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Abstract This paper investigates the problem of adap-

tive neural control for a class of strict-feedback stochastic

nonlinear systems with multiple time-varying delays,

which is subject to input saturation. Via the backstepping

technique and the minimal learning parameters algorithm,

the problem is solved. Based on the Razumikhin lemma

and neural networks’ approximation capability, a new

adaptive neural control scheme is developed. The proposed

control scheme can ensure that the error variables are semi-

globally uniformly ultimately bounded in the sense of four-

moment, while all the signals in the closed-loop system are

bounded in probability. Two simulation examples are

provided to demonstrate the effectiveness of the proposed

control approach.

Keywords Stochastic nonlinear systems � Razumikhin

lemma � Adaptive neural control � Time-varying delay �
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1 Introduction

During the past decades, the problem of adaptive control

for nonlinear systems has been extensively investigated in

the control community, and many remarkable results have

been reported in the literature; see references [1–5]. By

introducing the backstepping technique, the restriction of

the matching condition has been removed for nonlinear

systems [1]. In addition, many approximation-based

adaptive control schemes have been reported to deal with

uncertain nonlinear systems with unknown nonlinear

functions; see [6–16] for the deterministic cases, and

[17–22] and the references therein for stochastic nonlinear

systems. In [16], a novel adaptive fuzzy control scheme

was proposed for nonlinear strict-feedback systems, which

contains only one adaptive parameter needed to be esti-

mated online regardless of the order of systems. By

combining fuzzy logical systems (FLS) with the back-

stepping technique, in [17], a class of strict-feedback

stochastic nonlinear system was considered, where the

virtual control gain function sign is unknown. In [18–20],

some adaptive fuzzy output-feedback control schemes

were presented when the states of the stochastic nonlinear

systems are not all available. However, in the aforemen-

tioned literatures, the authors have not considered time

delays.

Time delays and stochastic disturbances, which are

often encountered in practical applications, are sources of

instability and degradation of system performance.

Recently, the stability analysis and controller design

problems for nonlinear time-delay system have been payed

more and more attention; see [23–35]. In general, there are

two main methods for solving nonlinear systems with time

delays. One is to use the Lyapunov–Krasovskii theory.

Without the measurements of the states taken into con-

sideration, authors in [29] designed adaptive neural output-

feedback controller for a class of stochastic nonlinear

strict-feedback time-varying delays systems. The other is

the Lyapunov–Razumikhin approach, which is more brief

than the Lyapunov–Krasovskii method for dealing with the

problems of stability analysis and controller design.
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Nevertheless, a few works [32–35] have been done to

investigate the adaptive neural control or fuzzy control of

nonlinear time-varying delay systems by the Lyapunov–

Razumikhin approach. It is worth noting that the main

limitation of the aforementioned results is that time-delay

functions only include the previous time-varying delay

states. Thus, it is imperative to put forward an adaptive

neural control scheme for stochastic nonlinear systems

with all state time-varying delays by the Lyapunov–

Razumikhin approach.

As another source of instability and performance

degeneration of practical systems, input saturation has been

attracting significant attention. There exits extensive

research on the control systems with input saturation

[36–43]. In [38], authors investigated the problem of robust

controller design for uncertain discrete time-delay systems

with control input saturation. By introducing an auxiliary

design system, an adaptive tracking control scheme was

proposed for a class of uncertain multi-input and multi-

output nonlinear systems with non-symmetric input con-

straints [40]. However, to the best of our knowledge, there

are no results reported on the adaptive neural or fuzzy

control for stochastic nonlinear time-varying delay systems

with input saturation.

Motivated by the aforementioned observation, we

investigate the problem of adaptive neural control for

strict-feedback stochastic nonlinear systems with multi-

ple time-varying delays and input saturation in this

paper. In order to design the controller, neural networks

are employed to approximate the unknown nonlinear

functions, and Razumikhin lemma is used to deal with

the time-delay terms. The proposed controller guarantees

that all the signals in the closed-loop system are boun-

ded in probability. The main contributions are summa-

rized as follows: (1) for the first time, the Lyapunov–

Razumikhin approach is utilized to solve the problem of

a class of strict-feedback stochastic nonlinear systems

with all state time-varying delays, along with the guar-

anteed stability of the closed-loop system. (2) A novel

adaptive neural control scheme is successfully given for

strict-feedback stochastic nonlinear time-delay systems

with input saturation, which is more general than the

existing results [32–34]. (3) The designed control

scheme contains only one adaptive parameter required to

be estimated online, so the computation complexity can

be significantly alleviated, which makes the algorithm

easy to implement in practice.

The remainder of this paper is organized as follows.

Section 2 provides some preliminary results and problem

formulation. The controller design and stability analysis are

given in Sect. 3. Two examples are provided to demon-

strate effectiveness of the results in Sect. 4. Section 5

concludes the paper.

2 Preliminaries and problem formulation

In this section, some useful conceptions and lemmas are

introduced to develop the main result of the paper, then

neural networks are given to approximate the unknown

nonlinear function. Finally, the problem of adaptive neural

control for a class of stochastic nonlinear time-varying

delay systems is formulated.

2.1 Preliminary results

Consider the following stochastic nonlinear time-delay system

dx ¼ f ðt; xðtÞ; xðt � sðtÞÞÞdt þ gðt; xðtÞÞdw; ð1Þ

with initial condition fxðsÞ : �s� s� 0g ¼ n 2 Cb
F0
�

ð½�s; 0�;RnÞ, where sðtÞ : Rþ ! ½0; s� is a Borel measur-

able function; xðtÞ 2 Rn denotes the state variable and

x(t - s(t)) is the state vectors with time-delay; w is an

r-dimensional standard Wiener process defined on the

complete probability space ðX;F; fFtgt� 0;PÞ with X
being a sample space, F being a r-field, {Ft}tC0 being a

filtration, and P being a probability measure. f ð�Þ; gð�Þ
are locally Lipschitz functions and satisfy f(t, 0, 0) = 0,

g(t, 0, 0) = 0.

Definition 1 For any given Vðt; xÞ 2 C1;2ð½�s;1� � RnÞ
related to the stochastic nonlinear time-delay system (1),

define the infinitesimal generator L as follows:

LVðt; xÞ ¼ oV

ot
þ oV

ox
f ðt; x; xðt � sðtÞÞÞ

þ 1

2
Tr gðt; xÞT o2V

ox2
gðt; xÞ

� �
; ð2Þ

where Tr(A) is the trace of a matrix A.

Definition 2 ([34]) Let p C 1, the solution {x(t), t C 0}

of the stochastic nonlinear time-delay system (1) with

initial condition n 2 X0ðX0 is some compact set including

the origin) is said to be p-moment semi-globally uniformly

ultimately bounded if there exists a constant �d, it holds that

Efkxðt; nÞkpg� �d; 8t� T; for some T � 0:

Lemma 1 (Razumikhin Lemma [34]) Let p C 1, consider

the stochastic nonlinear time-delay system (1), if there exist

function Vðt; xÞ 2 C1;2ð½�s;1� � RnÞ and some positive

constants c1, c2, l1, l2, q [ 1 satisfying the following

inequalities

c1jxjp�Vðt; xÞ� c2jxjp; t� � s; x 2 Rn; ð3Þ
EVðt þ s; xðt þ sÞÞ\qEVðt; xðtÞÞ; 8s 2 ½�s; 0�; ð4Þ

for all t C 0, such that

ELVðt; xÞ� � l1Vðt; xÞ þ l2: ð5Þ
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Then the solution x(t, n) of system (1) is p-moment uni-

formly ultimately bounded.

Lemma 2 (Young’s inequality [2]) For 8ðx; yÞ 2 R2, the

following inequality holds:

xy� ep

p
jxjp þ 1

qeq
jyjq; ð6Þ

where e [ 0; p [ 1; q [ 1, and (p - 1) (q - 1) = 1.

Lemma 3 ([6]) For any g 2 R and e [ 0, the following

holds:

0� jgj � g tanh
g
r

� �
� dr; ð7Þ

where d is a constant that satisfies d = e-(d?1); i.e.,

d = 0.2875.

Lemma 4 ([25]) Consider dynamic system of the fol-

lowing form

_̂hðtÞ ¼ �.ĥðtÞ þ jwðtÞ; ð8Þ

where . and j are positive constants and w(t) is a positive

function. By choosing the initial condition ĥð0Þ� 0, we

have ĥðtÞ� 0 for all t C 0.

Remark 1 Since ĥð�Þ is an estimation of the unknown

positive constant h, it follows that ĥð0Þ� 0 is always rea-

sonable. This result will be used in the backstepping design

procedure.

2.2 Neural networks

In this paper, the radial basis function (RBF) neural net-

works are used to approximate an unknown continuous

function f ðZÞ : Rq ! R,

fnnðZÞ ¼ WT SðZÞ; ð9Þ

where Z 2 XZ � Rq represents the input vector and

q denotes the neural network input dimension. W ¼
½w1;w2; . . .;wl�T 2 Rl is the weight vector; l [ 1 denotes

the neural network node number. SðZÞ ¼
½s1ðZÞ; s2ðZÞ; . . .; slðZÞ�T 2 Rl is the basis function vector

with si(Z) defined by

siðZÞ ¼ exp �kZ � lik2

g2
i

" #
; i ¼ 1; 2; . . .; l; ð10Þ

where li ¼ ½li1; li2; . . .; liq�T is the center of the receptive

field and g is the width of the Gaussian function. For any

unknown nonlinear function f(Z) defined over a compact

set XZ 2 Rq; there exit the neural network W	
T

SðZÞ and

arbitrary accuracy e [ 0 such that

f ðZÞ ¼ W	
T

SðZÞ þ dðZÞ; 8Z 2 XZ � Rq; ð11Þ

where W	 is the ideal constant weight vector and is

expressed as

W	 :¼ arg min
W2Rl
f sup

Z2XZ

jf ðZÞ �WT SðZÞjg;

and d(Z) is the approximation error, which satisfies

jdðZÞj� e.

Lemma 5 ([25]) Consider the Gaussian RBF networks

(9) and (10). Let q :¼ 1
2

mini 6¼j kli � ljk. Then we can take

an upper bound of kSðZÞk as

kSðZÞk�
X1
k¼0

3qðk þ 2Þq�1
e�2q2k2=g2

:¼ s: ð12Þ

Remark 2 It has been pointed out that the constant s is

a limited value, which is independent with the neural

networks input and neural network node numbers in

[25].

2.3 Problem formulation

Consider a class of strict-feedback stochastic nonlinear

time-varying delays systems in the following form

dxi ¼ ðgið�xiÞxiþ1 þ fið�xiÞ þ qið�xn;sðtÞÞÞdt þ wT
i ð�xiÞdw;

1� i� n� 1;

dxn ¼ ðgnð�xnÞuþ fnð�xnÞ þ qnð�xn;sðtÞÞÞdt þ wT
n ð�xnÞdw;

y ¼ x1; �xnðtÞ ¼ /ðtÞ;�s� t� 0;

8>>>><
>>>>:

ð13Þ

where �xn ¼ ½x1; . . .; xn�T 2 Rn and y 2 R denote the state

vector of the system and output of the system, respectively;

�xi ¼ ½x1; . . .; xi�T 2 Ri, ði ¼ 1; 2; . . .; nÞ; w is defined as in

the system (1); qið�xn;sðtÞÞ is unknown smooth nonlinear

time-delay functions with qi(0) = 0, which is defined

by qið�xn;sðtÞÞ ¼ qiðx1ðt � s1ðtÞÞ; x2 ðt � s2ðtÞÞ; . . .; xnðt �
snðtÞÞÞ; siðtÞ : Rþ ! ½0; s� is uncertain time-varying delay.

For t 2 ½�s; 0�, �xnðtÞ ¼ /ðtÞ, where the initial function, /

(t), is smooth and bounded. fið�Þ; gið�Þ : Ri ! R;wT
i ð�Þ :

Ri ! Rr represent the unknown smooth nonlinear functions

with fi(0) = 0, wi
T(0) = 0, (1 B i B n). Moreover, u 2 R

denotes the input signal subject to symmetric saturation

nonlinearity expressed as follows:

uðvðtÞÞ ¼ satðvðtÞÞ ¼ signðvðtÞÞuM; if jvðtÞj � uM

vðtÞ; if jvðtÞj\uM

�

ð14Þ

where uM [ 0 is a known bound of u(t). Obviously, if

v(t) = |uM|, then there exist two sharp corners. Thus,

backstepping technique is invalid. To solve this problem,
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the saturation is approximated by a smooth function

defined as

gðvÞ ¼ uM � tanh
v

uM

� �
¼ uM �

ev=uM � e�v=uM

ev=uM þ e�v=uM
:

It follows that Eq. (14) becomes

uðvðtÞÞ ¼ satðvðtÞÞ ¼ gðvÞ þ dðvÞ

¼ uM � tanh
v

uM

� �
þ dðvÞ; ð15Þ

where d(v) = sat(v) - g(v) is a bounded function in time

and its bound can be constrained by

dðvÞ ¼ jsatðvÞ � gðvÞj � uMð1� tanhð1ÞÞ ¼ D: ð16Þ

Applying the mean-value theorem and choosing v0 = 0, it

is easy to obtain that

gðvÞ ¼ gðv0Þ þ gvu
ðv� v0Þ ¼ gvu

v: ð17Þ

From (15)-(17), system (13) can be transformed as

follows:

dxi ¼ ðgið�xiÞxiþ1 þ fið�xiÞ þ qið�xn;sðtÞÞÞdt þ wT
i ð�xiÞdw;

1� i� n� 1;
dxn ¼ ðgnð�xnÞðgvu

vþ dðvÞÞ þ fnð�xnÞ þ qnð�xn;sðtÞÞÞdt þ wT
n ð�xnÞdw;

y ¼ x1; �xnðtÞ ¼ /ðtÞ;�s� t� 0:

8>><
>>:

ð18Þ

The control objective is to design an adaptive neural

controller for system (13) such that the error variables are

semi-globally uniformly ultimately bounded in the sense of

four-moment, while all the signals in the closed-loop sys-

tem are bounded in probability.

To achieve the goal, the following assumptions are

imposed on the system (18).

Assumption 1 The signs of gið�xiÞ; i ¼ 1; 2; . . .; n are

known. There exist unknown constants bm and bM such that

gið�xiÞ satisfies

0\bm� jgið�xiÞj � bM\1; 8�xi 2 Ri; i ¼ 1; 2; . . .; n:

ð19Þ

Remark 3 Assumption 1 exhibits that the function gið�xiÞ
is either strictly positive or negative. Without loss of

generality, it is further assumed that bm� gið�xiÞ� bM: The

constants bm and bM are not included in the design

controller, so they can be unknown.

Assumption 2 ([43]) For the function gvu
there exists an

unknown positive constant gm such that

0\gm\gvu
\1: ð20Þ

Remark 4 According to the Assumptions 1, 2, the

following inequality holds:

0\b� gið�xiÞ; i ¼ 1; 2; . . .; n� 1; 0\b� gngvu
; ð21Þ

with b = min{bm, bmgm} being an unknown constant.

Assumption 3 ([35]) Suppose that Qijð�Þ is a class-K1
function, and the time-delay term qið�xn;sðtÞÞ satisfies

jqið�xn;sðtÞÞj �
Xn

j¼1

Qijðjxjðt � sjðtÞÞjÞ; 1� i� n: ð22Þ

To develop the backstepping design scheme, we need

make the following coordinate transformations:

z1 ¼ x1; zi ¼ xi � ai�1ðZi�1Þ; i ¼ 2; 3; . . .; n: ð23Þ

Based on the Razumikhin lemma, the intermediate

control function ai(Zi), the actual control law v and the

adaptive law ĥ are obtained in the backstepping procedure.

Define a constant

h ¼ max
1

b
kW	i k; i ¼ 1; 2; . . .; n

� �
; ð24Þ

where b is given in Remark 4. kW	i k will be specified later.

Let ĥ denotes the estimation of the unknown constant h.

Moreover, ~h ¼ h� ĥ is the parameter error.

The intermediate control function ai, the control law

v and the adaption law ĥ for strict-feedback stochastic

nonlinear time-delay system (13) will be constructed in the

following forms:

aiðZiÞ ¼ � ki þ
3

4

� �
zi � ĥkSik tanh

z3
i kSik
�i

� �
;

i ¼ 1; 2; . . .; n� 1;

ð25Þ

vðZnÞ ¼ � kn þ
3

4g2

� �
zn � ĥkSnk tanh

z3
nkSnk
�n

� �
; ð26Þ

_̂h ¼
Xn

i¼1

kz3
i kSik tanh

z3
i kSik
�i

� �
� cĥ; ð27Þ

where ki; �i; k; c; g are positive design parameters, Z1 ¼
x1 2 XZ1

� R1, Zi ¼ ½�xT
i ; ĥ� 2 XZi

� Riþ1; ði ¼ 2; 3; . . .; nÞ.
Before the backstepping design procedure, we give a

useful lemma first, which will be used to deal with the

time-delay term in the control design procedure.

Lemma 6 For the coordinate transformations (23), the

following inequality holds:

jxij � k�xik�/ðkZðtÞkÞ þ .; ð28Þ

where ZðtÞ ¼ ½z1; z2; . . .; zn; j~hj1=2�T ; . is a constant;

/(s) = s(a0s ? b0) is an unknown class K1 function with

a0 and b0 being positive constants.

Proof From Lemma 5 and the definition of ai in (25), it

follows that

jajj � kj þ
3

4

� �
jzjj þ sjjĥj: ð29Þ
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Substituting (29) into (23) gives

jxij � k�xik�k�zik þ k�ai�1k�kZðtÞk þ
Xi�1

j¼1

jajj

� kZðtÞk þ
Xi�1

j¼1

kj þ
3

4

� �
jzjj þ sjjĥj

� �

�kZðtÞk þ
Xi�1

j¼1

kj þ
3

4

� �
kZðtÞk þ sjðkZðtÞk2 þ jhjÞ

� �

�kZðtÞk þ
Xn

j¼1

kj þ
3

4

� �
kZðtÞk þ sjðkZðtÞk2 þ jhjÞ

� �

�/ðkZðtÞkÞ þ .;

where ZðtÞ ¼ z1;½ z2; . . .; zn; j~hj1=2�T ;/ðsÞ ¼ sða0sþ b0Þ;
a0 ¼

Pn
j¼1 sj; b0 ¼

Pn
j¼1 kj þ 3

4

� 	
þ 1, and . ¼

Pn
j¼1 sjjhj.

3 Controller design and stability analysis

3.1 Controller design

The backstepping design procedure is given to construct

adaptive neural controller in this section. In each step, RBF

neural networks are employed to approximate the unknown

continuous nonlinear functions, and an intermediate control

function ai will be obtained to stabilize subsystem, while

the actual control law v will be designed in the final step.

For the sake of simplicity, sometimes function Si(Zi) is

denoted by Si; fi stands for fi(xi); gi represents gi(xi); wi

denotes wi(xi).

Step 1: Let z1 = x1. Then we have

dz1 ¼ g1x2 þ f1 þ q1 �xn;sðtÞ
� 	� 	

dt þ wT
1 ðx1Þdw: ð30Þ

Consider a Lyapunov function V1 as

V1 ¼
1

4
z4

1 þ
1

2k
b~h2:

From (2), the infinitesimal generator of V1 satisfies

LV1 ¼ z3
1 g1x2 þ f1 þ q1ð�xn;sðtÞÞ
� 	

þ 3

2
z2

1w
T
1 w1 �

b

k
~h _̂h:

ð31Þ

By using Young’s inequality, it follows that

3

2
z2

1w
T
1 w1 ¼

3

2
z2

1kw1k
2� 9

4g2
1

z4
1kw1k

4 þ 1

4
g2

1: ð32Þ

For the time-delay term q1ð�xn;sðtÞÞ; by using

Assumption 3 and Lemma 6, we can obtain the

following inequality

z3
1q1 �xn;sðtÞ
� 	

� jz3
1j
Xn

j¼1

Q1j xjðt � sjðtÞÞ
� 	

� jz3
1j
Xn

j¼1

Q1j /kZðt � sjðtÞÞk þ .
� 	

� jz3
1j
Xn

j¼1

�Q1jðkZðt � sjðtÞÞkÞ þ Q1jð2.Þ
� 	

;

where �Q1jðsÞ ¼ Q1jð2/ðsÞÞ. �Q1jðsÞ is still a class K1
function, and it can be rewritten as �Q1jðsÞ ¼ s/1jðsÞ with

/1j(s) being a continuous function.

By combining kZk�k�Z1k þ
Pn

k¼2 jzkj with Lemma 3, it

yields

z3
1q1ð�xn;sðtÞÞ�jz3

1j
Xn

j¼1

�Q1jðqkZðtÞkÞþQ1jð2.Þ
� 	

�jz3
1j
Xn

j¼1

�Q1jðl1k�Z1kÞþ
Xn

k¼2

�Q1jðl1jzkjÞþQ1jð2.Þ
 !

�
Xn

j¼1

Xn

k¼2

3

4
l

4
3

1z4
1þ
Xn

j¼1

Xn

k¼2

1

4
z4

k/
4
1jðl1jzkjÞ

þz3
1F1tanh

z3
1F1

r1

� �
þdr1; ð33Þ

where l1 = qn, and F1 ¼
Pn

j¼1ð �Q1jðl1k�Z1kÞ þ Q1jð2.ÞÞ.
Substituting inequalities (32) and (33) into (31), we

have

LV1� z3
1ðg1x2 þ �f1Þ �

3

4
z4

1 þ dr1 þ
1

4
g2

1

þ
Xn

j¼1

Xn

k¼2

1

4
z4

k/
4
1jðl1jzkjÞ �

b

k
~h _̂h; ð34Þ

where �f1 ¼ f1 þ
Pn

j¼1

Pn
k¼2

3
4

l
4
3

1z1 þ 9
4g2

1

kw1k
4

þF1 tanh
z3

1
F1

r1

� �
þ 3

4
z1. Obviously, �f1 is an unknown

nonlinear function as it contains unknown functions

f1, w1, which cannot be implemented in practice. Hence,

there exist a neural network W	
T

1 S1ðZ1Þ; Z1 ¼ x1 2 XZ1
�

R1 such that

�f1 ¼ W	
T

1 S1ðZ1Þ þ d1ðZ1Þ; jd1ðZ1Þj � e1; ð35Þ

where d1(Z1) denotes the approximation error and e1 is a

positive constant.

Based on Lemma 3 and the definition of h, we have

z3
1
�f1 ¼ z3

1W	
T

1 S1ðZ1Þ þ z3
1d1ðZ1Þ� jz3

1jkW	1kkS1ðZ1Þk

þ 3

4
z4

1 þ
1

4
e4

1� bhz3
1kS1k tanh

z3
1kS1k
�1

� �

þ bhd�1 þ
3

4
z4

1 þ
1

4
e4

1: ð36Þ

Neural Comput & Applic (2014) 25:779–791 783

123



By combining inequalities (34) with (36), it implies that the

following inequality holds

LV1� z3
1g1x2 þ bhz3

1kS1k tanh
z3

1kS1k
�1

� �
þ dðr1 þ bh�1Þ

þ 1

4
e4

1 þ g2
1

� 	
þ
Xn

j¼1

Xn

k¼2

1

4
z4

k/
4
1jðl1jzkjÞ �

b

k
~h _̂h:

ð37Þ

Adding and subtracting a1 in (37) and by z2 = x2 - a1, we

get

LV1�z3
1g1z2þz3

1g1a1þbĥz3
1kS1ktanh

z3
1kS1k
�1

� �

þdðr1þbh�1Þþ
1

4
ðe4

1þg2
1Þ

þ
Xn

j¼1

Xn

k¼2

1

4
z4

k/
4
1jðl1jzkjÞþ

b

k
~hðkz3

1kS1k tanh
z3

1kS1k
�1

� �
� _̂hÞ:

ð38Þ

Letting the intermediate control function in (25) with

i = 1 and applying Young’s inequality gives

z3
1g1a1� � k1bz4

1 �
3

4
g1z4

1 � bĥz3
1kS1k tanh

z3
1kS1k
�1

� �
;

ð39Þ

z3
1g1z2�

3

4
g1z4

1 þ
1

4
g1z4

2: ð40Þ

By using inequalities (39) and (40), it follows that

LV1� � k1bz4
1 þ

b

k
~h kz3

1kS1k tanh
z3

1kS1k
�1

� �
� _̂h

� �

þ dðr1 þ bh�1Þ þ
1

4
ðe4

1 þ g2
1Þ

þ
Xn

j¼1

Xn

k¼2

1

4
z4

k/
4
1jðl1jzkjÞ þ

1

4
g1z4

2

� � c1z4
1 þ

b

k
~h kz3

1kS1k tanh
z3

1kS1k
�1

� �
� _̂h

� �

þ
Xn

j¼1

Xn

k¼2

1

4
z4

k/
4
1jðl1jzkjÞ þ q1 þ

1

4
bMz4

2;

ð41Þ

where c1 ¼ k1b [ 0; q1 ¼ dðr1 þ bh�1Þ þ 1
4
ðe4

1 þ g2
1Þ. The

last term in (41) will be dealt in the next step.

Step i (2 B i B n - 1): Let zi = xi - ai-1. The error

dynamic system can be written as

dzi ¼ gixiþ1 þ fi þ qið�xn;sðtÞÞ � Lai�1

� 	
dt

þ wi �
Xi�1

j¼1

oai�1

oxj

wj

 !T

dw; ð42Þ

where

Lai�1 ¼
Xi�1

m¼1

oai�1

oxm

gmxmþ1 þ fm þ qmð�xn;sðtÞÞ
� 	

þ oai�1

oĥ

_̂h

þ 1

2

Xi�1

p;q¼1

o2ai�1

oxpoxq

wT
p wq: ð43Þ

Choosing the following Lyapunov candidate Vi as

Vi ¼ Vi�1 þ
1

4
z4

i : ð44Þ

According to (42)–(44) and (2), we have

LVi ¼ LVi�1 þ z3
i gixiþ1 þ fi þ qið�xn;sðtÞÞ � Lai�1

� 	

þ 3

2
z2

i wi �
Xi�1

j¼1

oai�1

oxj

wj

 !T

wi �
Xi�1

j¼1

oai�1

oxj

wj

 !
:

ð45Þ

Via repeatedly deduction as Step 1, it obtains that

LVi�1� �
Xi�1

j¼1

cjz
4
j þ

b

k
~h
Xi�1

j¼1

kz3
j kSjk tanh

z3
j kSjk
�j

 !
� _̂h

 !

þ
Xi�1

j¼1

qj þ
Xi�1

j¼2

z3
j ujðZjÞ � z3

j

oaj�1

oĥ

_̂h� djj

� �

þ 1

4
bMz4

i þ
Xi�1

s¼1

Xs

m¼1

Xn

j¼1

Xn

k¼i

1

4
z4

k/
4
mjðlsjzkjÞ;

ð46Þ

where cj ¼ kjb [ 0; ðj ¼ 1; 2; . . .; i� 1Þ, and q1 ¼ dðr1 þ
bh1Þ þ 1

4
e4

1 þ g2
1

� 	
; qj ¼ d rj þ jj þ bhj

� 	
þ 1

4
e4

j þ g2
j

� �
;

j ¼ 2; 3; . . .; i� 1.

From Young’s inequality, the rightmost term in (45) gets

3

2
z2

i kwi �
Xi�1

j¼1

oai�1

oxj

wjk
2� 9

4g2
i

z4
i kwi �

Xi�1

j¼1

oai�1

oxj

wjk
4

þ 1

4
g2

i : ð47Þ

By using the Razumikhin Lemma, Young’s inequality and

Lemma 3 to deal with the time-delay term in (45), the

following inequalities hold

z3
i qið�xn;sðtÞÞ �

Xn

j¼1

Xn

k¼iþ1

3

4
l

4
3

i z
4
i þ

Xn

j¼1

Xn

k¼iþ1

1

4
z4

k/
4
ijðlijzkjÞ

þ jz3
i j
Xn

j¼1

ð �Qijðlik�ZikÞ þ Qijð2.ÞÞ; ð48Þ
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�z3
i

Xi�1

m¼1

oai�1

oxm

qmð�xn;sðtÞÞ �
Xi�1

m¼1

Xn

j¼1

Xn

k¼iþ1

3

4
l

4
3

i

oai�1

oxm












4
3

z4
i

þ
Xi�1

m¼1

Xn

j¼1

Xn

k¼iþ1

1

4
z4

k/
4
mjðlijzkjÞ

þ
Xi�1

m¼1

Xn

j¼1

jz3
i j

oai�1

oxm










ð �Qmjðlik�ZikÞ

þ Qmjð2.ÞÞ;
ð49Þ

where �Zi ¼ ½z1; z2; . . .; zi; j~hj1=2�T ; li ¼ qððn� iÞ þ 1Þ; and
�QijðsÞ ¼ s/ijðsÞ.

On the basis of (48) and (49), we have

z3
i qið�xn;sðtÞÞ � z3

i

Xi�1

m¼1

oai�1

oxm

qmð�xn;sðtÞÞ �
Xn

j¼1

Xn

k¼iþ1

3

4
l

4
3

i z
4
i

þ
Xi�1

m¼1

Xn

j¼1

Xn

k¼iþ1

3

4
l

4
3

i

oai�1

oxm












4
3

z4
i

þ
Xi

m¼1

Xn

j¼1

Xn

k¼iþ1

1

4
z4

k/
4
mjðlijzkjÞ þ jz3

i jFi

�
Xn

j¼1

Xn

k¼iþ1

3

4
l

4
3

i z
4
i þ

Xi�1

m¼1

Xn

j¼1

Xn

k¼iþ1

3

4
l

4
3

i

oai�1

oxm












4
3

z4
i

þ
Xi

m¼1

Xn

j¼1

Xn

k¼iþ1

1

4
z4

k/
4
mjðlijzkjÞ

þ z3
i Fi tanh

z3
i Fi

ri

� �
þ dri; ð50Þ

where Fi ¼
Pn

j¼1ð �Qijðlik�ZikÞ þ Qijð2.ÞÞ þ
Pi�1

m¼1

Pn
j¼1

oai�1

oxm




 



ð �Qmjðlik�ZikÞ þ Qmjð2.ÞÞ.

Substituting (46), (47) and (50) into (45), it follows that

LVi��
Xi�1

j¼1

cjz
4
j þ

b

k
~h
Xi�1

j¼1

kz3
j kSjk tanh

z3
j kSjk
�j

 !
� _̂h

 !

þ
Xi�1

j¼1

qjþ
Xi

j¼2

z3
j ujðZjÞ�z3

j

oaj�1

oĥ

_̂h�djj

� �

þ
Xi

s¼1

Xs

m¼1

Xn

j¼1

Xn

k¼iþ1

1

4
z4

k/
4
mjðlsjzkjÞþ z3

i gixiþ1þ �fiðZiÞð Þ

þdðriþjiÞþ
1

4
g2

i �
3

4
z4

i ; ð51Þ

where

�fiðZiÞ ¼ fi �
Xi�1

m¼1

oai�1

oxm

ðgmxmþ1 þ fmÞ �
1

2

Xi�1

p;q¼1

o2ai�1

oxpoxq

wT
p wq

þ
Xi�1

s¼1

Xs

m¼1

Xn

j¼1

1

4
zi/

4
mjðlsjzijÞ þ

1

4
bMzi þ

Xn

j¼1

Xn

k¼iþ1

3

4
l

4
3

i zi

þ
Xi�1

m¼1

Xn

j¼1

Xn

k¼iþ1

3

4
l

4
3

i

oai�1

oxm












4
3

zi þ Fi tanh
z3

i Fi

ri

� �

þ 9

4g2
i

zi wi �
Xi�1

j¼1

oai�1

oxj

wj

�����
�����

4

�uiðZiÞ þ
3

4
zi:

The function uiðZiÞ will be specified later. Thus, �fiðZiÞ can

be approximated by the neural network W	
T

i SiðZiÞ; Zi ¼
½�xi; ĥ�T 2 XZi

� Riþ1 such that

�fi ¼ W	
T

i SiðZiÞ þ diðZiÞ; jdiðZiÞj � ei: ð52Þ

It is easy to verify

z3
i
�fi¼z3

i W	
T

i SiðZiÞþz3
i diðZiÞ�jz3

i jkW	i kkSiðZiÞkþ
3

4
z4

i þ
1

4
e4

i

�bhz3
i kSik tanh

z3
i kSik
�i

� �
þbhd�iþ

3

4
z4

i þ
1

4
e4

i : ð53Þ

Similar to the aforementioned steps, we have

LVi� �
Xi�1

j¼1

cjz
4
j þ

b

k
~h
Xi

j¼1

kz3
j kSjk tanh

z3
j kSjk
�j

 !
� _̂h

 !

þ
Xi�1

j¼1

qj þ
Xi

j¼2

z3
j ujðZjÞ � z3

j

oaj�1

oĥ

_̂h� djj

� �

þ
Xi

s¼1

Xs

m¼1

Xn

j¼1

Xn

k¼iþ1

1

4
z4

k/
4
mjðlsjzkjÞ þ z3

i giziþ1

þ z3
i giai þ bĥz3

i kSik tanh
z3

i kSik
�i

� �

þ d ri þ ji þ bh�ið Þ þ 1

4
ðg2

i þ e4
i Þ: ð54Þ

From the intermediate control function ai in (25) and

Young’s inequality results in

z3
i giai� � kibz4

i �
3

4
giz

4
i � bĥz3

i kSik tanh
z3

i kSik
�i

� �
; ð55Þ

z3
i giziþ1�

3

4
giz

4
i þ

1

4
giz

4
iþ1: ð56Þ

Based on (55), (56) and (54), it follows that

LVi� �
Xi

j¼1

cjz
4
j þ

b

k
~h
Xi

j¼1

kz3
j kSjk tanh

z3
j kSjk
�j

 !
� _̂h

 !

þ
Xi

j¼1

qj þ
Xi

j¼2

z3
j ujðZjÞ � z3

j

oaj�1

oĥ

_̂h� djj

� �

þ 1

4
bMz4

iþ1 þ
Xi

s¼1

Xs

m¼1

Xn

j¼1

Xn

k¼i

1

4
z4

k/
4
mjðlsjzkjÞ;

ð57Þ

where cj ¼ kjb [ 0; j ¼ 1; 2; . . .; n� 1; q1 ¼ dðr1 þ bh�1Þ
þ 1

4
ðe4

1 þ g2
1Þ, and qj ¼ dðrj þ jj þ bh�jÞ þ 1

4
ðe4

j þ g2
j Þ;

j ¼ 2; 3; . . .; n� 1.

Step n This is the final step. The actual controller v will

be developed. From zn = xn - an-1, we have
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dzn ¼ ðgnðgvu
vþ dðvÞÞ þ fn þ qnð�xn;sðtÞÞ � Lan�1Þdt

þ wn �
Xn�1

j¼1

oan�1

oxj

wj

 !T

dw: ð58Þ

Consider the stochastic Lyapunov function Vn as

Vn ¼ Vn�1 þ
1

4
z4

n: ð59Þ

From the Definition 1, it yields

LVn ¼LVn�1 þ z3
n gnðgvu

vþ dðvÞÞ þ fn þ qnð�xn;sðtÞÞ � Lan�1

� 	

þ 3

2
z2

n wn �
Xn�1

j¼1

oan�1

oxj

wj

 !T

wn �
Xn�1

j¼1

oan�1

oxj

wj

 !
;

ð60Þ

where Lan�1 is given in (43) with i = n, and LVn�1

denotes (57) with i = n - 1.

For the last term in (60), applying Young’s inequality

leads to

3

2
z2

n wn �
Xn�1

j¼1

oan�1

oxj

wj

�����
�����

2

� 9

4g2
n

z4
n wn �

Xn�1

j¼1

oan�1

oxj

wj

�����
�����

4

þ 1

4
g2

n:

ð61Þ

Based on the similar method to deal with the time-delay

terms in (60), the following inequality can be obtained

z3
nqnð�xn;sðtÞÞ � z3

n

Xn�1

m¼1

oan�1

oxm

qmð�xn;sðtÞÞ

� z3
n

Xn

j¼1

ð �Qnjðlnk�ZnkÞ þ Qnjð2.ÞÞ
 

þ
Xn�1

m¼1

Xn

j¼1

j oan�1

oxm

jð �Qmjðlnk�ZnkÞ þ Qmjð2.ÞÞÞ

� z3
nFn tanh

z3
nFn

rn

� �
þ drn; ð62Þ

where Fn ¼
Pn

j¼1ð �Qnjðlnk�ZnkÞ þ Qnjð2.ÞÞþ
Pn�1

m¼1

Pn
j¼1

j oan�1

oxm
jð �Qmjðlnk�ZnkÞ þ Qmjð2.ÞÞ.

Substituting (61) and (62) into (60) gives

LVn� �
Xn�1

j¼1

cjz
4
j þ

b

k
~h
Xn�1

j¼1

kz3
j kSjk tanh

z3
j kSjk
�j

 !
� _̂h

 !

þ
Xn�1

j¼1

qj þ
Xn

j¼2

z3
j ujðZjÞ � z3

j

oaj�1

oĥ

_̂h� djj

� �

þ z3
nðgnðgvu

vþ dðvÞÞ þ �fnðZnÞÞ þ dðrn þ jnÞ

þ 1

4
g2

n �
3

4
z4

n;

ð63Þ

where

�fnðZnÞ ¼fn�
Xn�1

m¼1

oan�1

oxm

ðgmxmþ1þ fmÞ�
1

2

Xn�1

p;q¼1

o2an�1

oxpoxq

wT
p wq

þ
Xn�1

s¼1

Xs

m¼1

Xn

j¼1

1

4
zn/

4
mjðlsjznjÞ

þ 1

4
bMznþFn tanh

z3
nFn

rn

� �
þ 9

4g2
n

znkwn

�
Xn�1

j¼1

oai�1

oxj

wjk
4�unðZnÞþ

3

4
zn:

Hence, there exist a neural network W	
T

n SnðZnÞ;Zn ¼
½�xn; ĥ�T 2 XZn

� Rnþ1 such that

z3
n
�fn�jz3

njkW	nkkSnðZnÞkþ
3

4
z4

nþ
1

4
e4

n

�bhz3
nkSnk tanh

z3
nkSnk
�n

� �
þbhd�nþ

3

4
z4

nþ
1

4
e4

n:

ð64Þ

On the basis of (63), (64), we have

LVn� �
Xn�1

j¼1

cjz
4
j þ

b

k
~h
Xn

j¼1

kz3
j kSjk tanh

z3
j kSjk
�j

 !
� _̂h

 !

þ
Xn�1

j¼1

qj þ
Xn

j¼2

z3
j ujðZjÞ � z3

j

oaj�1

oĥ

_̂h� djj

� �

þ z3
ngnðgvu

vþ dðvÞÞ þ bĥz3
nkSnk tanh

z3
nkSnk
�n

� �

þ dðrn þ jn þ bh�nÞ þ
1

4
ðg2

n þ e4
nÞ:

ð65Þ

Based on the inequality (16) and the actual control input

v in (26), the following inequalities hold

z3
ngngvu

v� � knbz4
n �

3

4g2
gngmz4

n

� bĥz3
nkSnk tanh

z3
nkSnk
�n

� �
; ð66Þ

z3
ngndv�

3

4g2
gngmz4

n þ
1

4gm

g2bMD4: ð67Þ

In view of inequalities (66) and (67), we have

LVn� �
Xn

j¼1

cjz
4
j þ

b

k
~h
Xn

j¼1

kz3
j kSjk tanh

z3
j kSjk
�j

 !
� _̂h

 !

þ
Xn

j¼2

z3
j ujðZjÞ � z3

j

oaj�1

oĥ

_̂h� djj

� �
þ
Xn�1

j¼1

qj

þ dðrn þ jn þ bh�nÞ þ
1

4
ðg2

n þ e4
nÞ þ

1

4gm

g2bMD4:

ð68Þ
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Furthermore, choosing the adaptation law as described in

(27)

_̂h ¼
Xn

j¼1

kz3
j kSjk tanh

z3
j kSjk
�j

 !
� cĥ; ð69Þ

From Young’s inequality, the following inequality holds

bc
k

~hĥ ¼ bc
k

~hðh� ~hÞ� � bc
2k

~h2 þ bc
2k

h2: ð70Þ

Then, with the help of (68) and (70), it follows that

LVn� �
Xn

j¼1

cjz
4
j �

bc
2k

~h2 þ
Xn

j¼1

qj

þ
Xn

j¼2

z3
j ujðZjÞ � z3

j

oaj�1

oĥ

_̂h� djj

� �
; ð71Þ

where cj ¼ kjb [ 0; ðj ¼ 1; 2; . . .; nÞ; q1 ¼ dðr1 þ bh�1Þþ
1
4
ðe4

1 þ g2
1Þ; qj ¼ dðrj þjj þ bh�jÞ þ 1

4
ðe4

j þ g2
j Þ; ðj ¼ 2; 3;

. . .; n� 1Þ, and qn ¼ dðrn þ jn þ bh�nÞ þ 1
4
ðg2

n þ e4
nÞþ

1
4gm

g2bMD4 þ bc
2k h2.

3.2 Stability analysis

So far, based on Razumikhin Lemma and backstepping

technique, the adaptive neural controller design has been

completed. Now, the main result is summarized by the

following theorem.

Theorem 1 Consider the stochastic nonlinear time-delay

systems in (13) subject to input saturation (14) under

Assumptions 1–3. For bounded initial conditions with

ĥ� 0; the intermediate control function ai (25), the actual

control law v (26), and the adaptive law ĥ (27) guarantee

that the error variables are semi-globally uniformly ulti-

mately bounded in the sense of four-moment while all the

signals in the closed-loop system are bounded in

probability.

Proof Choosing the stochastic Lyapunov function as

V = Vn yields

LV � �
Xn

j¼1

cjz
4
j �

bc
2k

~h2 þ
Xn

j¼1

qj

þ
Xn

j¼2

z3
j ujðZjÞ � z3

j

oaj�1

oĥ

_̂h� djj

� �
: ð72Þ

From the definition of ĥ, we have

�
Xn

j¼2

z3
j

oaj�1

oĥ

_̂h ¼
Xn

j¼2

z3
j

oaj�1

oĥ
cĥ�

Xn

j¼2

z3
j

oaj�1

oĥ

Xn

i¼1

kz3
i kSik tanh

z3
i kSik
�i

� �

¼
Xn

j¼2

z3
j

oaj�1

oĥ
cĥ�

Xn

j¼2

z3
j

Xj�1

i¼1

oaj�1

oĥ
kz3

i kSik tanh
z3

i kSik
�i

� �

�
Xn

j¼2

z3
j

Xn

i¼j

oaj�1

oĥ
kz3

i kSik tanh
z3

i kSik
�i

� �
:

ð73Þ

Applying Lemma 4 to the last term in (73) results in

�
Xn

j¼2

z3
j

Xn

i¼j

oaj�1

oĥ
kz3

i kSik tanh
z3

i kSik
�i

� �

�
Xn

j¼2

jz3
j j
Xn

i¼j

jz3
i

oaj�1

oĥ
jkkSik

¼
Xn

j¼2

kjz3
j jkSjk

Xj

i¼2

jz3
i

oai�1

oĥ
j

�
Xn

j¼2

z3
j Hj tanh

z3
j Hj

jj

 !
þ djj

 !
; ð74Þ

where Hj ¼ ksj

P j
i¼2 jz3

i
oai�1

oĥ
j, which means that

ujðZjÞ ¼ �
oaj�1

oĥ
cĥþ

Xj�1

i¼1

oaj�1

oĥ
kz3

i kSik tanh
z3

i kSik
�i

� �

�Hj tanh
z3

j Hj

jj

 !
; j ¼ 2; 3; . . .; n: ð75Þ

Together (73), (74) with (75), it is easy to know that the

rightmost term of (72) are negative. Clearly,

LV � �
Xn

j¼1

cjz
4
j �

bc
2k

~h2 þ
Xn

j¼1

qj

� � l1V þ l2;

ð76Þ

where l1 ¼ minf4cj; c; j ¼ 1; 2; . . .; ng and l2 ¼
Pn

j¼1 qj.

Hence, from (76) and Razumikhin Lemma, it is easy

to obtain that the error variables are semi-globally uni-

formly ultimately bounded in the sense of four-moment,

and ~h is bounded in probability. Since h is a constant, ĥ

is bounded in probability. ai is a function of zi and ĥ, so

ai is also bounded in probability. Furthermore, all the

signals in the closed-loop system are bounded in

probability.

Remark 5 By appropriately choosing the design parame-

ters ki; �i; k; c; g, for example, first properly choosing the

design parameters ki, c, then choosing �i; g sufficiently

small and k sufficiently large, all the signals in the closed-

loop system converge to a small neighborhood of the origin.
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4 Simulation examples

In this section, two simulation examples are used to illus-

trate the effectiveness of the proposed control approach in

this paper.

Example 1 Consider the following second-order nonlin-

ear time-delay system

dx1 ¼ ðð1þ x2
1Þx2þ x1e�0:5x1 þ 2x2

1ðt� s1ðtÞÞx2ðt� s2ðtÞÞÞdt

þx2
1 cosðx1Þdw;

dx2 ¼ ðð3þ sinðx1x2ÞÞuþ x1x2
2þ 0:1x1ðt� s1ðtÞÞx2

2ðt� s2ðtÞÞÞdt

þx2
2 sinðx1x2Þdw;

y¼ x1;

8>>>><
>>>>:

ð77Þ

where uM is chosen as uM = 6. The nonlinear time-delay

terms are defined as s1ðtÞ ¼ 1þ 5sinðtÞ, s2ðtÞ ¼
1þ 3cosðtÞ. According to Theorem 1, the intermediate

control function a1 and the control law v are chosen,

respectively, as

a1ðZ1Þ ¼ � k1 þ
3

4

� �
z1 � ĥ S1ðZ1Þk k tanh

z3
1 S1ðZ1Þk k

�1

� �
;

ð78Þ

vðZ2Þ ¼ �ðk2 þ
3

4g2
Þz2 � ĥkS2ðZ2Þk tanh

z3
2kS2ðZ2Þk

�2

� �
;

ð79Þ

where z1 ¼ x1; z2 ¼ x2 � a1; Z1 ¼ z1 2 R1; Z2 ¼ ½z1; z2; ĥ�
2 R3. The adaptive law is given as

_̂h ¼
X2

i¼1

kz3
i kSiðZiÞk tanh

z3
i kSiðZiÞk

�i

� �
� cĥ: ð80Þ

In the simulation, neural network W	
T

1 S1ðZ1Þ contains 7

nodes with centers spaced evenly in [-3, 3], neural

network W	
T

2 S2ðZ2Þ includes 343 nodes with centers

spaced evenly in [ -3, 3] 9 [ -3, 3] 9 [0, 3], and

widths are equal to 1. The design parameters are chosen

as k1 ¼ 15; k2 ¼ 5; �1 ¼ �2 ¼ 2; k ¼ 0:5; c ¼ 1 and g = 1.

The simulation results are shown in Figs. 1, 2, 3 and 4

with the initial condition /ðtÞ ¼ ½0:1;�0:2�T ; t 2 ½�s; 0�;
ĥð0Þ ¼ 0. Figure 1 gives the response of the state variable

x1 and x2. Figure 2 illustrates the trajectory of adaptive

law ĥ. Figure 3 depicts the trajectory of saturation

function output signal u. Figure 4 shows the control

input signal v.

Example 2 Consider three-order stochastic nonlinear

time-delay system in the following form to further show

the control capability of the proposed approach.

dx1 ¼ ðð0:2þ x2
1Þx2 þ x1 sinðx1Þ þ 0:1x2

1ðt � s1ðtÞÞ
sinðx2ðt � s2ðtÞÞx3ðt � s3ðtÞÞÞÞdt þ x2

1 cosðx1Þdw;
dx2 ¼ ðð1þ x2

1Þx3 þ x2e�0:5x1 þ 0:8x1ðt � s1ðtÞÞ
x2

2ðt � s2ðtÞÞx3ðt � s3ðtÞÞÞdt þ x1x2 cosðx2Þdw;
dx3 ¼ ðð2þ cosðx1x2ÞÞuþ x1x2x3 þ 0:3x1ðt � s1ðtÞÞ

x2ðt � s2ðtÞÞx2
3ðt � s3ðtÞÞÞdt þ 0:5x2

2 sinðx3Þdw;
y ¼ x1;

8>>>>>>>><
>>>>>>>>:

ð81Þ

where uM = 6 is the upper bound of input saturation,

s1ðtÞ ¼ 1þ 2 sinðtÞ; s2ðtÞ ¼ 2þ 4 cosðtÞ; s3ðtÞ ¼ 5þ 3 sinðtÞ
are the nonlinear time-delay terms. The intermediate control
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Fig. 2 Adaptive law ĥ
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function ai, the control law v, and the adaptive law ĥ are

chosen as

aiðZiÞ ¼ � ki þ
3

4

� �
zi � ĥkSiðZiÞk tanh

z3
i kSiðZiÞk

�i

� �
;

i ¼ 1; 2;

ð82Þ

vðZ3Þ ¼ � k3 þ
3

4g2

� �
z3 � ĥkS3ðZ3Þk tanh

z3
3kS3ðZ3Þk

�3

� �
;

ð83Þ

_̂h ¼
X3

i¼1

kz3
i kSiðZiÞk tanh

z3
i kSiðZiÞk

�i

� �
� cĥ; ð84Þ

where z1 ¼ x1; z2 ¼ x2 � a1; z3 ¼ x3 � a2; Z1 ¼ z1 2 R1;

Z2 ¼ ½z1; z2; ĥ� 2 R3; Z3 ¼ ½z1; z2; z3; ĥ� 2 R4.

The design parameters are chosen as k1 ¼ 5; k2 ¼
8; k3 ¼ 10; �1 ¼ �2 ¼ 4; �3 ¼ 5; k ¼ 2; c ¼ 0:4 and g = 2

in the simulation. The initial condition are chosen as

/ðtÞ ¼ ½0:1;�0:2; 0:3�T ; t 2 ½�s; 0�; ĥð0Þ ¼ 0:4, and neural

networks are chosen as follows. Neural networks

W	
T

1 S1ðZ1Þ and W	
T

2 S2ðZ2Þ are given as in Example 1,

and W	
T

3 S3ðZ3Þ is chosen to contain 2401 nodes with

centers spaced evenly in [ - 3, 3] 9 [ - 3, 3] 9

[ - 3, 3] 9 [0, 3], and widths are equal to 1. The simu-

lation results are shown by Figures 5, 6, 7 and 8. Figure 5

exhibits the response of the state variable x1, x2 and x3.

The trajectory of adaptive law ĥ is given in Figure 6.

Figure 7 depicts the trajectory of saturation function

output signal u. The control input signal v is shown in

Fig. 8.
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5 Conclusions

In this paper, an adaptive neural control design scheme has

been successfully proposed for a class of stochastic non-

linear systems with multiple time-varying delays and input

saturation. In addition, the number of the online adaptive

learning parameters is reduced to one, so the computation

complexity can be significantly alleviated, which makes

the developed results in this paper more applicable. It has

been proved that the error variables are semi-globally

uniformly ultimately bounded in the sense of four-moment,

while all the signals in the closed-loop system are bounded

in probability.
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