÞÞ
�Ntð1Þij ðxiðtÞ � xjðtÞÞT R1Ĉ1

ðf ðxiðtÞÞ � f ðxjðtÞÞÞ � Ntð2Þij ðxiðtÞ
�xjðtÞÞT R1Ĉ2ðf ðxiðt � sðtÞÞÞ � f ðxjðt � sðtÞÞÞÞ
�Ntð3Þij ðxiðtÞ � xjðtÞÞT R1Ĉ3

Z t

t�sðtÞ

f ðxiðsÞÞds�
Z t

t�sðtÞ

f ðxjðsÞÞds

0
B@

1
CA
3
75 ð16Þ

_V2ðxðtÞÞ ¼ xTðtÞðU � R2ÞxðtÞ � ð1� _sðtÞÞxTðt � sðtÞÞðU � R2Þ

� xðt � sðtÞÞ�
XN�1

i¼1

XN

j¼iþ1

½ðxiðtÞ � xjðtÞÞT R2ðxiðtÞ � xjðtÞÞ

� ð1� dÞðxiðt � sðtÞÞ � xjðt � sðtÞÞÞT R2ðxiðt � sðtÞÞ
� xjðt � sðtÞÞÞ�

ð17Þ

_V3ðxðtÞÞ ¼
GððIN �WÞxðtÞÞ

FðxðtÞÞ

� �T
U � P11 U � P12

� U � P22

� �

�
GððIN �WÞxðtÞÞ

FðxðtÞÞ

� �
� ð1� _sðtÞÞ

�
GððIN �WÞxðt � sðtÞÞÞ

Fðxðt � sðtÞÞÞ

� �T
U � P11 U � P12

� U � P22

� �

�
GððIN �WÞxðt � sðtÞÞÞ

Fðxðt � sðtÞÞÞ

� �

�
XN�1

i¼1

XN

j¼iþ1

gðWxiðtÞÞ � gðWxjðtÞÞ
f ðxiðtÞÞ � f ðxjðtÞÞ

� �T
P11 P12

� P22

� �(

�
gðWxiðtÞÞ � gðWxjðtÞÞ

f ðxiðtÞÞ � f ðxjðtÞÞ

� �
:
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�ð1� dÞ gðWxiðt � sðtÞÞÞ � gðWxjðt � sðtÞÞÞ
f ðxiðt � sðtÞÞÞ � f ðxjðt � sðtÞÞÞ

� �T

� P11 P12

� P22

� �
:

� gðWxiðt � sðtÞÞÞ � gðWxjðt � sðtÞÞÞ
f ðxiðt � sðtÞÞÞ � f ðxjðt � sðtÞÞÞ

� ��
:

ð18Þ

_V4ðxðtÞÞ ¼ �
Z t

t�s

GððIN �WÞxðsÞÞ
FðxðsÞÞ

� �T
U � Q11 U � Q12

� U � Q22

� �

�
GððIN �WÞxðsÞÞ

FðxðsÞÞ

� �
dsþ s

GððIN �WÞxðtÞÞ
FðxðtÞÞ

� �T

�
U � Q11 U � Q12

� U � Q22

� �
GððIN �WÞxðtÞÞ

FðxðtÞÞ

� �

� s
GððIN �WÞxðtÞÞ

FðxðtÞÞ

� �T
U � Q11 U � Q12

� U � Q22

� �

�
GððIN �WÞxðtÞÞ

FðxðtÞÞ

� �

� 1

s

Z t

t�sðtÞ

GððIN �WÞxðsÞÞ
FðxðsÞÞ

� �
ds

0
B@

1
CA

T

�
U � Q11 U � Q12

� U � Q22

� �

�
Z t

t�sðtÞ

GððIN �WÞxðsÞÞ
FðxðsÞÞ

� �
ds

¼ s
XN�1

i¼1

XN

j¼iþ1

gðWxiðtÞÞ � gðWxjðtÞÞ
f ðxiðtÞÞ � f ðxjðtÞÞ

� �T
(

Q11 Q12

� Q22

� �
gðWxiðtÞÞ � gðWxjðtÞÞ

f ðxiðtÞÞ � f ðxjðtÞÞ

� �)

� 1

s

XN�1

i¼1

XN

j¼iþ1

Z t

t�sðtÞ

gðWxiðtÞÞ � gðWxjðtÞÞ
f ðxiðtÞÞ � f ðxjðtÞÞ

� �
ds

0
B@

1
CA

T8><
>:

�
Q11 Q12

� Q22

� �
:

�
Z t

t�sðtÞ

gðWxiðtÞÞ � gðWxjðtÞÞ
f ðxiðtÞÞ � f ðxjðtÞÞ

� �
ds

9>=
>;

ð19Þ

_V5ðxðtÞÞ ¼ �
Z t

t�s

_xTðsÞðU � R3Þ _xðsÞds

þ
Z t

t�s

_xTðtÞðU � R3Þ _xðtÞdh

�
XN�1

i¼1

XN

j¼iþ1

"
sð _xiðtÞ � _xjðtÞÞT R3ð _xiðtÞ � _xjðtÞÞ

� 1

s

Z t

t�sðtÞ

ð _xiðsÞ � _xjðsÞÞds

0
B@

1
CA

T

R3

Z t

t�sðtÞ

ð _xiðsÞ � _xjðsÞÞds

0
B@

1
CA
3
75:

ð20Þ

From the Leibniz–Newton formula and coupled static

neural network system (4), for any matrices M1 and M2, we

get

2½ _xTðtÞðU �M1Þ� �xðtÞ þ xðt � sðtÞÞ þ
Z t

t�sðtÞ

_xðsÞds

2
64

3
75

¼ 0;

ð21Þ

2½ _xTðtÞðU �M2Þ� �ðIN � AÞxðtÞ þ GððIN �WÞxðt � sðtÞÞÞ½

þðtð1Þ � Ĉ1ÞFðxðtÞÞþðtð2Þ � Ĉ2ÞFðxðt � sðtÞÞÞ

þðtð3Þ � Ĉ3Þ
Z t

t�sðtÞ
FðxðsÞÞds� _xðtÞ

#
¼ 0:

ð22Þ

Let gijðtÞ ¼ ððxiðtÞ � xjðtÞÞT ; ðxiðt � sðtÞÞ � xjðt�
sðtÞÞÞT ; ð _xiðtÞ � _xjðtÞÞT ; ðgðWxiðtÞÞ � gðWxjðtÞÞÞT ; ðgðWxi

ðt � sðtÞÞÞ � gðWxjðt � sðtÞÞÞÞT ; ðf ðxiðtÞÞ � f ðxjðtÞÞÞT ,

ðf ðxiðt � sðtÞÞÞ � f ðxjðt � sðtÞÞÞÞT ;
R t

t�sðtÞðf ðxiðsÞÞ
	

� f ðxjðsÞÞÞdsÞT ;
R t

t�sðtÞðgðWxiðsÞÞ � gðWxjðsÞÞÞds
	 
T

;

R t

t�sðtÞð _xiðsÞ � _xjðsÞÞds
	 
T

ÞT , combining (6–22), we get

_VðxðtÞÞ�
XN�1

i¼1

XN

j¼iþ1

½ðgijðtÞÞ
TUð1Þij ðgijðtÞÞ�;
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where

Uð1Þij16 ¼�Ntð1Þij R1Ĉ1þH2S2; Uð1Þij17 ¼ �Ntð2Þij R1Ĉ2; Uð1Þij18 ¼
�Ntð3Þij R1Ĉ3; Uð1Þij36 ¼ �Ntð1Þij M2Ĉ1; Uð1Þij37 ¼ �Ntð2Þij M2Ĉ2;

Uð1Þij38 ¼ �Ntð3Þij M2Ĉ3; Uð1Þij66 ¼ P22 þ sQ22 � S2; Uð1Þij77 ¼
�ð1� dÞ P22 � S4; Uð1Þij88 ¼ �1

s Q22.

If Uð1Þij \0, one has

_VðxðtÞÞ�
XN�1

i¼1

XN

j¼iþ1

ðgijðtÞÞ
TUð1Þij ðgijðtÞÞ

h i
\0: ð24Þ

According to (3), Uð1Þij \0 is equivalent to

Uð2Þij þ

R1M

0

M2M

07n�n

0
BB@

1
CCA

�rðtÞ 0n�5n �Ntð1Þij EC1
�Ntð2Þij EC2

�Ntð3Þij EC3
0n�2n

	 


þ 0n�5n �Ntð1Þij EC1
�Ntð2Þij EC2

�Ntð3Þij EC3
0n�2n

	 
T

�rTðtÞ

R1M

0

M2M

07n�n

0
BB@

1
CCA

T

\0; ð25Þ

where

Uð1Þij ¼

Uij11 0 Uij13 Uij14 R1 Uð1Þij16 Uð1Þij17 Uð1Þij18 0 0

� Uij22 MT
1 0 Uij25 0 H2S4 0 0 0

� � Uij33 0 M2 Uð1Þij36 Uð1Þij37 Uð1Þij38 0 M1

� � � Uij44 0 Uij46 0 0 0 0

� � � � Uij55 0 Uij57 0 0 0

� � � � � Uð1Þij66 0 0 0 0

� � � � � � Uð1Þij77 0 0 0

� � � � � � � Uð1Þij88

�1

s
QT

12 0

� � � � � � � � �1

s
Q11 0

� � � � � � � � � �1

s
R3

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

; ð23Þ

Uð2Þij ¼

Uij11 0 Uij13 Uij14 R1 Uð2Þij16 Uð2Þij17 Uð2Þij18 0 0

� Uij22 MT
1 0 Uij25 0 H2S4 0 0 0

� � Uij33 0 M2 Uð2Þij36 Uð2Þij37 Uð2Þij38 0 M1

� � � Uij44 0 Uij46 0 0 0 0

� � � � Uij55 0 Uij57 0 0 0

� � � � � Uð1Þij66 0 0 0 0

� � � � � � Uð1Þij77 0 0 0

� � � � � � � Uð1Þij88

�1

s
QT

12 0

� � � � � � � � �1

s
Q11 0

� � � � � � � � � �1

s
R3

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA
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Uð2Þij16 ¼ �Ntð1Þij R1C1 þ H2S2; Uð2Þij17 ¼ �Ntð2Þij R1C2; Uð2Þij18

¼ �Ntð3Þij R1C3; Uð2Þij36 ¼ �Ntð1Þij M2C1; Uð2Þij37 ¼ �Ntð2Þij

M2C2; Uð2Þij38 ¼ �Ntð3Þij M2C3.

According to Lemma 4, (25) holds for rT(t)r(t) \ I if

and only if there exists e [ 0 such that

Uð2Þij þ e�1

R1M

0

M2M

07n�n

0
BBB@

1
CCCA

R1M

0

M2M

07n�n

0
BBB@

1
CCCA

T

þe 0n�5n �Ntð1Þij EC1
�Ntð2Þij EC2

�Ntð3Þij EC3
0n�2n

	 
T

0n�5n �Ntð1Þij EC1
�Ntð2Þij EC2

�Ntð3Þij EC3
0n�2n

	 

\0:

ð26Þ

By Schur complement in [40], one obtains that (26) is

equivalent to (5).

According to _VðxðtÞÞ\0, we know that xT(t)(U � R1)

x(t) is bounded function and

lim
t!1
kxiðtÞ � xjðtÞk ¼ 0:

We can obtain that the coupled static neural networks (4) are

globally robustly synchronized. This proof is completed.

Remark 4 There are many synchronization studies for

coupled local field neural networks, such as [7, 10, 11, 13,

14, 16–24, 33, 34]. However, there are few results for

coupled static neural networks. In the proof, Lipschiz

conditions are used to handle the nonlinear terms in the

system (1). In addition, the augmented Lyapunov–Kra-

sovskii functional is used, which alleviates the require-

ments of the positive definiteness of some conditional

matrices. At the same time, the less conservative robust

synchronization conditions for the coupled static neural

networks can be obtained.

Remark 5 In Theorem 1, the robust synchronization cri-

teria for static neural networks with uncertain coupling

configuration matrices are obtained. Up to now, there are

still no robust synchronization criteria for nonlinear hybrid

coupled static delayed neural networks.

4 Simulation

In this section, we show one simulation example to illus-

trate the application of the theoretical results obtained in

this paper.

Consider the robust synchronization problem for the

following nonlinear hybrid coupled static neural networks

with uncertainties,

_xiðtÞ ¼ � AxiðtÞ þ gðWxiðt � sðtÞÞÞ þ
X3

j¼1

tð1Þij ðC1 þ DC1ðtÞÞf ðxjðtÞÞ

þ
X3

j¼1

tð2Þij ðC2 þ DC2ðtÞÞf ðxjðt � sðtÞÞÞ

þ
X3

j¼1

tð3Þij ðC3 þ DC3ðtÞÞ
Z t

t�sðtÞ
f ðxjðsÞÞds; i ¼ 1; 2; 3:

ð27Þ

where xiðtÞ ¼ ½xi1ðtÞ; xi2ðtÞ�T ;A ¼
3 0

0 2

� �T

; W ¼
�0:4 �0:7
�0:8 0:5

� �
; tð1Þ ¼ tð2Þ ¼ tð3Þ ¼

�1 0:8 0:2
0:8 �1 0:2
0:2 0:2 �0:4

0
@

1
A; C1 ¼ 0:5 0

0 0:3

� �
; C2 ¼

0:4 0

0 0:3

� �
; C3 ¼

0:3 0

0 0:4

� �
; DC1 ¼ DC2 ¼

DC3 ¼
0:13cosðtÞ 0:16cosðtÞ
0:12sinðtÞ 0:14sinðtÞ

� �
; gðxðtÞÞ ¼ tanhðxðtÞÞ;

f ðxðtÞÞ ¼ tanhðxðtÞÞ; sðtÞ ¼ 0:3þ 0:3sinðtÞ. The initial

values are x1ðsÞ ¼
1:7
0:6

� �
; x2ðsÞ ¼

�1:8
1:5

� �
; x3ðsÞ ¼

0:3
0:7

� �
. By referring to the MATLAB linear matrix

inequality (LMI) Toolbox, we solve the LMIs in (5).

The following feasible solutions are obtained: R1¼

1:3921 �0:0925

�0:0925 1:4026

� �
; R2¼

1:2961 �0:1970

�0:1970 0:8012

� �
; R3 ¼

0:2292 �0:1580

�0:1580 0:2508

� �
; P11 ¼

0:4559 �0:0116

�0:0116 1:8369

� �
;

P12 ¼
�0:2199 0:1018

0:5114 �0:7277

� �
; P22 ¼

2:1150 0:1872

0:1872 1:4462

� �
;

Q11 ¼
0:2159 0:0196

0:0196 0:3744

� �
; Q12 ¼

0:1050 0:1060

0:2201 �0:0619

� �
;

Q22 ¼
1:8561 0:2407

0:2407 1:8653

� �
; S1¼

1:1584 0

0 3:6285

� �
;

S2 ¼
6:5064 0

0 5:0903

� �
; S3 ¼

1:0541 0

0 1:8945

� �
;

S4 ¼
0:4015 0

0 0:5701

� �
; e ¼ 1:4439.

According to Theorem 1, the (27) can achieve robust

synchronization. The synchronization errors of (27) are

shown in Figs. 1, 2 and 3, which are calculated by e1ðtÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3
j¼2ðx11 � xj1Þ2

q
; e2ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3
j¼2ðx12 � xj2Þ2

q
; eðtÞ ¼

P2
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3
j¼2ðx1i � xjiÞ2

q
.

We know that, given a neural network system, the static

neural networks and local field neural networks modeling
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approaches may both be applied to describe the system

either from an external state point of view or from an

internal state point of view. However, the static neural

networks play a key role in linear and convex quadratic

programming problems and parallel computing problems.

At the same time, for a large scale of coupled static neural

networks, the coupling relation among the nodes is also

with the character of time delay or uncertain coupling. All

these factors will impact the accuracy of synchronization of

such coupled system model. Thus, it is more reasonable to

consider the uncertain hybrid coupling static neural net-

works with time-varying delay, which is of practical sig-

nificance and potential value.

5 Conclusion

In this paper, the robust synchronization of the static neural

networks with constant, discrete delay and distributed delay

nonlinear coupling and with uncertainties in coupling matrix

terms have been investigated. The novel delay-dependent

robust synchronization criteria have been derived for system

(4) based on the augmented Lyapunov–Krasovskii func-

tional, Kronecker product technique of matrices, and free-

weighting matrices. The delay-dependent robust synchro-

nization criteria are less conservative than the delay-inde-

pendent ones, in particular when the delay is small. Thus, the

synchronization problems in this paper are novel and have

extended the earlier results. On the other hand, how to

extend the results to coupled static neural networks with

noise and impulse is an interesting issue.
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