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Abstract  This paper investigates the problem of adap-
tive neural control for a class of strict-feedback stochastic
nonlinear systems with multiple time-varying delays,
which is subject to input saturation. Via the backstepping
technique and the minimal learning parameters algorithm,
the problem is solved. Based on the Razumikhin lemma
and neural networks’ approximation capability, a new
adaptive neural control scheme is developed. The proposed
control scheme can ensure that the error variables are semi-
globally uniformly ultimately bounded in the sense of four-
moment, while all the signals in the closed-loop system are
bounded in probability. Two simulation examples are
provided to demonstrate the effectiveness of the proposed
control approach.

Keywords Stochastic nonlinear systems - Razumikhin
lemma - Adaptive neural control - Time-varying delay -
Input saturation

1 Introduction

During the past decades, the problem of adaptive control
for nonlinear systems has been extensively investigated in
the control community, and many remarkable results have
been reported in the literature; see references [1-5]. By

G. Cui (X)) - T. Jiao - Y. Wei - G. Song

School of Automation, Nanjing University of Science and
Technology, Nanjing 210094, Jiangsu,

People’s Republic of China

e-mail: guozengcui@gmail.com

Y. Chu
School of Science, Huzhou Teachers College,
Huzhou 313000, Zhejiang, People’s Republic of China

introducing the backstepping technique, the restriction of
the matching condition has been removed for nonlinear
systems [1]. In addition, many approximation-based
adaptive control schemes have been reported to deal with
uncertain nonlinear systems with unknown nonlinear
functions; see [6—-16] for the deterministic cases, and
[17-22] and the references therein for stochastic nonlinear
systems. In [16], a novel adaptive fuzzy control scheme
was proposed for nonlinear strict-feedback systems, which
contains only one adaptive parameter needed to be esti-
mated online regardless of the order of systems. By
combining fuzzy logical systems (FLS) with the back-
stepping technique, in [17], a class of strict-feedback
stochastic nonlinear system was considered, where the
virtual control gain function sign is unknown. In [18-20],
some adaptive fuzzy output-feedback control schemes
were presented when the states of the stochastic nonlinear
systems are not all available. However, in the aforemen-
tioned literatures, the authors have not considered time
delays.

Time delays and stochastic disturbances, which are
often encountered in practical applications, are sources of
instability and degradation of system performance.
Recently, the stability analysis and controller design
problems for nonlinear time-delay system have been payed
more and more attention; see [23-35]. In general, there are
two main methods for solving nonlinear systems with time
delays. One is to use the Lyapunov—Krasovskii theory.
Without the measurements of the states taken into con-
sideration, authors in [29] designed adaptive neural output-
feedback controller for a class of stochastic nonlinear
strict-feedback time-varying delays systems. The other is
the Lyapunov—Razumikhin approach, which is more brief
than the Lyapunov—Krasovskii method for dealing with the
problems of stability analysis and controller design.
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Nevertheless, a few works [32-35] have been done to
investigate the adaptive neural control or fuzzy control of
nonlinear time-varying delay systems by the Lyapunov—
Razumikhin approach. It is worth noting that the main
limitation of the aforementioned results is that time-delay
functions only include the previous time-varying delay
states. Thus, it is imperative to put forward an adaptive
neural control scheme for stochastic nonlinear systems
with all state time-varying delays by the Lyapunov—
Razumikhin approach.

As another source of instability and performance
degeneration of practical systems, input saturation has been
attracting significant attention. There exits extensive
research on the control systems with input saturation
[36—43]. In [38], authors investigated the problem of robust
controller design for uncertain discrete time-delay systems
with control input saturation. By introducing an auxiliary
design system, an adaptive tracking control scheme was
proposed for a class of uncertain multi-input and multi-
output nonlinear systems with non-symmetric input con-
straints [40]. However, to the best of our knowledge, there
are no results reported on the adaptive neural or fuzzy
control for stochastic nonlinear time-varying delay systems
with input saturation.

Motivated by the aforementioned observation, we
investigate the problem of adaptive neural control for
strict-feedback stochastic nonlinear systems with multi-
ple time-varying delays and input saturation in this
paper. In order to design the controller, neural networks
are employed to approximate the unknown nonlinear
functions, and Razumikhin lemma is used to deal with
the time-delay terms. The proposed controller guarantees
that all the signals in the closed-loop system are boun-
ded in probability. The main contributions are summa-
rized as follows: (1) for the first time, the Lyapunov—
Razumikhin approach is utilized to solve the problem of
a class of strict-feedback stochastic nonlinear systems
with all state time-varying delays, along with the guar-
anteed stability of the closed-loop system. (2) A novel
adaptive neural control scheme is successfully given for
strict-feedback stochastic nonlinear time-delay systems
with input saturation, which is more general than the
existing results [32-34]. (3) The designed control
scheme contains only one adaptive parameter required to
be estimated online, so the computation complexity can
be significantly alleviated, which makes the algorithm
easy to implement in practice.

The remainder of this paper is organized as follows.
Section 2 provides some preliminary results and problem
formulation. The controller design and stability analysis are
given in Sect. 3. Two examples are provided to demon-
strate effectiveness of the results in Sect. 4. Section 5
concludes the paper.
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2 Preliminaries and problem formulation

In this section, some useful conceptions and lemmas are
introduced to develop the main result of the paper, then
neural networks are given to approximate the unknown
nonlinear function. Finally, the problem of adaptive neural
control for a class of stochastic nonlinear time-varying
delay systems is formulated.

2.1 Preliminary results

Consider the following stochastic nonlinear time-delay system
dx = f (1, x(2), x(1 — 2(1)))dr + (1, x(1) )dw, (1)

with initial condition {x(s) : —t<s<0} = ¢ € C}, x
([-7,0],R"), where () : R" — [0,7] is a Borel measur-
able function; x(r) € R" denotes the state variable and
x(t — 1(¢)) is the state vectors with time-delay; w is an
r-dimensional standard Wiener process defined on the
complete probability space (Q,F,{F},~,,P) with Q
being a sample space, F being a o-field, {F,},~¢ being a
filtration, and P being a probability measure. f(-), g(-)
are locally Lipschitz functions and satisfy f{¢, 0, 0) = O,
g 0,0) =0.

Definition 1 For any given V(t,x) € C'?([—1, 0] x R")
related to the stochastic nonlinear time-delay system (1),
define the infinitesimal generator £ as follows:

GV

LV(t,x) = 2 f(t,x x(t (1))

+= Tr{ g(t x)} 2)

where Tr(A) is the trace of a matrix A.

Definition 2 ([34]) Let p > 1, the solution {x(#), t > 0}
of the stochastic nonlinear time-delay system (1) with
initial condition & € Qy(Q is some compact set including
the origin) is said to be p-moment semi-globally uniformly
ultimately bounded if there exists a constant d, it holds that

E{||x(t,9)|F}<d, Vt>T, forsome T >0.

Lemma 1 (Razumikhin Lemma [34]) Let p > 1, consider
the stochastic nonlinear time-delay system (1), if there exist
function V(t,x) € C'?([—1,00] x R") and some positive
constants ci, 2, Uy, M2, q > 1 satisfying the following
inequalities

alxf <V(t,x)<exf', t> —1, x€eR", (3)
EV(t+ s,x(t +5)) <qgEV(t,x(t)), Vse€[-1,0], (4)
for all t > 0, such that

ELV(t,x) < — mV(t,x) + 1. (5)
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Then the solution x(t, &) of system (1) is p-moment uni-
formly ultimately bounded.

Lemma 2 (Young’s inequality [2]) For V(x,y) € R?, the
following inequality holds:

< e | |]7 1 | ‘KI (6)
X x|" +
y_ Sq y b

where ¢ >0,p>1,g>1l,and(p — 1) (g — 1) = 1.

Lemma 3 ([6]) For any n € R and ¢ > 0, the following
holds:

0< |y — ntanh(ﬁ) < da, (7)
o

where O is a constant that satisfies 0 = e_(‘5+1); ie.,

0 = 0.2875.

Lemma 4 ([25]) Consider dynamic system of the fol-
lowing form

0(1) = —ob(t) + 1w(1), (8)

where ¢ and x are positive constants and w(t) is a positive
function. By choosing the initial condition é(O) >0, we
have 0(t) >0 for all t > 0.

Remark 1 Since 0(-) is an estimation of the unknown

positive constant 0, it follows that (9(0) >0 is always rea-
sonable. This result will be used in the backstepping design
procedure.

2.2 Neural networks

In this paper, the radial basis function (RBF) neural net-
works are used to approximate an unknown continuous
function f(Z) : R? — R,

fn(Z) =W'S(Z), 9)
where Z € Qz C R? represents the input vector and
g denotes the neural network input dimension. W =
w;}T € R is the weight vector; [ > 1 denotes
§(2) =
[51(Z),5,(Z),...,5/(Z)]" € R is the basis function vector
with s{Z) defined by

Z — wl?
si(Z):exp[—M], i=1,2,...1

[W],Wz, oy

the neural network node number.

(10)
n;
where u; = [, s - - - yiq}T is the center of the receptive
field and # is the width of the Gaussian function. For any

unknown nonlinear function f{Z) defined over a compact

set Q7 € RY, there exit the neural network W*' §(Z) and
arbitrary accuracy ¢ > 0 such that

f(Z)=W"S(Z)+6(2), VZeQyCR, (11)

where W* is the ideal constant weight vector and is
expressed as

W* = arg mln{ sup UC(Z) - WTS(Z)|}7
WeR' "zcq,

and §(Z) is the approximation error, which satisfies
[0(Z)| <e.

Lemma 5 ([25]) Consider the Gaussian RBF networks
(9) and (10). Let p := ymini; ||; — p;]|. Then we can take
an upper bound of ||S(Z)|| as

o0
IS(Z2)] < Z 3q(k + 2)‘]*16—2p2k2/i72 .
=0

(12)

Remark 2 It has been pointed out that the constant s is
a limited value, which is independent with the neural
networks input and neural network node numbers in
[25].

2.3 Problem formulation

Consider a class of strict-feedback stochastic nonlinear
time-varying delays systems in the following form

dx; = (gi(X)xis1 + () + (% o)At + ] (%) dw,
1<i<n—1,

dx, = (gn(xn)” +fn()fn) + qn (Xn;(z)))dt + l//Z(fn)dW@
y=x1,%,(t) = ¢(t), —1 <t <0,

where %, = [xq,.. .7xn]T € R" and y € R denote the state
vector of the system and output of the system, respectively;
% =[x,...x]" €R, (i=1,2,...,n);w is defined as in
the system (1); gi(X, () is unknown smooth nonlinear
time-delay functions with ¢i{0) = 0, which is defined
by qi(Xuz) = qi(xi(t —71(2)), %2 (£ —12(2)), .., (1 —
7,(2))); ti(f) : RT — [0, 7] is uncertain time-varying delay.
For t € [—1,0], X,(t) = ¢(¢), where the initial function, ¢
(), is smooth and bounded. fi(-),gi(-) : R — R,y () :
R’ — R’ represent the unknown smooth nonlinear functions
with f(0) =0, lpf(O) =0, (1 <i <n). Moreover, u € R
denotes the input signal subject to symmetric saturation
nonlinearity expressed as follows:

it (1) >uy

if ()| <um
(14)

where uy; > 0 is a known bound of u(f). Obviously, if

v(t) = luyl, then there exist two sharp corners. Thus,
backstepping technique is invalid. To solve this problem,

u(v(r)) = sat(v(t)) = { ii(%;(v(t))um
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the saturation is approximated by a smooth function
defined as

v ev/uM _ efv/uM
g(V) = Uy X tanh(@> = Uy X m

It follows that Eq. (14) becomes

u(v(r)) = sat(v(r)) = g(v) +d(v)
= uy X tanh ) +d(v), (15)
Uy
where d(v) = sat(v) — g(v) is a bounded function in time

and its bound can be constrained by
d(v) = |sat(v) — g(v)| <up(1 — tanh(1)) = D. (16)

Applying the mean-value theorem and choosing vy = 0, it
is easy to obtain that

g(v) =g(vo) + &, (v —mo

From (15)—(17),
follows:

dx; = (gi(%)xir1 + (%) + qi(Fue(n))df + ¥] (%)dw
1<i<n—1,

dxn = (gn(fn)(gv,,v + d(V)) +ﬁ1(jn) + qn(fn,r(l)))dt + l//:(fn)dw,
y =X 7)?11([) = (b(t)v -7 S t S 0.
(18)

The control objective is to design an adaptive neural
controller for system (13) such that the error variables are
semi-globally uniformly ultimately bounded in the sense of
four-moment, while all the signals in the closed-loop sys-
tem are bounded in probability.

To achieve the goal, the following assumptions are
imposed on the system (18).

(17)

system (13) can be transformed as

) =gy, v

Assumption 1 The signs of g;(x),i=1,2,...,
known. There exist unknown constants b,, and b, such that
gi(x;) satisfies

n are

0<b, <|gi(%)| <by<oo, VG €R, i=12,...,n

(19)

Remark 3 Assumption 1 exhibits that the function g;(x;)
is either strictly positive or negative. Without loss of
generality, it is further assumed that b,, < g;(%;) < by. The
constants b,, and by, are not included in the design
controller, so they can be unknown.

Assumption 2 ([43]) For the function g, there exists an
unknown positive constant g,, such that

0<gm<gy,<l. (20)

Remark 4 According to the Assumptions 1, 2, the
following inequality holds:

0<b<gi(x), i=12,...n—=1, 0<b<g,g,,

(21)
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with b = min{b,,, b,,g,,} being an unknown constant.

Assumption 3 ([35]) Suppose that Q;(-) is a class-Ko
function, and the time-delay term ¢;(%, +(;)) satisfies

4%z < Y Qe — (1)), 1<i<n. (22)
=1

To develop the backstepping design scheme, we need

make the following coordinate transformations:

Zi=x—%-1(Zi1), i=23,...,n

21 = X1, (23)

Based on the Razumikhin lemma, the intermediate
control function «;(Z;), the actual control law v and the

adaptive law 0 are obtained in the backstepping procedure.
Define a constant

1
():max{z|Wl."||,i:1,2,...,11}7 (24)

where b is given in Remark 4. ||W;|| will be specified later.
Let 0 denotes the estimation of the unknown constant 0.

Moreover, 0=0—10is the parameter error.
The intermediate control function o;, the control law

v and the adaption law 0 for strict-feedback stochastic
nonlinear time-delay system (13) will be constructed in the
following forms:

3 S;
—<ki+ )zl—0||S||t h(z I ”),
4 €

i=1,2,..,n—1,

3 5 zl1Sall
(kn+4—’72>zn - 9||Sn||tanh<T . (26)
= sz S| tan (Z ” ’”) 40,

where k;,€;, 4,7, are positive design parameters, Z; =
x1€Qy CR', Z =[7,00€ Q, CR*, (i=2,3,...,n).
Before the backstepping design procedure, we give a
useful lemma first, which will be used to deal with the
time-delay term in the control design procedure.

%(Zi) = (25)

v(Z,) =

(27)

Lemma 6 For the coordinate transformations (23), the
following inequality holds:

il < [lxll < (IZ(D]) + e
where Z(t):[Zl,Z2,...,Zn,|é|l/2]T,Q is a constant;

¢(s) = s(aps + bg) is an unknown class K function with
ag and bg being positive constants.

(28)

Proof From Lemma 5 and the definition of o; in (25), it
follows that

0 < (k n )|z,|+s,|9| (29)
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Substituting (29) into (23) gives

i—1
il < %2l < Dzl + Nl < IZ@) -+ oyl

<liZ) + Z((k ;

+3)lal +s1il)
< (1) ||+Z(( izl + s(1z0lF + o) )
<zt ||+Z((

<oz + o,

)nz Ol + 5120 + |0|>)

where Z(1) = [z1, z2,....zn, 10177, b(s) = s(aos + bo),
ag = Yy 8, bo = Z;;l(kj +3)+1,and ¢ = >y 8i10).

3 Controller design and stability analysis
3.1 Controller design

The backstepping design procedure is given to construct
adaptive neural controller in this section. In each step, RBF
neural networks are employed to approximate the unknown
continuous nonlinear functions, and an intermediate control
function o; will be obtained to stabilize subsystem, while
the actual control law v will be designed in the final step.
For the sake of simplicity, sometimes function S;(Z;) is
denoted by S;; f; stands for fi(x;); g; represents g;(x;); ¥;
denotes ,(x;).
Step 1: Let z; = x;. Then we have

dzi = (8122 + i + @1 () )dt + Y] (x1)dw. (30)

Consider a Lyapunov function V; as

1 -
V] = ZZ? + _b02

From (2), the infinitesimal generator of V, satisfies

LV = Zl(glxz +fi +q1(xnr )) +3 ZIWIWI -3 0-
(31)
By using Young’s inequality, it follows that
3 3 > 9 4 1
A = 3P < vl + g (32)
For the time-delay term ¢(X,.y), by using

Assumption 3 and Lemma 6, we can obtain the
following inequality

)< |11|ZQ11 x(t = 7(1)))

Z1q1 xnr

<zl ZQU AlZ(t — (1))l +e)

<lzl Z(QU(HZ(! —g(0)) + Q1(20)),

where Qy;(s) = Q1;(2¢(s)). Oy;(s) is still a class K
function, and it can be rewritten as Qy;(s) = s¢y;(s) with
¢1,(s) being a continuous function.

By combining [|Z]| < [|Z]| + 32k,
yields

|zx| with Lemma 3, it

301 (Bux) <IZ1 1D (01(allZ(1)[)+Q15(20))

J=1

<I1 <Q1j(11 1Z1[)+> 01 |Zk|)+Qlj(2Q)>
j=1 k=2

<ZZ_P Albrzzé‘_zkd)l; (h]z])

=1 k= =1 k=2
OF
+z1F1tanh( o >—|—5 o1, (33)
1

where I = gn, and Fi =371 [ (Qy;(L]1Zi]]) + Q1j(20))-
Substituting inequalities (32) and (33) into (31), we
have

- 3 1
LV <Z(gixa + ) — ZZ? + 50’1 +Z'7%
+ZZ4Z/<¢U (h]zi]) = (34)
j=1 k=
= 4
where fi = fi + >, Sioailia + %H%”él
+Fy tanh(“1 )+ z1. Obviously, f; is an unknown

nonlinear function as it contains unknown functions
f1» Y1, which cannot be implemented in practice. Hence,
there exist a neural network WTTS](Zl),ZI =x; €Qy C
R' such that

A=W'S(Z)+81(Z), [6:1(Z1)| <, (35)

where 6,(Z;) denotes the approximation error and ¢&; is a
positive constant.
Based on Lemma 3 and the definition of 0, we have

_ o
ah = aWi Si(Z1) +201(2) < Wi l151(2)]
34,1 281
—&-Zz‘f +Zs‘1‘§b9z?||S1|tanh( '61
14

3
e (36)

+ b0de; + 1 1
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By combining inequalities (34) with (36), it implies that the
following inequality holds

3|S
LV <zig1x; + b0Z}||S) | tanh <M> + (a1 + ble;)

1(814'771 +ZZ4Z1<¢IJ ll‘zk‘)_ieg

j=1 k=2

—_—

(37)

Adding and subtracting o; in (37) and by z, = x, — a4, we
get

3
) IS
LV <zigi1z2 + 238101 +b0z)||S) || tanh (M)
1

1
+5(61+b9€])+1(61+,ﬁ)
b 7 Z3 N A
+ZZ ot |ze)) + b (AZ?HSIHtanh(%) —0).
=

(38)

Letting the intermediate control function in (25) with
i = 1 and applying Young’s inequality gives

3 N 3118
z8100 < — kybzj — 4g1z‘,‘—b@z?||Sl||tanh<Z1l1”)7
1
(39)
z3gz gz +1gz (40)
1612 = 4 1<1 4 1<p-
By using inequalities (39) and (40), it follows that
b~ 31s X
LV < — kibz} +;0<;~Z?|Sl || tanh <M) — 9)
' |
L4, 2
+ 0(o1 + bley) +Z(81 + 7]1)
(1
+ ;;4zk¢1, ael) + g8
Al alsiy s
< —ciz; +-0 /lz,||S1||tanh 0
A €1
+ ZZ Zk¢1j Llzel) + py +— bMZQ,
=i
(41)
where ¢; = kib > 0,p, = 6(ay + bley) + 1 (¢ + n}). The

last term in (41) will be dealt in the next step.
Step i 2 <i<n—1) Let z =x; — o;_;. The error
dynamic system can be written as

d (glxl-H +f +ql(~xnr ) £O(l l)

g
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where
Ot 0o 5
EOC;’—I = Z 3 ! (gm-xm+1 +fm + qm(‘xn T(t ))) + ) 1 0
m=1 'x 6
a O l
- 4
Z ax,,ax (43)

Choosing the following Lyapunov candidate V; as

L
1 42

According to (42)—(44) and (2), we have

Vi=Vi_

LV; =LV + 2 (gixis1 +fi + 611(_ ) — Erx, 1)

3 ) | 60(,'_1 61, 1
+33 (Wi—j_l o j) (W Z )

(45)

Via repeatedly deduction as Step 1, it obtains that

LV, < chJz +- 0(2)2 |IS;|| tan < il j”) é)
Y (3 30%-1 5
+ij+2 50,(Z) —5— 50—

J=1 i*2

+ bt +ZZZZ Ll (1),

s=1 m=1 j=1 k=i

(46)
where ¢; = kib >0, (j=1,2,...,

i—1),and p, = (o1 +
b0) + (et + 1), p; = 30y + 1+ b0y) + 4 (ef + 7)),
j=2.3,...,i—1.

From Young’s inequality, the rightmost term in (45) gets

ST S SRR o BN
2Zi i = x; Y _417%Zi i = ox; Y

1,

47
+ (47)

By using the Razumikhin Lemma, Young’s inequality and
Lemma 3 to deal with the time-delay term in (45), the
following inequalities hold

2993 Pz4+2 ) zk¢,,1|zk|

jlkt-H jlkz-H

Z qi xnr

+ 151 (24 (11Zi]) + 4(20)),

=1
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NS y L3 e [ The function ¢,(Z;) will be specified later. Thus, f;(Z;) ca
L Z Zzlk2+14 be approximated by the neural network W' S;(Z ),Z,

m=1 j i ~ .
i [%,0]" € Q; C R such that
593 Z gotia)
a | fi=w's(z)+8(2), 162)] <a (52)
3 i—
+ ; ]Z| a Q’"J(Z 1) It is easy to verify
+ Qmj(zQ)), _ r 1
49)  wfi=5 W Si(Z) +20:(Z) <IZ] || W |I]1Si(Z )||+ g+
where Z; = [z1,22,- - -, 2, |§|I/Z]T,l, =q((n—1i)+1), and

Qu(‘) = quij(s)'
On the basis of (48) and (49), we have

*z?;@f <3y G

,11<z+1

Z qi xnr

n

+zzz“

m—l/ 1 k= t+1
i n

+ZZ Z _de)m] Z|Zk| + |Z |F

m=1 j=I1 k= Hrl
n

S IDIETEED 9 9P L
J=1 k=i+1 m=1 j=1 k=i+1

+> N Z —zkasm, lilze])

ml]lkHrl

60{, 1

60(, 1

+ ZF; tanh( F) + oa;, (50)
oi
_ _ i—-1 n ‘
where  F; =Y (Qy(Ll1Zi]) + Q4(20)) + 3 Y-| %
=

(Qm,(l,||Z,||) + Qmj(2g)). m=1j=1
Substituting (46), (47) and (50) into (45), it follows that

LV;< — Zc,z +- 0<Zﬂz 15| tan h<3|| ,||> é)
aO(] 1A
+ZPJ+Z<Z (pj 69 0 oK >
+ZZZ Z 4Zk¢m] l ‘Zk‘ +Z (glxt+1+f( ))

s=1 m=1 j=1 k=i+1
(51)

1 3
5(Gi4 1) +~n7 =27,
+8(0i+10) 71— 3%

62061 1
B 2 Z 6x1,6x

+222ﬂwm+mw22va

slml/ Jj=1 k=i+1
aOC,l

4 3 Fi
+ZZZJ ,+Ftanh(7i)

mljlkl+]

: 4
Oty
o Y
Jj=

_ Oo;
f;(Zl) :fl - Z ax - (gmxm+1 +fm

3
i(Zi) + %

(53)

i 34 14
<b02|S;||tanh [ & 21 | pose, 12 et
€; 47 4

Similar to the aforementioned steps, we have

Zc]z +- 6<Zﬂz [|S;|| tan <Z | j”) é)
C 3 : 3001 A
+ZP;+Z(ZJ%(ZJ) % o0 0 — ok )

j*l

S

+ZZZ Z _de)mj l |Z/<| +Z 8ili+1

.slm]j]ktJrl

7 ||Si
+ g + bOZ)||S; |tanh( HE ”)

1
FAUARESL

+ 0(0; + K; + bl¢;) + ) ( (54)

From the intermediate control function o; in (25) and
Young’s inequality results in

3 S;
oo < —kibz! = iz — b0 ta h(Z ” |>, (55)
€

3 1
Z 8iZi+1 > < - th +4glzz+1 (56)

4
Based on (55), (56) and (54), it follows that

Zc,z +o 0(2& 15;]] ta h( i ,||> é)

j=1

o B+
+ - bMZ,_H +Zzzz4zk¢ (Lslz)),

s=1 m=1 j=1 k=i

LV; < —

(57)

where ¢;=kb>0,j=1,2,...,n—1,p; = d(a1 + bbe;)
+41_t(8£11+’1%)’ and pj = 5(Gj+l€j+b96j)+£(8;‘+nj?)7
j=23,...n—1.

Step n This is the final step. The actual controller v will
be developed. From z, = x,, — «,_, we have
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dz, = (g"<gVuv + d(V)) +fo + qn<xnr ) Loy, 1)

Low,
+ (lﬁn _Z 2}@" «/z_,-) dw. (58)
o

Consider the stochastic Lyapunov function V,, as

1
Vo=V, 1+ sz. (59)

From the Definition 1, it yields
ﬁVn :EVn—l + 2,31 (gn(gvuv + d(V)) +fn + QH( n‘r ) - ‘C(xn—l)

<1// Zaanl ,-) (w Zaanl >

(60)

where Lo, | is given in (43) with i = n, and LV,
denotes (57) withi =n — 1.

For the last term in (60), applying Young’s inequality
leads to

n—1
2 001 2 2
n axj 1 Vl

lpni

Z

3 1 da,
2 3 Vo = /21 @x]

(61)

Based on the similar method to deal with the time-delay
terms in (60), the following inequality can be obtained

1

nqn Xn, r(t Z

m=

<z (Z(an(lnlznl) +0,i(20))

j=1

xnr z))

+ZZ\6“’“ O (bIZo]) + Ony(20)

m=1 j=

2F,
<ZF, tanh( . ) + o, (62)

where F, =331 (Qu(lllZal]) + Qui(20))+ 3757 200
| Bt (O (| Zall) + Cni(20))-
Substituting (61) and (62) into (60) gives

V< - St et 4 2S5 s ann (211 g
< =3 edt + 30 Il nh T ) -
6:le
+Epj+g z<p, 6005

+ Zn(gn(gvuv +d(v)) +fn( Z,)) + 0(0n + Kn)
1 3,

3~ 3

(63)

@ Springer

where
Az =S s 4 ) 121
n) =Jn — mXm m) —
" £ Oxy Emtm 1 2 S axq
n—1 s n 1 .
+ ZZZn¢mj(lS|Zn|)
s=1 m=1 j=1
1 nF,l 9
+4szn+F tanh( ) I 2znlll//
n—1
Goc, 1 3
D AR
j=
Hence, there exist a neural network W;TSH(ZH),Z,, =

[%,,0)" € Qz C R such that

. 1
ala < I lIWL 1S (Z )H+ T
(64)

n 3, 14
<b0z2||S,|| tanh %S H +b03e, +=7} +—¢}

€n 47 4
On the basis of (63), (64), we have

= 4 b 3 Z3||SJ|| A
LV, < — chzj +19 Z/lzj ||S;|| tanh 167 -0
. = ;

j=1
n—1 n a %1
+ZPJ+Z<ZJ3%(ZJ) g Y L0~ o )
=1 =2

~ 3 Sn
+Z2g"(gVuV+d(V))+b923,||S,,||tanh<Z”l ||>

n

|
+ = (2 + &)

+ 0(a, + K, + ble,) y)

(65)

Based on the inequality (16) and the actual control input
v in (26), the following inequalities hold

3
3 4 4
2,8n8v,V < — kann - 4_,]2g”gmzn
S,
— b02|S, ||tanh(Z al ”) (66)
Cudy < o gugnd + by D* (67)
,nnv_4’12 n8m<y, 4gm .

In view of inequalities (66) and (67), we have

LV, < — Zc,z + H(Z}z |S;|| tan < i j|) é)
3 aOCj 1
+Z Zj(Pj(Zj)_ i od — 0K +Zp,
=

[ 1 2 oy
- , —nbyD".
4(’7”‘”)4—4 n"bm

+6(0, + Ky + ble,) +
(68)



Neural Comput & Applic (2014) 25:779-791

787

Furthermore, choosing the adaptation law as described in
27)

0= ZMHsHt (' ") 70, (69)

From Young’s inequality, the following inequality holds

~a b'y ~ 2 2
- < - -

Then, with the help of (68) and (70), it follows that

S-S
L oo 1 *

*Z(Zfﬁ”j(zf‘)zf jA195’<j), (71)
=

\J|W‘
~

o0

where ¢; =kib >0, (j=1,2,...,n),p; = (o1 + ble; )+
e 1), pj=0(0; 4K+ b0e) +5 (e} +17), (= 2,3,
..,n —1), and p, =0(0, + Ky +ble,) +5 (13 + 1)+

by D* + 21 07
by D* + 5 0°.

3.2 Stability analysis

So far, based on Razumikhin Lemma and backstepping
technique, the adaptive neural controller design has been
completed. Now, the main result is summarized by the
following theorem.

Theorem 1 Consider the stochastic nonlinear time-delay
systems in (13) subject to input saturation (14) under
Assumptions 1-3. For bounded initial conditions with
6> 0, the intermediate control function o; (25), the actual
control law v (26), and the adaptive law 0 (27) guarantee
that the error variables are semi-globally uniformly ulti-
mately bounded in the sense of four-moment while all the
signals in the closed-loop system are bounded in
probability.

Proof Choosing the stochastic Lyapunov function as
V =V, yields

<ol - RS
J=1
~( 360‘171
+ > (Foi(2) — 2 =20 — o1 ). (72)
= o0

From the definition of é, we have

", 00 oo A
3 Jl 3 001

,E z EZ yg,

=7 a0 .,-:2’69 =

O z ISl
3 iz 1
723||S;| tanh
o0 E AN (
n Jj=
6 E E /lz |IS;|| tanh (Z IS: H)

N3 %
= ; a0
Applying Lemma 4 to the last term in (73) results in
d 2 1S
- Z Z St (151
€
380!1 1
<ZIZIZ| 2118l
J 6a~_1
= ZMZ}IIIS/II Z Sl
=2 i—2

70
< Z <z 9; tanh( ) + 5K]> (74)
j=2 J

J 3 00y :
12 |2} “Z5* |, which means that

n

=25

j=2

3
j

(73)

where ©; = 1s;

doy_y -~ =0y Z2|IS;
0;(Z) = — ajél 70 + Z 0 L2184l tanh( IS ”>
i=1 €

3
77 0;
—®jtanh<JTj>, i=2,3,...,n (75)
j

Together (73), (74) with (75), it is easy to know that the
rightmost term of (72) are negative. Clearly,

cjz — 024—2

j=1 (76)
S - :ulv + Ko,

LV < —

where u; = min{4¢;,y,j=1,2,...,n} and w,

=2 1P

Hence, from (76) and Razumikhin Lemma, it is easy
to obtain that the error variables are semi-globally uni-
formly ultimately bounded in the sense of four-moment,
and 0 is bounded in probability. Since 0 is a constant, 0
is bounded in probability. o; is a function of z; and 0, so
o; is also bounded in probability. Furthermore, all the
signals in the closed-loop system are bounded in
probability.

Remark 5 By appropriately choosing the design parame-
ters k;, €, 4,7, 1, for example, first properly choosing the
design parameters k;, v, then choosing ¢;,# sufficiently
small and A sufficiently large, all the signals in the closed-
loop system converge to a small neighborhood of the origin.
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4 Simulation examples

In this section, two simulation examples are used to illus-
trate the effectiveness of the proposed control approach in
this paper.

Example 1 Consider the following second-order nonlin-
ear time-delay system

dxy = (14 x3)x2 +x16705% + 253 (¢ — 71 ()2 (¢ — 12(2)) )t
+x3 cos(x;)dw,

dxy = ((3 +sin(xx2))u+x1x3 + 0.1x; (t — 71 ()35 (t — 12(¢)) )dt
+x3 sin(x;x; )dw,

y=Xx1,

(77)

where u,, is chosen as u,; = 6. The nonlinear time-delay
terms are defined as t(¢f) =1+35sin(s), 7w(f)=
1 +3cos(f). According to Theorem 1, the intermediate
control function o; and the control law v are chosen,
respectively, as

0 (Z1) = (kl 3)zl —051(2))]| tanh<z?”S6171(ZI)H>7
(78)

(2 = (ke + 73)e — Olsa(22)] tanh<12”S2§ >||)
(79)

where zj =x1,2=x — 01,2y =21 € R',Zy = [21,22, 0]

€ R3. The adaptive law is given as

0= izl tanh<Z B (80)

= €i

In the simulation, neural network W' S| (Z;) contains 7
nodes with centers spaced evenly in [—3, 3], neural
network Wj' S,(Z,) includes 343 nodes with centers
spaced evenly in [ —3,3] x [ —3,3] x [0, 3], and
widths are equal to 1. The design parameters are chosen
as k; = 15,]{2 =5€ =6 = 2,22 0.5,)) =1 and n= 1.
The simulation results are shown in Figs. 1, 2, 3 and 4
with the initial condition ¢(¢) = [0.1,—0.2]",t € [—1,0],
0(0) = 0. Figure 1 gives the response of the state variable
x; and x,. Figure 2 illustrates the trajectory of adaptive
law 0. Figure 3 depicts the trajectory of saturation
function output signal u. Figure 4 shows the control
input signal v.

Example 2 Consider three-order stochastic nonlinear

time-delay system in the following form to further show
the control capability of the proposed approach.

@ Springer

dx; = ((0.2 + x3)xy + xp sin(xy) + 0.1x3 (1 — 71 (2))
sin(xa(f — 12(1))x3(t — 73(2))))d + x2 cos(x; )dw,
dxa = (1 4 x})x3 + x2¢7 %3 4 0.8x, (1 — 71(2))
X%(f — T2(l)))€3(t — T3(t)))dl —+ X1Xx2 COS(Xz)dW,
dxz = ((2 + cos(x1xz))u + x1xx3 + 0.3x1 (r — 71 (1))
x2(t — 12(2))x3(t — 73(2)))dr + 0.5x3 sin(x3 ) dw,
y =X,

(81)

where uy; = 6 is the upper bound of input saturation,
71(¢) = 1 + 2sin(z), 12(¢) =2+ 4cos(t), 13(t) = 5+ 3sin(¢)
are the nonlinear time-delay terms. The intermediate control

0.4 T T T T T

0.2 2|

0 i 2 3 s 5 6
Time (Sec)

Fig. 1 States of closed-loop system x;(f) (i = 1, 2)

0.03

0.025

0.02 |

0.015

0.01

0.005 |-

Time (Sec)

Fig. 2 Adaptive law 0
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function «;, the control law v, and the adaptive law 0 are
chosen as

%(Z) = — <k,» + %) z — 0||Si(Z;) | tanh (M) ,

i=1,2,

(82)
v(Z3) = — (k3 +4%2>Z3 — 0||$3(Z3) | tanh (Llsizs)'),
(83)
0= 23: )z} (1Si(Z;)|| tanh <Z7?||Séﬁzi)||> — 90, (84)
i=1 i

where 71 =x1,20 =X — 01,23 = X3 — %0,Z; =21 € R,

Z, = [Z1,Z2,é] ERZy = [Zl,Zz,Zaé] € R

The design parameters are chosen as k; =5,k =
8,k =10,y =6 =4,63=5,A=2,y=04 and n =2
in the simulation. The initial condition are chosen as
$(t) = [0.1,-0.2,0.3]", ¢ € [-1,0], 6(0) = 0.4, and neural
networks are chosen as follows. Neural networks
W:'S1(Z)) and W} S,(Z,) are given as in Example 1,
and W;ng(zg is chosen to contain 2401 nodes with
centers spaced evenly in [ — 3,3] x [ — 3,3] x
[ — 3, 3] x [0, 3], and widths are equal to 1. The simu-
lation results are shown by Figures 5, 6, 7 and 8. Figure 5
exhibits the response of the state variable x;, x, and x3.

The trajectory of adaptive law 6 is given in Figure 6.
Figure 7 depicts the trajectory of saturation function
output signal u. The control input signal v is shown in
Fig. 8.

2o H p

-3 -

_4 ]

-5 -

-6 -

0 i > s s 5 6
Time (Sec)

Fig. 3 Saturation function output signal u

oH 4

_8 ! ! ! ! !
0 1 2 3 4 5 6

Time (Sec)

Fig. 4 Control input signal v

1 T T

- — =X

[ — X3

0 5 10 15
Time (Sec)
Fig. 5 States of closed-loop system x,(f) (i = 1, 2, 3)
0.4 - -

035

03|

02

0.15

0.1}

0.05 |

0 5 0 15
Time (Sec)

Fig. 6 Adaptive law 6
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_2 i

-6 B

Time (Sec)

Fig. 7 Saturation function output signal u

-40 ‘ ‘
0 5 10 15

Time (Sec)

Fig. 8 Control input signal v

5 Conclusions

In this paper, an adaptive neural control design scheme has
been successfully proposed for a class of stochastic non-
linear systems with multiple time-varying delays and input
saturation. In addition, the number of the online adaptive
learning parameters is reduced to one, so the computation
complexity can be significantly alleviated, which makes
the developed results in this paper more applicable. It has
been proved that the error variables are semi-globally
uniformly ultimately bounded in the sense of four-moment,
while all the signals in the closed-loop system are bounded
in probability.
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