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Abstract Since the fiber diameter determines the

mechanical, electrical, and optical properties of electrospun

nanofiber mats, the effect of material and process param-

eters on electrospun polymethyl methacrylate (PMMA)

fiber diameter were studied. Accordingly, the prediction

and optimization of input factors were performed using the

response surface methodology (RSM) with the design of

experiments technique and artificial neural networks

(ANNs). A central composite design of RSM was

employed to develop a mathematical model as well as to

define the optimum condition. A three-layered feed-for-

ward ANN model was designed and used for the prediction

of the response factor, namely the PMMA fiber diameter

(in nm). The parameters studied were polymer concentra-

tion (13–28 wt%), feed rate (1–5 mL/h), and tip-to-col-

lector distance (10–23 cm). From the analysis of variance,

the most significant factor that caused a remarkable impact

on the experimental design response was identified. The

predicted responses using the RSM and ANNs were com-

pared in figures and tables. In general, the ANNs outper-

formed the RSM in terms of accuracy and prediction of

obtained results.

Keywords Electrospinning parameters � Polymethyl

methacrylate (PMMA) � Nanofibers � Response surface

methodology � Artificial neural networks

1 Introduction

The current priority of global materials research is focused

on exploring nanomaterials, due to the numerous likely

applications of nanotechnology in areas such as biotech-

nology, defense, and even in the semiconductor industry [1,

2]. To date, a significant amount of research on nanoscale

fibers has been performed to pursue potential application

areas including tissue-engineered membranes [3], nano-

resonators [4], micro-air vehicles [5], and hydrophobic thin

films [6].

As a matter of fact, the electrospinning process, also

known as electrostatic fiber spinning, has shown an

impressive capability to consistently manufacture nano-

scale fibers either from synthetic or natural polymers [7].

The resulting fiber normally determines the mechanical,

electrical, and optical properties of electrospun fiber mats.

As previously shown, both the strength and conductivity

of the film/mat of fibers manufactured using the electros-

pinning process are sensitive to fiber diameter [1]. There-

fore, it has been concluded that it is vital to control the fiber

diameter that is a function of material and process

parameters.

Several studies have investigated the electrospinning

process [1, 2, 8]. However, when it comes to the effects of

the process and material parameters on fiber formation,

both theoretical and experimental investigations are being

continually conducted [9–11].

Polymethyl methacrylate (PMMA) is known to be a

transparent thermoplastic polymer with an amorphous
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structure [12]. Given that fact, PMMA has been recognized

to have important applications including use as a trans-

parent glass substitute for eye lenses, implants, and artistic

and esthetic articles.

In the past few years, numerous studies have concen-

trated on the manufacturing of PMMA and other polymers

by means of the electrospinning process with a focus on the

fiber diameter. All of them reported varying results on the

effects of electrospinning parameters and polymer con-

centration on the fiber diameter. Most of them concluded

that a large fiber diameter is the main problem with their

results [13–15].

The design of experiments (DOE) method is an impor-

tant tool for the planning optimization of experimental

research. DOE plays an important role in estimating the

effect of several variables, and whether these specific

variable need to be evaluated separately, simultaneously or

as a combination of the two [16].

The response surface methodology (RSM) is a statistical

method intended for demonstrating and analyzing the

existing relationships concerning several input and

response variables [17]. The RSM is a practical modeling

method which involves using polynomials in place of local

approximations to the true input or output relationship.

Using the RSM, the objective is to improve the optimized

response (output variables) that is influenced by several

independent variables (input variables).

This approach will benefit from using RSM to lessen the

requirement for carrying out repeated experiments for tests

with multiple factors [18]. Recently, Low et al. [19] in their

recent study applied RSM to the optimization of the

mechanical properties of composite materials.

Artificial neural networks (ANNs) are a mathematical or

computational model that is constructed using inspiration

from the structural and/or functional aspects of biological

neural networks. This particular network consists of dense

interconnected computing units (artificial neurons) char-

acterized by simple mathematical models of complex

neurons in biological systems.

During the learning (training) process, information is

obtained and later stored in the synaptic weights of the

inter-nodal connections. The use of ANNs provides the

advantage of being able to represent complex input–output

relationships and is ideal when used for performing data

classification, function approximation, signal processing,

and so forth. The concept for the majority of ANNs was

defined by Hassoun [20], while Hertz et al. [21] formulated

the mathematics for ANNs in a methodical manner. Sha

and Edwards [22] comprehensively researched the appli-

cation of ANNs in material science.

Hassan et al. [23] utilized ANNs to calculate density,

porosity, and hardness of a based composite material. In

addition, Xiao and Zhu [24] used the application of ANNs

and RSM to study the development of friction materials.

Singh et al. [25] predicted the effective thermal conduc-

tivity of moist porous materials using ANNs. A review

paper [26] confirmed that employing ANNs has signifi-

cantly stimulated investigation in the field of material

science and technology [27].

The purpose of this paper is to study the effects of the

electrospinning parameters on the PMMA nanofiber

diameter and to also find the optimum conditions for

electrospinning PMMA nanofibers. The PMMA nanofibers

in this study had a diameter under 200 nm, the smallest

diameter among all previous studies on the fabrication of

PMMA nanofibers [13, 14]. The RSM and ANNs have

been employed to predict the optimal parameters for

electrospinning. Statistical results and an optimization

phase using the RSM accompanied by ANNs prediction

were performed and compared.

The remainder of the paper is organized as follows. The

next section describes the materials and methods used.

Detailed explanations regarding the preparation of material

and applied methods are given in Sect. 2. In Sect. 3, sta-

tistical and predicted results using the RSM and ANNs are

provided, respectively. Also, a comparison of the RSM and

ANNs in terms of error percentage and linear regression is

given in Sect. 3. The optimization phase for the PMMA

nanofiber is discussed in Sect. 4. The optimum condition

and the desirability of the PMMA fiber diameter are

obtained in Sect. 4. Finally, conclusions are drawn in Sect.

5.

2 Material and applied methods

2.1 Material and electrospinning process preparation

A mixture of analytically pure polymethyl methacrylate

(PMMA, (–CH2C-(CH3)CO2CH3)–), Mw = 120,000),

sourced from Aldrich, and N,N-dimethylformamide

(DMF), sourced from Labchem Sdn Bhd Co., Malaysia,

was used as the working solution in this study. Corre-

spondingly, polymer solution samples were obtained by

dissolving 13–28 wt% PMMA in the DMF solvent.

In addition, an ES30P-30W/SDPM (Gamma High

Voltage Research, Ormond Beach, FL) unit was used as a

good source for high-voltage power supply. Using a volt-

age of 15 kV, a suitable Taylor cone was produced and was

intended to be used for all experiments. A connection

between the high-voltage power supply and the needle was

made using an alligator clip.

In addition, a counter electrode was created by means of

a ground target at different tip-to-collector distances

altering from 10 to 23 cm. The ground target was covered

with aluminum foil. In addition, a syringe pump (NE-300,
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New Era Pump Systems, Inc.) was used to regulate the feed

rate at different rates from 1 to 5 mL/h.

The different processes employed for the fabrication of

the PMMA nanofibers are as follows. (a) Drawing: a

micropipette a few micrometers in diameter is dipped into

the working solution near the contact line using a micro-

manipulator. Subsequently, the micropipette is withdrawn

from the liquid and moved at a certain speed resulting in a

nanofiber being pulled; (b) template synthesis: template

synthesis entails the use of a template or mold to obtain the

desired material or structure. By applying water pressure

and restraining using a porous membrane, the polymer

nanofiber is extruded. The diameter of the nanofibers is

determined by the pore size during solidification of the

solution; (c) electrospinning: electrospinning is a process

by which a charged liquid polymer solution is exposed to

an electric field. The liquid polymer solution is dispensed

via a needle attached to a syringe held at a certain voltage

and is deposited on a conductive material, which is

grounded (zero voltage), located at some distance from the

needle.

The main advantages of the electrospinning process over

the other two (drawing and template synthesis) methods are

scalability, controllability, repeatability, and industrializa-

tion potential in the case of nozzleless electrospinning.

Therefore, the electrospinning process was carried out at a

temperature of 25 �C and 32 % relative humidity (RH) as it

is vital to choose appropriate conditions of temperature and

RH.

In order to obtain control over the nanofiber diameter,

the polymer concentration, collector distance, and feed rate

were modified. Finally, by using the Digimizer 4.1 soft-

ware, the diameters of fifteen fibers were randomly mea-

sured from field-emission scanning electron microscope

(FESEM) images.

Using the Digimizer software, the fiber diameter was

measured at three different places for each of the fifteen

fibers in the image. The measured image of the PMMA

fibers is shown in Fig. 1 using the Digimizer software.

Measured fiber diameters are highlighted in bright colors in

Fig. 1.

The experimental set-up used for electrospinning and a

typical FESEM image of an electrospun PMMA nanofiber

mat are shown in Fig. 2.

2.2 Design of experiments

The influence of the electrospinning process parameters on

the PMMA fiber diameter was investigated using the RSM.

In this study, the three operating variables (feed rate, col-

lector distance, and polymer concentration) were devel-

oped by applying central composite design and the RSM.

The choice of tip-to-collector distance range is directly

related to solvent evaporation and fiber formation. If this

distance is less than 10 cm, the polymer solution does not

have enough time to change into a fiber shape due to the

presence of the high-voltage fields. On the other hand, if

the tip-to-collector distance is too large (e.g., more than

20 cm), the created fibers cannot fly properly toward the

collector. In other words, in a range of 10–20 cm, the

polymer solution has enough traveling time (from needle to

the collector). The suggested range for the distance ratio

was based on the recommendation in the literature [15].

The polymer concentration has a major effect on the

solution viscosity, which is a key factor in the electros-

pinning process. A low concentration would lead to low

viscosity and defective fibers. A high concentration would

result in defective fibers because of high viscosity.

Therefore, based on the suggestions in literature, the suit-

able concentration range for obtaining an acceptable fiber

diameter is determined based on a trial-and-error approach

[14, 15].

Input feed rate plays an important role in determining

the fiber diameter. Since the purpose of this research is to

control the PMMA nanofiber diameter, the feed rate was

optimized to obtain nanometer-range fiber diameters, and

as a result, we were able to produce high-quality nanofibers

[14, 15].

In this study, the fiber diameter (in nm) is considered as

the response of the system, and the Design-Expert software

(version 8.0) was used for the statistical design of experi-

ments and data analysis. The obtained results are shown in

Table 1 based on the experimental tests.

As a result of experiencing difficulty and complexity in

the process of performing experimental tests, only 14

experiments were carried out. Moreover, with the purpose

of measuring the reproducibility of the process parameters,

Fig. 1 Measured image of the PMMA fibers diameter
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an additional 6 tests were carried out as center points of the

experiment.

The number of center points increased the accuracy of

the prediction and optimization results, as was proved in

this work. In fact, six center points were suggested by the

design-expert software upon choosing the central com-

posite design, the best condition for achieving the desired

results. Fiber diameter achieved as a response to varying

the parameters was fitted in a quadratic model using

regression analysis.

2.3 Artificial neural network implementation

2.3.1 Introduction

The ANNs are a composition of simple elements func-

tioning effectively in a parallel manner. These simple

elements are derived from the concept of biological ner-

vous systems. Logically, the network function is deter-

mined by identifying the connections between these

elements. ANNs consist of numerous artificial neurons also

known as processing units.

These processing units are arranged in a series of layers,

namely input, hidden, and output layers. Multi-layer per-

ceptron (MLP) is known to be the architecture of ANNs.

The MLP networks consist of an input layer representing

Fig. 2 Electrospinning set-up

and FESEM image for the

electrospun PMMA nanofiber

Table 1 Experimental results obtained from 20 independent tests for

the electrospun PMMA nanofibers

Run Factor 1:

polymer

conc. (wt%)

Factor 2:

feed rate

(mL/h)

Factor 3:

tip-to-collector

distance (cm)

Response:

fiber diameter

(nm)

1 20 2.5 15 548

2 20 2.5 15 563

3 20 2.5 15 636

4 20 2.5 15 604

5 20 2.5 15 634

6 20 2.5 15 549

7 15 1 10 230

8 25 1 10 1,290

9 15 4 10 143

10 25 4 10 1,505

11 15 1 20 324

12 25 1 20 1,280

13 15 4 20 301

14 25 4 20 1,000

15 13 2.5 15 170

16 28 2.5 15 1,430

17 20 2 15 552

18 20 5 15 585

19 20 2.5 16 575

20 20 2.5 23 572
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the input parameters, an output layer representing the

output parameters, and one or more hidden layers. In the

past, a number of algorithms have been recommended for

training ANNs, and the back-propagation (BP) algorithm

[28] is found to be the most effective and studied learning

algorithm. The BP algorithm is a simplification of the

Widrow-Hoff learning rule and has been widely used for

training MLP networks. It is based on the nonlinear dif-

ferentiable transfer functions, which are normally sigmoid

functions.

By using input vectors and the corresponding target

(output) vectors, it is possible to train a network, so it can

estimate a function to an arbitrary degree of accuracy.

Represented in Fig. 3 is a typical architecture of a three-

layered neural network. Furthermore, a number of resour-

ces on the fundamental theory and applications of BP-

based ANNs are available [21, 29–32].

2.3.2 Input and output preparation

The input of the ANNs should be measured easily and

accurately. In addition, it should be sensitive to the

parameters of the electrospinning process. In this work, the

polymer concentration, feed rate, and tip-to-collector dis-

tance parameters of electrospinning were chosen as the

inputs of the ANNs. Consequently, the electrospun PMMA

fiber diameter is chosen as the output of the ANNs.

An assumption about a nonlinear mapping existing

between the stability and input parameters was made.

Table 1 shows that only 20 tests were carried out owing to

the difficulty in conducting experiments. With the purpose

of training the ANNs, 65 % of the samples are randomly

assigned to the training set. Then, 15 % of the samples are

randomly assigned to the validation set.

In cases wherein the network performance on the vali-

dation vectors fails to improve, an early training termina-

tion is done by using validation vectors. Furthermore, in

conditions wherein the training error is noticeably reduced

on the validation samples, a continuous training is per-

formed. When the network simplifies the training set, the

training is terminated.

By using this procedure, the problem of over-fitting

during the training that can disrupt the optimization and

learning algorithms was automatically prevented. Finally,

an independent test of the trained ANNs simplification is

provided by the remaining 20 % of the samples (unseen

samples). Additionally, test vectors are used in order to

check that the ANNs were being well-generalized. How-

ever, it does not have any effect on the training [33].

Normalizing the input and output data before training is

also highly suggested so as to avoid possible training sat-

uration [34, 35]. Also, training is frequently completed

faster when values are normalized.

2.3.3 ANNs architecture

The characterization of the architecture or topological

structure of an ANNs can be done by identifying the

arrangement of the layers and neurons, the nodal connec-

tivity, and the nodal transfer functions. Moreover, simu-

lation of any mapping from an input to output can be done

by using a multilayered feed-forward neural network with a

back-propagation algorithm.

As corroborated by Hecht-Nielsen [36], a three-layered

feed-forward neural network with a back-propagation

algorithm can be trained to estimate any mapping from n

dimensions to m dimensions to an arbitrary degree of

accuracy. In this study, a fully connected ANNs was used.

This ANNs had two hidden layers and one output layer,

and the number of neurons in the input, output, first, and

second hidden layers were 2, 1, 20, and 10, respectively.

The increase in the number of neurons apparently increases

the computation but also gives the advantage of solving

complicated problems more efficiently [33]. On the subject

of the effects of the number of hidden layers and the

learning factor on the expectation accuracy of ANNs, the

reader may refer to a previous work [37].

Overall, a neural network with a single hidden layer is

proficient in approximating any nonlinear function to an

arbitrary degree of accuracy. Then again, an improvement

in the ANNs training/learning for highly complex functions

can be done by increasing the number of layers [38] as the

ANNs are also sensitive to the number of neurons in their

hidden layers.

Under-fitting is often a result of having too few neurons

while too many neurons can result to over-fitting, which

can be defined as all training points having been well-fitted.

Additionally, the fitting curve oscillates wildly among

these points. As a result, the transfer functions in the feed-

Fig. 3 Schematic view of a typical multi-layer perceptron (MLP)

network having three layers based on the back-propagation (BP)

algorithm
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forward back-propagation network is assumed to be a tan-

sigmoid, log-sigmoid, and linear transfer function for the

first hidden layer, the second hidden layer, and the output

layer, respectively. This specific structure is useful for

function approximation (or regression) problems [33] since

multiple layers of neurons with nonlinear transfer functions

can allow the network to learn nonlinear and linear rela-

tionships between input and output vectors.

2.3.4 ANNs training and simulation

Generally, the simplification property of ANNs enables

the possibility of training a network using a representa-

tive set of input/target pairs and achieve good results

without training the network for all possible input/output

pairs.

A learning rule, also referred to as a training algorithm,

is described as a method used for the modification of the

weights and biases of a network. The objective of using a

learning rule is to train the network to perform a particular

task. It entails two broad categories, namely supervised

learning and unsupervised learning [33].

In order to perform ANN simulation work, we used

MATLAB and the prediction task was carried out on a

Pentium V 2.53 GHz system with 4 GB RAM. Addition-

ally, a feed-forward neural network model with a back-

propagation algorithm was employed for the network

training and simulation.

Among other training functions, the Levenberg–Mar-

quardt training function is often the fastest back-propaga-

tion algorithm. Given the fact that it does require more

memory than other algorithms, it is also highly recom-

mended as a first-choice supervised algorithm [38].

In this study, the Levenberg–Marquardt algorithm was

used to control the learning process until a reasonable mean

square error (MSE) value was attained. On the other hand,

during the learning process the weights between the con-

nections were adjusted by using the enhanced back-prop-

agation algorithm.

3 Results and discussions

3.1 Statistical results obtained by design of experiment

The evaluation of the experimental results was performed

using multiple regression analysis. For that reason, the best

experimental model selected for this purpose is a quadratic

model. Additionally, the analysis of variance (ANOVA)

method was utilized for the approximation of the effects of

the main variables and their potential interactions. A Pen-

tium V 2.53 GHz system with 4 GB RAM was used for

applying the RSM to the electrospun PMMA fiber diame-

ter. Table 2 shows the statistical results of the electrospun

fiber diameter obtained using ANOVA.

As can be seen in Table 2, the sum of squares (SS) is the

sum of the squared deviations, DF is the degree of freedom,

and the mean square is calculated as SS divided by DF.

Moreover, the F values and associated probability are the

important outputs of the model.

The model’s F value of 38.12103 and Prob.[F value of

less than 0.05 show that there is only a 0.01 % chance that

a ‘‘model F value’’ occurred due to noise. It also gives a

clear indication that the model is significant at a confidence

interval (CI) of more than 95 % for electrospun PMMA

nanofibers. In contrast, values greater than 0.1 indicate that

the model terms are not significant.

In order to reach the highest R-Squared (0.9716) and

high insignificant Prob. [F value (0.8707), the factor AB

was eliminated. The following quadratic model equations

are given by the regression analysis. These equations are

established using the coded and actual factors of the RSM

as given below:

PMMA fiber diameter ¼þ 582:19þ 471:18�A� 29:52

�B 43:14�Cþ 82:42�A2

þ 35:10�B2 þ 43:01�C2

� 95:88�AC� 53:87�BC

ð1Þ

Table 2 ANOVA results for

the electrospun PMMA fiber for

regression model equation and

coefficients of model terms

Source SS df Mean square F value Prob. [F

Model 3,113,818.687 9 345,979.8541 38.12103 \0.0001

A 2743595.756 1 2,743,595.756 302.2971 \0.0001

B 7,665.118487 1 7,665.118487 0.844564 0.3797

C 16,228.38157 1 16,228.38157 1.788089 0.2108

A2 66,651.12861 1 66,651.12861 7.343808 0.0219

B2 8,999.296419 1 8,999.296419 0.991568 0.3428

C2 12,732.04622 1 12,732.04622 1.402853 0.2636

AB 253.125 1 253.125 0.02789 0.8707

AC 73,536.125 1 73,536.125 8.102416 0.0174

BC 23,220.125 1 23,220.125 2.558458 0.1408
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PMMA fiber diameter ¼
� 740:55372 þ 19:89499� Concentration þ 10:05867

� Feed rateþ 34:42317� Tip-to-collector distance

þ 3:29664� Concentration2 þ 15:60186� Feed rate2

þ 1:72027� Tip-to-collector distance2 � 3:83500

� Concentration� Tip-to-collector distance� 7:18333

� Feed rate � Tip-to-collector distance ð2Þ

where A, B, and C are coded factors representing the

polymer concentration, feed rate, and tip-to-collector

distance, respectively. As shown in Table 2, the following

ANOVA results clearly indicate that among the given

parameters, the terms A, A2 and AC have shown a signifi-

cant effect on the electrospun PMMA fiber diameter.

Therefore, any change in the value of A (coded factor for

polymer concentration) is expected to create a significant

change in the value of the electrospun PMMA fiber

diameter. Evidently, in comparison with the tip-to-collector

distance and feed-rate factors, the PMMA fiber diameter is

more reliant on the PMMA concentration.

3.2 Predicted results using ANNs

In this paper, a progressive ANNs procedure is applied to

characterize the material properties of electrospun PMMA

using nanofiber diameter as a response function. Twenty

randomly selected experimental data points were used,

categorized as thirteen data points for training, three data

points for validation, and four unseen data points for testing

the trained ANNs.

The fiber diameter is considered as a response (output)

of the ANNs. Accordingly, the inputs of the ANNs are the

polymer concentration, feed rate, and tip-to-collector dis-

tance factors. Figure 4 shows the correlation coefficient for

the training and validation samples. It is a measure of how

well the variation in the output is explained by the targets.

If the correlation coefficient is equal to one, then there is a

perfect correlation between targets and outputs. From

Fig. 4a and b, the correlation factor for the training and

Fig. 4 Correlation coefficient plot for the fiber diameter response of

PMMA: a training samples, b validation samples

Fig. 5 Correlation coefficient plot for test samples of the PMMA

nanofiber diameter response (vertical and horizontal axes are the

predicted output and corresponding targets, respectively)
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validation samples are 0.98 and 0.99, respectively, which

indicates a good fit.

In order to make sure that the trained ANNs works

properly, test samples must be applied, and afterward, the

linear regression should again be measured. Four sample

data were chosen randomly by ANNs to validate the per-

formance of the trained ANNs. Figure 5 illustrates the

linear regression of four sample data for the testing phase

of the trained ANNs.

As can be seen, the correlation coefficient is 0.99 which

demonstrates a good fit between the inputs and outputs for

the unseen data. As mentioned in Sect. 2.3.4, the typical

performance function that is used for training a feed-for-

ward ANNs is the MSE for the network errors. This per-

formance function causes the network to have smaller

weights and biases. Also, the MSE forces the network

response to be smoother and less likely to over fit.

The MSE plot for all samples including of training,

validation, and test-sample errors are depicted in Fig. 6.

The MSE of the network was started at a large value and

decreased to a smaller value as shown in Fig. 6. In other

words, Fig. 6 shows that the network is learning.

The training stopped when the validation error increased

for five iterations, which occurred at epoch 1. In this case,

the obtained results are reasonable because of the following

considerations: the final MSE is small enough; the vali-

dation and test-set errors have similar characteristics; and

no significant over-fitting has occurred by epoch 1 (where

the best validation performance occurs). It is worth men-

tioning that if the MSE was too small, it meant that the

ANNs memorized all the training data points instead of

learning.

3.3 Comparison of RSM and ANNs

The obtained statistical results from the ANNs and RSM

were compared in terms of error percentage and linear

regression between the network outputs and the corre-

sponding experimental results. Table 3 shows the com-

parison of experimental and predicted results for the fiber-

diameter response obtained using RSM and ANNs. Four

unseen test samples and their corresponding experimental

data were compared as shown in Table 3.

The results obtained using the ANNs surpassed those

attained using the RSM in three out of four cases, the

former having a lower error percentage with respect to the

experimental results (see Table 3). The lower error per-

centages have been highlighted in bold in Table 3 for each

dataset.

The performance of an ANN can be measured to some

extent by the errors in the training, validation, and test sets;

however, it is often useful to investigate the network

responses in more detail. One option is to perform a

regression analysis between the network responses and the

corresponding targets.

Figure 7 represents the linear regression between the

predicted and actual experimental results for the PMMA

nanofiber diameter response as open circles using the RSM

and ANNs. The best linear fit is indicated by a dashed line.

A perfect fit (outputs equal to targets) is indicated by the

solid line. m and b are the slope and the y-intercept,

respectively, of the best linear regression fit relating the

targets to the network outputs. If there was a perfect fit

(outputs exactly equal to targets), the slope would be one

and the y-intercept would be zero.

The correlation coefficient (R value) between the out-

puts and targets for the fiber diameter response are 0.99019

and 0.99661 for the RSM and ANNs, respectively, as

depicted in Fig. 7. The values of m and b for RSM are 0.94

and -19.39, respectively.

Accordingly, the values of m and b for the ANNs are

1.075 and -48.47, respectively. As can be seen from the

results compared in Table 3 and Fig. 7, the trained ANNs

are superior to the RSM having a smaller error percentage

and a high correlation coefficient factor (R value) for the

PMMA fiber diameter response.

4 Parameter optimization of electrospun PMMA

The objective of this section is to optimize the electros-

pinning parameters (polymer concentration, feed rate, and

tip-to-collector distance) for PMMA nanofibers. From the

optimization point of view, it is important to attain the

minimum values of the parameters for a given PMMA fiber

diameter. In addition, since desirability involves multiple

Fig. 6 Mean square error (MSE) plot with respect to the number of

epochs for training, validation, and test samples for the PMMA fiber

diameter response
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responses from numerical optimization, the final response

should discover a point that maximizes the desirability

function.

The aim of the optimization is to find a good set of

conditions that will meet all the goals, and not to get to a

desirability value of one. The optimum desirability results

(minimization) are tabulated in Table 4 for ten optimized

prediction points. The best optimum condition is high-

lighted in bold.

Interestingly, in agreement with other studies [13, 39,

40] that were focused on the effect of polymer concentra-

tion on the formation of electrospun PMMA nanofibers, the

optimum values for the electrospun PMMA nanofiber

diameter were found to be highly dependent on the PMMA

concentration. It should be noted that all ten optimized

conditions suggested the fabrication of fibers using a

15 wt% PMMA concentration.

Noticeably, in the most optimized conditions, there are

recommendations for a feed-rate factor altering around

2 mL/h, while the value of tip-to-collector distance was

modified from a minimum of 10 cm to a maximum of

20 cm. By observing Table 4, the most desirable condition

is selected using values of 15, 2.36, and 11.64 for the

polymer concentration, feed rate and tip-to-collector dis-

tance factors, respectively.

Table 3 Comparison of

experimental and predicted

results for the fiber diameter

response obtained by the RSM

and ANNs

Data Polymer
conc. (wt%)

Feed rate
(mL/h)

Tip-to-collector
distance (cm)

RSM (error %) ANNs
(error %)

Experimental
(nm)

1 20 2.5 15 582.19 (?6.23) 576.72 (?5.24) 548

2 20 2.5 15 582.19 (-8.46) 576.72 (-9.32) 636

3 25 1 20 1,158.28 (-9.50) 1,341.31 (?4.78) 1,280

4 13 2.5 15 84.07 (-50.54) 145.20 (-14.58) 170

Fig. 7 Parity plot among actual experiments and predicted values for

the fiber diameter response obtained using the: a RSM, and b ANNs

(vertical and horizontal axes are predicted output and corresponding

targets, respectively)

Table 4 Optimum values and desirability for ten predicted points

No. Polymer

conc.

(wt%)

Feed

rate

(mL/h)

Tip-to-

collector

distance (cm)

Fiber

diameter

(nm)

Desirability

1 15.00 2.36 11.64 177.092 0.975

2 15.00 2.34 11.63 177.097 0.975

3 15.00 2.14 11.27 177.472 0.975

4 15.00 2.07 10.83 177.821 0.974

5 15.00 2.04 10.99 177.881 0.974

6 15.00 2.85 12.95 179.217 0.973

7 15.00 1.34 10.00 185.92 0.968

8 15.00 3.53 14.85 189.278 0.966

9 15.00 3.50 12.37 192.525 0.964

10 15.00 2.90 20.00 269.261 0.907
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Furthermore, this particular condition (highlighted in

bold in Table 4) has a minimum fiber diameter value of

177.092 nm in comparison with other conditions. Also, the

optimum condition possesses the best optimum value for

desirability which is 0.975. Note that it is important to

mention that the other predicted points have offered good

suggestions. Figure 8 shows the obtained model for desir-

ability plotted in 2D and 3D views for an optimum feed

rate of 2.36 mL/h.

5 Conclusions

In this paper, the application of the response surface

methodology (RSM) and ANNs was investigated in order

to optimize and predict the electrospun PMMA fiber

diameter (in nm). The inputs/factors were the polymer

concentration (13–28 wt%), feed rate (1–5 mL/h), and tip-

to-collector distance (15–23 cm). The current research was

conducted to obtain a better understanding of the factors

that have the greatest effect on the PMMA nanofiber

diameter, thereby proposing a mathematical formulation

using the RSM. The RSM showed that the PMMA con-

centration had a significant influence on the electrospun

fiber diameter. The optimum nanofiber diameter was

obtained using values of 15, 2.36, and 11.64 for the poly-

mer concentration, feed rate, and tip-to-collector distance,

respectively. The results obtained from the RSM and

ANNs were compared and discussed in figures and tables.

In terms of the value of linear regression for the fiber

diameter response, the results of the RSM and ANNs were

close, with the ANNs slightly outperforming the RSM.

Furthermore, the ANNs surpassed the RSM in terms of

error percentage corresponding to the actual experimental

results. The predicted effect of the each parameter on the

formation of the nanofiber can be useful for fabricating

other types of nanofibers. However, it should be noted that

the effects of electrospinning parameters are highly

dependent on the type of the polymer used.
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