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Abstract Air-ratio is an important engine parameter that

relates closely to engine emissions, power, and brake-

specific fuel consumption. Model predictive controller

(MPC) is a well-known technique for air-ratio control. This

paper utilizes an advanced modelling technique, called

online sequential extreme learning machine (OSELM), to

develop an online sequential extreme learning machine

MPC (OEMPC) for air-ratio regulation according to vari-

ous engine loads. The proposed OEMPC was implemented

on a real engine to verify its effectiveness. Its control

performance is also compared with the latest MPC for

engine air-ratio control, namely diagonal recurrent neural

network MPC, and conventional proportional–integral–

derivative (PID) controller. Experimental results show the

superiority of the proposed OEMPC over the other two

controllers, which can more effectively regulate the air-

ratio to specific target values under external disturbance.

Therefore, the proposed OEMPC is a promising scheme to

replace conventional PID controller for engine air-ratio

control.

Keywords Online sequential extreme learning machine �
Nonlinear model predictive control � Automotive engine �
Air-ratio

1 Introduction

Air-ratio (also known as lambda) is an engine parameter

indicating the amount of difference between the actual

available air–fuel mixture and the stoichiometric ratio of

the fuel being used [1]. The air-ratio plays an important

role in engine performance control because it relates clo-

sely to engine emissions, power, and brake-specific fuel

consumption. The rapid growth in the number of vehicles

makes vehicular emissions become a major source of air

pollution, which impacts on the public health and envi-

ronment significantly, especially in urban areas. Studies

[2–6] show that every year about hundred thousand of

mortalities all over the world are related to vehicular

emissions, resulting in billions of economic loss. To reduce

the amount of toxic elements in vehicular emissions, the

three-way catalytic converter is currently the most effective

after-treatment device. When the air-ratio is stoichiometry

(i.e., air-ratio = 1.0), the conversion efficiency of the

three-way catalytic converter can reach as high as 98 %.

However, the conversion efficiencies for carbon monoxide

(CO), hydrocarbons (HC), and nitrogen oxides (NOX) drop

more than 50 % when the air-ratio deviates more than 2 %

from stoichiometry, causing more severe air pollution.

Moreover, air-ratio can significantly affect brake-specific

fuel consumption. Recent studies [7, 8] have showed that

the air-ratio should be regulated to a value around 1.05 for

achieving the best brake-specific fuel consumption. Fur-

thermore, the maximum engine power can be achieved

when the air-ratio is around 0.95. Therefore, optimal air-

ratio control according to various operating conditions is

significant and desired.

In the existing literature, there are a lot of control

strategies on air–fuel ratio (AFR) rather than air-ratio.

These strategies include sliding mode control [9], radial-
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basis-function neural network feedforward–feedback con-

trol [10], and model predictive control (MPC) using neural

network-based models [11, 12]. Nevertheless, AFR control

is ineffective for engine performance control because it

does not consider the fuel variation. On the contrary, air-

ratio is a fuel-independent index that can reflect the engine

performance more effectively. Thus, this study focuses on

air-ratio control rather than AFR. As air-ratio is associated

with AFR, the control strategies developed for AFR can

also be adopted to air-ratio. In the aforementioned resear-

ches, the latest and the most appropriate technique for AFR

control is neural network-based MPC [11, 12], which is

very robust and suitable for multivariable, time-varying,

and delay systems, such as modern engine systems [13]. It

is well known that a reliable engine performance prediction

model is the core component of the MPC. However, the

engine models developed in [10–12] were surrogate mod-

els. That is, the models were trained from the data gener-

ated by empirical equations rather than a real engine. In

fact, many assumptions have been made in the empirical

equations, and many coefficients in the equations are dif-

ficult to determine for a real engine [14]. Therefore, the

neural network prediction models derived from the data

generated by empirical equations cannot effectively reflect

the actual performance of the controller in real engines.

Moreover, the types of neural networks used in [11, 12]

were radial-basis-function (RBF) neural network and

diagonal recurrent neural network (DRNN). Both of these

methods employ back-propagation (BP) algorithm that

suffers from slow error convergence [15] and local minima

[16]. Hence, the prediction models in these previous

studies are not suitable for practical use.

To overcome the issues of BP, extreme learning

machine (ELM) was proposed [17–20] that has a simple

and effective modelling algorithm for training single hid-

den layer feedforward networks. In ELM, the training

involves only the output weights; the parameters in the

hidden nodes are generated randomly and unnecessary for

adjustment. Many recent studies [16–18, 21–23] already

showed that ELM can achieve better generalization and

faster learning time than BP algorithms, and many variants

of ELM have been introduced [15, 24–27]. However,

classical ELM is only suitable for off-line batch training; it

can only build the engine air-ratio model when all training

data are ready. When a new datum arrives, the model

cannot be updated dynamically, and a retraining from

scratch is necessary. In practice, the air-ratio model in the

MPC is required to be updated for any changes in engine

performance due to engine aging or fair user modification

on the engine. In other words, the training data for engine

air-ratio performance will come sequentially in real time,

so an online variant of ELM is necessary. Thankfully,

online sequential extreme learning machine (OSELM) was

developed in [15] for online learning of ELM. OSELM

retains all the properties of ELM with advantages of effi-

cient update and faster convergence speed. Moreover, its

output weights can also be updated even when the data

come one by one or chunk by chunk. This is a very

favorable feature for real-time control applications. In

order to develop a reliable prediction model for chaotic air-

ratio behavior with online update ability, OSELM is

therefore employed in this study.

In view of the deficiencies of the existing works, this

paper proposes a nonlinear MPC algorithm for air-ratio

control based on OSELM model, called online sequential

extreme learning machine MPC (OEMPC). The OSELM

air-ratio model can be updated continually to compensate

for the air-ratio performance variation. This is a novel

nontrivial application of OSELM. Based on the multiple-

step-ahead prediction of the air-ratio, an optimal control

signal is obtained to regulate the air-ratio to the desired

values. The performance of the proposed OEMPC is

compared with both the latest and conventional AFR

control techniques, namely diagonal recurrent neural net-

work MPC (DNMPC) [12] and proportional–integral–

derivative (PID) controller in production cars, respectively.

To the best knowledge of the authors, this paper is the first

attempt at extending OSELM to the domain of automotive

engine air-ratio modelling and control.

2 Online sequential extreme learning machine

(OSELM)

OSELM is a simple and efficient online sequential mod-

elling algorithm that can learn the training data one by one

or chunk by chunk as well as discarding the data that are

sequentially redundant. The OSELM modelling algorithm

and update procedure are presented as below [15, 19]:

Given a chunk of initial training dataset D0 of N0 input

vectors xn, n = 1 to N0, along with N0 corresponding

scalar-valued output yn. The input vector xn [ Rm contains

the previous measured engine parameters, including engine

speed (ES), throttle position (TP), and air-ratio at a previ-

ous time instant. The corresponding air-ratio at that time is

defined as the output yn [ R. The OSELM air-ratio model

with L hidden nodes and activation function g(x) can be

mathematically expressed by:

ŷn ¼ f xnð Þ ¼
XL

i¼1

big ai; bi; xnð Þ; ð1Þ

where ŷn = f(xn) is the prediction of the true air-ratio,

ai = [a0,…, aL] and bi are the centers and variances of the

ith RBF hidden node because RBF kernel is chosen in this

study, and bi is the weight connecting the ith hidden node
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and the output node. Generally, the air-ratio model for

predicting an unseen input datum x, which contains the

recent measured engine parameters, can be expressed as

ŷ ¼ yp ¼ f ðxÞ ¼
XL

i¼1

bi exp � ai � xk k2

b2i

 !
; ð2Þ

It has been theoretically shown that all weight vectors

connecting the hidden nodes and the input nodes, ai and bi,

can be randomly initialized and no update is needed. Only

the weights connecting the hidden nodes and the output

nodes, bi, are required to be optimized with Eq. (3) [15, 19].

bð0Þ ¼ K�1
0 GT

0 y
ð0Þ; ð3Þ

where b(0) = [b1, b2,…, bL], y
(0) = [y1, y2,…, yN0], G0 is

the hidden layer matrix that can be computed by Eq. (4),

and K0 is defined by Eq. (5):

G0 ¼

exp � a1�x1k k2
b2
i

� �
� � � exp � aL�x1k k2

b2
i

� �

..

. . .
. ..

.

exp � a1�xN0k k2

b2
i

� �
� � � exp � aL�xN0k k2

b2
i

� �

2
66664

3
77775
;

ð4Þ

K0 ¼ GT
0G0: ð5Þ

When there is a new chunk of dataset D1 of N1 input

vectors xn, n = N0 ? 1 to N0 ? N1, along with N1

corresponding scalar-valued output yn, the air-ratio model

is required to be updated to adapt the new scenario. As

mentioned before, only the weights connecting the hidden

nodes and the output nodes, bi, are required to be updated,

which is accomplished by the following equation [15, 19]:

bð1Þ ¼ bð0Þ þ K�1
1 GT

1 yð1Þ � G1b
ð0Þ

� �
; ð6Þ

where b(1) [ RL are the updated weights, y(1) = [yN0?1,

yN0?2,…, yN0?N1], G1 is another hidden layer matrix

which can be computed by Eq. (7), and K1 is defined by

Eq. (8):

G1 ¼

exp � a1�xN0þ1k k2

b2
i

� �
� � � exp � aL�xN0þ1k k2

b2
i

� �

..

. . .
. ..

.

exp � a1�xN0þN1k k2

b2
i

� �
� � � exp � aL�xN0þN1k k2

b2
i

� �

2
666664

3
777775
;

ð7Þ

K1 ¼ K0 þ GT
1G1: ð8Þ

For the k ? 1 chunk of dataset Dk?1 of Nk?1 input

vectors xn, n = Nk ? 1 to Nk ? Nk?1, along with Nk?1

corresponding scalar-valued output yn, the optimal weights

connecting the hidden node and the output nodes, bi, are
given by [15, 19]:

bðkþ1Þ ¼ bðkÞ þ K�1
kþ1G

T
kþ1 yðkþ1Þ � Gkþ1b

ðkÞ
� �

; ð9Þ

where y(k?1) = [yNk?1, yNk?2,…, yNk?Nk?1] and Kk?1 is

defined by Eq. (10):

Kkþ1 ¼ Kk þ GT
kþ1Gkþ1: ð10Þ

In order to update b(k?1) from b(k) efficiently, Kk?1
-1 is

required to be computed efficiently, which could be derived

using the Woodbury formula [28]:

K�1
kþ1 ¼ Kk þ GT

kþ1Gkþ1

� ��1
;

¼ K�1
k � K�1

k GT
kþ1 I þ Gkþ1K

�1
k GT

kþ1

� ��1�Gkþ1K
�1
k :

ð11Þ

To avoid the term G0
TG0 in Eq. (5) being singular,

rank(G0) must be equal to L. In order to make

rank(G0) = L, the OSELM must be initialized with a

training dataset of N0 data such that N0[ L. The number of

hidden nodes L in this study was chosen as 20 based on the

model selection procedure presented in [15].

Optimizer
(Brent’s Method) 

Tentative fuel

OSELM Air-
ratio Model 

Predicted air-ratio

Real Engine 

Time history input

Real air-ratio measured 
by lambda sensor

Optimized fuel 
injection time

u 

y

Model update

injection time
u'

yP 

Engine signal (e.g.  
throttle position) 

+

-Target air-ratio yr 

Prediction and 
optimization loop

Fig. 1 Structure of OEMPC for

engine air-ratio control
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3 MPC with OSELM model

The structure of the proposed OEMPC is shown in Fig. 1.

The controller consists of the OSELM air-ratio model and

the optimizer based on Brent’s method [29]. The OSELM

air-ratio model predicts the engine response over a speci-

fied time horizon. The predictions are used by the opti-

mizer to determine the tentative fuel injection time u0,
which minimizes the following performance criterion over

the specified time horizon, and then the optimal fuel

injection time signal u is sent to the engine.

min J u0ð Þ ¼
XN2

j¼N1

yr t þ jð Þ � yp t þ jð Þ
� �2

þ q
XNu

j¼1

u0 t þ j� 1ð Þ � u0 t þ j� 2ð Þð Þ2; ð12Þ

where N1 and N2 define the prediction horizon. t and Nu are

the time step and the control horizon, respectively. q is a

user-defined weight that penalizes excessive movement of

the control signal (i.e., the fuel injection time). The

variables u0(t ? j - 1) and u0(t ? j - 2) in the second

part of Eq. (12) are the tentative fuel injection time at the

time steps t ? j - 1 and t ? j - 2, respectively. The

second part of Eq. (12) ensures the stability of the

controller output. yr(t ? j) is the target air-ratio at the

time step t ? j, and yp is the predicted air-ratio by the

OSELM model which is computed from Eq. (2) at the time

step t ? j, from which the input vector x consists of three

time series of engine parameters: engine speed ES(t ? j -

1), ES(t ? j - 2), etc.; throttle position TP(t ? j - 1),

TP(t ? j - 2), etc; and previous measured air-ratio

y(t ? j - 1), y(t ? j - 2), etc. In other words,

yp t þ jð Þ ¼
XL

i¼1

bi exp � a1 � xk k2

b2i

 !
: ð13Þ

3.1 Single-dimensional optimization approach

The original optimization problem involved in this paper is

multidimensional and constrained with the tentative control

signals, u0(t), u0(t ? 1),…, u0(t ? Nu - 1), over the control

horizon Nu, which can minimize the objective function

J(u0) of Eq. (12). Then the predicted air-ratios, yp(t ? N1),

yp(t ? N1 ? 1),…, yp(t ? N2), can trace the target air-

ratios, yr(t ? N1), yr(t ? N1 ? 1),…, yr(t ? N2), by using

the optimized fuel injection time series. Each fuel injection

time is normally bounded within the range from 2 to

15 ms. However, the multidimensional optimization

Start

|J(u'k+1) - J(u'k)| < 0.5×min (|u'k – a| , |b - u'k | )

Golden-
section search

|u'k+1 - u'k| < tol or over maximum
iteration

Parabolic 
interpolation

Output 

Yes No

Yes

No

Fig. 2 General working

principle of Brent’s method

ES(t-1)

OSELM Air-ratio
Model 

ES(t-2) 

TP(t-1)

y(t-1)

y(t-2)

TP(t-2)

yp(t)

Fig. 3 Structure of OSELM air-ratio model
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always requires heavy computation, especially when con-

straints exist. Real-time control applications often put

emphasis on computational speed. The research of [11]

showed that the one-dimensional approach is efficient for

real-time AFR control and that the overall tracking error is

similar to that using multidimensional optimization

approach. Therefore, the optimization problem to be solved

is reduced to one-dimensional. In this paper, the control

signal u is assumed to remain constant over the control

horizon. Therefore, the tentative control signal in the

objective function is also constant over the control horizon,

i.e., u0(t) = u0(t ? 1),…, = u0(t ? Nu - 1). In this way,

only one parameter u0(t) is needed to be determined, and

the final fuel injection time at each time step u is set to be

the optimal value of u0(t).

3.2 Brent’s method

There are many optimization techniques available for

MPC, and each technique has its pros and cons. A well-

known technique—Brent’s method—was selected as the

MPC optimizer in this study for illustrative purpose.

Brent’s method is a robust and efficient optimization

method. It combines the typical parabolic interpolation and

golden-section search. The objective function in each

iteration is approximated by interpolating a parabola

through three existing points. The minimum point of the

parabola is taken as a guess for the minimum point if

certain criteria are met. Otherwise, golden-section search is

carried out. The advantage of this method is that the high

convergence rate of parabolic interpolation can be main-

tained without losing the robustness of golden-section

search [29]. The general working principle of Brent’s

method is shown in Fig. 2. The detailed optimization

procedure of Brent’s method was presented in [29] and is

not presented herein. There are three parameters of Brent’s

method, which are the initial interval of the input variable,

[a, b], that is the limit of the fuel injection time, the tol-

erance, tol, and the maximum iteration for stopping the

optimization procedure. The three variables were set at [2,

15], 0.05, and 50, respectively, because the fuel injection

time varies within 2–15 ms from 0 to 100 % throttle.
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4 Implementation and evaluation of OSELM air-ratio

model

4.1 OSELM air-ratio model implementation

The objective of the OSELM air-ratio model is to predict

the future air-ratio yp from the inputs of three time series of

engine parameters: ES, TP, and previous measured air-ratio

y. The structure of the OSELM model was chosen to be

second order (i.e., 2 past time steps), which gives the

minimum prediction error [11, 12], and the structure is

shown in Fig. 3.

To obtain the engine data for building the air-ratio model,

5,800 data samples including air-ratio, ES, and TPs were

collected. These 5,800 data samples were collected over a

Honda DC5 Type-R test car with K20A i-VTEC engine

connected to a MoTeC M800 programmable ECU with

nonfactory calibration data. A dyno test was done for col-

lecting the data samples. The first 3,000 data samples were

used as initial training datasetD0 to build the air-ratio model.

The last 2,800 data samples were used as test dataset TEST.

The first 2,700 data samples of TEST were also regarded as

update datasetUPDATE for real-time updates. The air-ratio

model was updated every 100 measured air-ratio data sam-

ples during prediction. In other words, UPDATE was divi-

ded into 27 datasets, Dk, for k = 1–27. Each dataset Dk was

used as test data first to test the immediate model accuracy,

and then Dk was used again as update data for updating the

model. The remaining 100 data samples of TEST were the

last dataset for evaluating the accuracy of the air-ratio model

after finishing the last update (i.e., updated by 2,601–2,700

data samples) in the test. With respect to the training dataset

D0, the test dataset TESTwas the unseen case for testing the

generalization of the built air-ratio model.

4.2 Evaluation of engine air-ratio model

To illustrate the accuracy, superiority, and online update

ability of the proposed OSELM air-ratio model, its pre-

diction result was compared with those obtained from the

latest modelling algorithm for AFR control, DRNN [12].

For a fair comparison between the two modelling algo-

rithms, both modelling algorithms were implemented using

MATLAB 2011b and executed on a 3.4 GHz Intel Core i7

PC with eight GB RAM onboard.

After obtaining the air-ratio model EM(x) with OSELM

through the modelling algorithm presented in Sect. 2 over D0,

Table 1 Accuracy and computation time of different air-ratio models

Air-

ratio

model

LMAE Model

training

time (s)

Average model

updating time

(s)

Cumulative

model updating

time (s)

EM*(x) 2.2424 0.1783 0.0060 0.1685

NN*(x) 1.8323 4.5609 0.1689 6.0339

Fig. 5 Experimental setup and signal flow between test car and OEMPC
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EM(x) was then updated for 27 times with Dk, for k = 1–27,

100 data samples each time, to build the updated OSELM air-

ratio model EM*(x). Apart from the OSELM model, the

DRNNmodelling algorithm for model predictive AFR control

presented in [12] was applied to build the air-ratio model,

NN(x). The network was trained for 100 epochs. After that,

NN(x) was updated with UPDATE but employing the

dynamicBPwith automatic differentiation technique presented

in [12] to build the updated DRNN air-ratio model NN*(x).

After constructing EM*(x) and NN*(x), the perfor-

mance of the two air-ratio models can be evaluated in

terms of accuracy. Since the range of air-ratio for
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combustible mixture is very narrow, the prediction errors

of the above two air-ratio models are presented by loga-

rithmic mean absolute error (LMAE), and they were

evaluated one by one against the test dataset, TEST, using

Eq. (14):

LMAE ¼ � log
1

T

XT

k¼1

yk � f � xkð Þj j
" #

; ð14Þ

where f*(xk) represents either EM*(xk) or NN*(xk), xk is

the kth new input vector for air-ratio prediction, yk is the

corresponding actual air-ratio of f*(xk), and T is the total

number of predictions. The value of T is equal to 2,800 in

this case study. The larger the LMAE, the higher the model

accuracy is. The prediction results between the predicted

air-ratios and the corresponding actual air-ratios over

TEST are shown in Fig. 4.

Apart from the model accuracy, computation speed is

also an important factor in real-time control applications.

Table 1 shows the LMAE, model training time, and model

updating time of both OSELM and DRNN air-ratio models.

According to the LMAE values in Table 1, the OSELM

air-ratio model EM*(x) outperforms NN*(x) by approxi-

mately 22 %. The trends and tracking errors in Fig. 4 also

imply that the accuracy of the OSELM air-ratio model will

be well maintained if the model update is continually

carried out to adapt to any changes in engine performance

due to engine aging or fair user modification on the engine.

In addition to model accuracy, OSELM can also reduce the

time for training and updating the air-ratio model signifi-

cantly. In Table 1, the air-ratio model training time, aver-

age model updating time, and cumulative model updating

time of EM*(x) are 0.1783, 0.0060, and 0.1685 s, respec-

tively. The average model updating time of EM*(x),

0.0060 s, is only about 128 of NN*(x). This achievement is

accomplished by the effective online learning algorithm of

OSELM. The total cumulative model updating time saved

by OSELM from DRNN after 27 update iterations is

5.8654 s. However, if the air-ratio model is often updated,

the cumulative model updating time saved by OSELM can

be very significant. Obviously, OSELM is superior to

DRNN algorithm. As a whole, the high accuracy and short

updating time of the air-ratio model using OSELM make

online model predictive air-ratio control more feasible.
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Hence, OSELM was confidently selected to implement the

model predictive engine air-ratio controller in this research.

5 Implementation and evaluation of OEMPC

5.1 Experimental setup

The proposed OEMPC algorithmwas implemented and tested

on a real car, Honda DC5 Type-R with K20A i-VTEC engine

connected to aMoTeCM800programmable electronic control

unit (ECU) and National Instrument (NI) CompactDAQ

chassis DAQ-9178. The MPC algorithm was implemented

using MATLAB. MoTeC M800 is mainly used for engine

control, whereas NI DAQ-9178 is used for sending control

signal to the MoTeC ECU via a LabVIEW interface program

according to theMATLABMPC program embedded. In other

words, NI DAQ-9178 serves as an interface between the

MATLAB program and the MoTeC ECU. Apart from fuel

injector control, the MoTeC ECU also contains many control

maps, such as ignition map and valve timing map, to maintain

the engine operation. The experimental setup and the signal

flow between the test car and OEMPC are shown in Fig. 5.

The initial off-line training data for building the OSELM

model were obtained using a wideband lambda sensor

subject to random TPs and are discussed in Sect. 4. In this

study, there are two pilot tests evaluating the tracking error

and online update ability of the controllers.

5.2 Pilot test 1: tracking ability

In pilot test 1, the test cycle is shown in Fig. 6 where the

TP gradually changes from 15 to 75 % throttle (the TP
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Fig. 9 a Air-ratio control

results and b corresponding fuel

injection time of PID controller

in pilot test 1

Table 2 Control performance of pilot test 1 of different controllers

Controller TI Max. overshoot

OEMPC

(% of improvement)a

(% of improvement)b

2.3309

(1.8 %)

(4.18 %)

0.1074

(15.23 %)

(22.23 %)

DNMPC

(% of improvement)c
2.2896

(2.3 %)

0.1267

(8.25 %)

PID 2.2373 0.1381

a OEMPC over DNMPC, b OEMPC over PID, c DNMPC over PID
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increases by 15 % every 5 s). Such test cycle is designed

by referring to [12], which almost covers the whole oper-

ating condition. In this test, the air-ratio is required to track

the target air-ratios from the stoichiometric value (1.00) for

minimum emissions to a value for the best brake-specific

fuel consumption (1.05) and then to a value for maximum

engine power (0.95) as the TP is gradually changed from

15 to 75 % throttle. Such tracking of air-ratio changes is

essential for automobiles to satisfy the emission, fuel

consumption, and power requirements under different

operating conditions [7, 8]. After choosing the sampling

time to be 0.01 s, the tracking ability of the OEMPC can be

examined. By testing many values around the parameters

used in [11, 12], the parameters of the optimizer were

chosen as N1 = 1, N2 = 8, q = 0.75, and Nu = 5. With the

test cycle shown in Fig. 6 and the parameters chosen, the

air-ratio control result and the corresponding fuel injection

time of the OEMPC are shown in Fig. 7. To show the

advantage of the OEMPC, its control result is compared

with the latest model predictive controller, DRNN model

predictive controller (DNMPC), as well as the PID con-

troller used in the existing automotive ECU. The air-ratio

model used in the DNMPC is the model mentioned in Sect.

4.2. The parameters of nonlinear optimization for the

DNMPC were the same as those of OEMPC. The PID

gains of the PID controller were obtained by the Ziegler–

Nichols method. For a fair comparison, all the control

algorithms were implemented using MATLAB 2011b and

executed on a 3.4 GHz Intel Core i7 PC with eight GB

RAM onboard. The air-ratio control results and the corre-

sponding fuel injection time of the DNMPC and PID

controller are shown in Figs. 8 and 9, respectively.

Figure 7a shows that the OEMPC can regulate the air-

ratio to follow the target air-ratioswith the smallest deviation

among all the controllers. As the range of air-ratio for

combustible mixture is very narrow, logarithmic mean

absolute error is chosen as the tracking index (TI) to evaluate

the tracking ability of the controllers. The index is defined by

TI ¼ � log
1

Ts

XTs

t¼1

yt � yrðtÞj j
" #

; ð15Þ

where t is time step, Ts is the total number of time step in the

test, yt is the actual air-ratio at each time step, and yr(t) is the
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corresponding target air-ratio at each time step. The target

air-ratio varies according to the aforesaid practical operat-

ing conditions. In other words, when the TP is near 15 %,

the target air-ratio is set to stoichiometry (1.00) to minimize

the emissions, whereas the target air-ratio is set to a value of

1.05 to minimize the fuel consumption during partial

throttle as the car is cursing. On the other hand, the target

air-ratio is set to a value of 0.95 to maximize the engine

power for 75 % throttle or above [7, 8].

The control performances of the three controllers are

shown in Table 2, and the OEMPC outperforms the

DNMPC and PID controller by approximately 2 and 4 %,

respectively, in terms of TI. These results show the

excellent tracking ability of the OEMPC. Apart from the

superiority of TI, the maximum overshoot during transient

state of the OEMPC also outperforms the DNMPC and PID

controller by approximately 15 and 22 %, respectively.

5.3 Pilot test 2: online update ability

In the previous test, the ‘‘bypass air valve’’ of the test

engine is 60 % opening. In order to test the update ability

of the OEMPC, the ‘‘bypass air valve’’ was set from 60 to

30 % from 12 s to the end of the test. It is equivalent to the

clogging of the engine intake filter as the engine is aging.

Normally, the air-ratio must decrease under the same TP as

lack of intake air. The testing procedure and the parameter

setting are exactly the same as those in pilot test 1 except

the sudden change of the ‘‘bypass air valve’’ position after

12 s. The air-ratio control result and the fuel injection time

of the OEMPC are shown in Fig. 10. Similar to pilot test 1,

the control result is compared with the DNMPC and typical

PID controller. The control results and the corresponding

fuel injection time of the DNMPC and PID controller are

shown in Figs. 11 and 12, respectively. Figures 10a, 11a,

and 12a depict that the air-ratios decrease after changing

the position of the ‘‘bypass air valve’’ due to fuel rich.

Figures 10a and 11a illustrate that the two controllers,

OEMPC and DNMPC, can regulate air-ratios with obvi-

ously less deviation from the target air-ratios and overshoot

than that of the PID controller because the air-ratio model

can be self-updated for any changes in engine condition.

The control performances of the three controllers are

shown in Table 3, and the control performance of TI of the
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OEMPC outperforms the DNMPC and PID controller by

approximately 6 and 14 %, respectively. Moreover, the

maximum overshoot during transient state of the OEMPC

outperforms the DNMPC and PID controller by approxi-

mately 9 and 15 %, respectively. This promising result

indicates that the OEMPC can regulate air-ratio very well

even though the engine ages and undergoes external dis-

turbance simultaneously.

5.4 Discussion of results

All experimental results show that the overall air-ratio

control performance of the OEMPC is better than those of

DNMPC and conventional PID controller. There are three

important factors affecting the control performance of the

model predictive controllers: air-ratio model accuracy,

computational time, and adaptability. As presented in

Table 1, the model accuracy and model updating time of

the OSELM are better than those of DRNN. Moreover, the

tracking errors from 12 to 25 s in Figs. 10a and 11a reveal

that the model accuracy of the OSELM after update is

obviously better than that of DRNN. This result shows that

the online sequential learning algorithm of the OSELM is

superior to the dynamic BP with automatic differentiation

technique in DRNN. As a result, the overall control per-

formance of the OSELM is better than the DNMPC. Fur-

thermore, the PID controller cannot adapt to the changes of

engine conditions, and no optimal PID gains can handle all

situations. Therefore, PID controller is worse than both

OEMPC and DNMPC in performance. In summary, the
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Table 3 Control performance of pilot test 2 of different controllers

Controller TI Max. overshoot

OEMPC

(% of improvement)a

(% of improvement)b

2.1948

(5.75 %)

(14.02 %)

0.1173

(8.5 %)

(15.06 %)

DNMPC

(% of improvement)c
2.0754

(7.81 %)

0.1282

(7.17 %)

PID 1.9250 0.1381

a OEMPC over DNMPC, b OEMPC over PID, c DNMPC over PID
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tracking and online update abilities of the OEMPC are the

best among the three controllers. Hence, the OEMPC is the

most suitable method for engine air-ratio control. Although

Tables 2 and 3 show that the TI of the OEMPC has only

been slightly improved, this small change in TI can prac-

tically result in a big change of engine performance

because the air-ratio is a very delicate value. References [7,

8] stated clearly that if the air-ratio deviates 2 % from its

stoichiometric ratio, CO, HC, and NOX emissions are

significantly increased due to the degradation of conversion

efficiency of the three-way catalytic converter. As a result,

the actual improvement achieved by the OEMPC is very

significant to this application.

6 Conclusions

This research is the first attempt at developing OEMPC for

engine air-ratio control. The OEMPC for engine air-ratio

control is trained and updated sequentially by real-time

engine data so as tomaintain the air-ratio model accuracy for

any changes in engine performance, such as engine aging or

fair user modification. The proposed OEMPC was success-

fully implemented and tested on a real automotive engine,

whereas many previous researches were simulation tests

only. Experimental results show that the air-ratio control

performance of the OEMPC is significantly better than those

of DNMPC and conventional PID controller. Tables 2 and 3

reveal that the OEMPC can effectively reduce the air-ratio

deviation and maximum overshoot up to 5.75 and 15.23 %,

and 14.02 and 22.23 % than those of DNMPC and conven-

tional PID controller, respectively. Therefore, theOEMPC is

a promising control scheme to replace conventional PID

controller in the automotiveECU for engine air-ratio control.

In the future, advanced optimization algorithms for the

OEMPC and system stability will be studied.
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