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Abstract Nowadays, MapReduce has emerged as a facto

programming model for parallel processing of large-scale

datasets with a commodity cluster of machines. MapRe-

duce and its variants have been widely researched in the

industry and academic communities. ComMapReduce

further extends MapReduce by adding lightweight com-

munication mechanisms and also enhances the efficiency

of query processing applications. However, we find that the

performance of query processing applications changes a lot

in different communication strategies of ComMapReduce

framework. It is necessary to identify the most optimal

communication strategies of the query processing appli-

cations. Extreme learning machine (ELM) can exactly

provide classification performance with an extremely fast

training speed. Therefore, in this paper, first, we propose an

efficient query processing optimization approach based on

ELM in ComMapReduce framework, named ELM_CMR.

Then, we design two implementations of our ELM_CMR

approach to further optimize the performance of query

processing applications. Finally, extensive experiments are

conducted to verify the effectiveness and efficiency of our

proposed ELM_CMR.

Keywords Extreme learning machine � MapReduce �
Query processing applications � ComMapReduce

1 Introduction

Nowadays, MapReduce [1] and its public available

implementation, Hadoop,1 have emerged as the de facto

standard programming framework for performing large

scalable and parallel tasks with a community cluster of

machines. This programming framework is scalable, fault

tolerant, cost-effective and easy to use. The successes of

MapReduce and its variants have resulted in their deploy-

ments in the industry [2–6] and academic communities

[7–15]. As one of the improvements of MapReduce,

ComMapRedcue [16, 17] adds simple lightweight com-

munication mechanisms to generate the certain shared

information and then enhances the performance of query

processing applications with large-scale datasets in the

cloud. In addition, three basic and two optimization com-

munication strategies of ComMapReduce framework are

proposed to illustrate how to communicate and obtain the

shared information of different applications.

ComMapReduce is a successful improvement of the

original MapReduce framework. Numerous query pro-

cessing applications can largely enhance the performance

with the communication strategies of ComMapReduce.

However, through the abundant experiments and further

analysis of the execution course of ComMapReduce

framework, the characteristics of ComMapReduce are

further summarized as follows. First, not all the query

processing applications are appropriate for ComMapRe-

duce framework. In other words, the performance of
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certain queries in MapReduce framework is optimal to the

performance in ComMapReduce framework. Second, dif-

ferent communication strategies of ComMapReduce can

substantially affect the performance of query processing

applications. In ComMapReduce framework, the perfor-

mance of one query processing application is different with

the different communication strategies of ComMapReduce

framework. Third, in MapReduce programming, the con-

figuration parameters can fully specify how the job should

execute, such as the number of Map and Reduce tasks, the

size of block, whether adopting Combiner, and so on.

ComMapReduce is the improvement of MapReduce and

inherits the basic programming framework of MapReduce,

so these configuration parameters also have a sharp impact

on the performance of ComMapReduce jobs.

Therefore, for a query programm, whether processing in

ComMapReduce and adopting which communication

strategies of ComMapReduce framework are urgent prob-

lems to be resolved. If we can adopt efficient classification

algorithm to optimize the implementations of query pro-

cessing applications, the whole ComMapReduce frame-

work can reach an excellent performance. Extreme

learning machine (ELM) [18] proposed by Huang et.al is

exactly developed for generalized single hidden-layer

feedforward networks (SLPNs) with a wide variety of

hidden nodes. ELM can provide classification performance

at an extremely fast training speed. Therefore, in this paper,

we propose an efficient query processing optimization

approach based on ELM in ComMapReduce framework,

named ELM_CMR approach. Our ELM_CMR approach

can effectively analyze the query processing applications

and obtain the most optimal solution. First, after analyzing

the overview of our ELM_CMR approach, we choose the

adaptive feature parameters to train the ELM model for

query processing optimization. Then, we propose two

implementations of our ELM_CMR approach, one query

implementation and multiple queries implementation. The

contributions of this paper can be summarized as follows.

• We propose an efficient query processing optimization

approach in ComMapReduce framework based on

ELM and select the adaptive feature parameters to

generate our ELM Classifier.

• Two implementations of ELM_CMR approach, one

query and multiple queries, are proposed to optimize

the performance of query processing applications.

• Our experimental studies using synthetic data show the

effectiveness and efficiency of ourELM_CMR approach.

The remainder of this paper is organized as follows.

Section 2 briefly introduces the ELM and ComMapReduce

framework. Our ELM_CMR approach and two implemen-

tations for query processing applications are proposed in

Sect. 3. The experimental results to show the performance

of ELM_CMR are reported in Sect. 4. Finally, we conclude

this paper in Sect. 5.

2 Background

In this section, we describe the background for our work,

which includes a brief overview of the traditional ELM and

a detailed description of ComMapReduce framework.

2.1 Review of ELM

Recently, with the characteristics of excellent generaliza-

tion performance, rapid training speed and little human

intervene, extreme learning machine (ELM) [18] and its

variants [19–34] have attracted increasing attention from

more and more researchers. ELM is originally developed

for single hidden-layer feedforward neural networks

(SLFNs) and is then extended to the ‘‘generalized’’ SLFNs.

ELM first randomly assigns the input weights and hidden-

layer biases and then analytically determines the output

weights of SLFNs. Contrast to the other conventional

learning algorithms, ELM reaches the optimal generaliza-

tion performance with a sharply fast learning speed. ELM is

less sensitive to the user-defined parameters, so that it can

be deployed faster and more conveniently than the others.

For N arbitrary distinct samples (xj, tj), where xj ¼
½xj1; xj2; . . .; xjn�T 2 R

n and tj ¼ ½tj1; tj2; . . .; tjm�T 2 R
m,

standard SLFNs with hidden nodes L and activation func-

tion g(x) are mathematically modeled as

XL

i¼1

bigiðxjÞ ¼
XL

i¼1

bigðwi � xj þ biÞ ¼ oj

ðj ¼ 1; 2; . . .;NÞ ð1Þ

where L is the number of hidden-layer nodes, wi ¼
½wi1;wi2; . . .;win�T is the weight vector between the ith

hidden node and the input nodes, bi ¼ ½bi1; bi2; . . .; bim�T is

the weight vector connecting the ith hidden node and the

output nodes, bi is the threshold of the ith hidden node and

oj ¼ ½oj1; oj2; . . .; ojm�T is the jth output vector of the SLFNs

[34].

The standard SLFNs can approximate these N samples

with zero error. The error of ELM is
PL

j¼1 jjoj � tjjj ¼ 0

and there exist bi; wi and bi such that

XL

i¼1

bigðwi � xj þ biÞ ¼ tj ðj ¼ 1; 2; . . .;NÞ ð2Þ

The equation above can be expressed compactly as

follows:
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Hb ¼ T ð3Þ

where Hðw1;w2; . . .;wL; b1; b2; . . .; bL; x1; x2; . . .; xLÞ

¼

hðx1Þ
hðx2Þ
..
.

hðxNÞ

2

6664

3

7775 ¼

gðw1 � x1 þ b1Þ gðw2 � x1 þ b2Þ . . . gðwL � x1 þ bLÞ
gðw1 � x2 þ b1Þ gðw2 � x2 þ b2Þ . . . gðwL � x2 þ bLÞ

..

. ..
. ..

. ..
.

gðw1 � xN þ b1Þ gðw2 � xN þ b2Þ . . . gðwL � xN þ bLÞ

2

6664

3

7775

N�L

ð4Þ

b ¼

bT1
bT2
..
.

bTL

2
6664

3
7775

L�m

and T ¼

tT1
tT2

..

.

tTN

2
6664

3
7775

N�m

ð5Þ

H is named the hidden-layer output matrix of the neural

network. The ith column of H is called the ith hidden node

output with respect to inputs x1; x2; . . .; xN . The smallest

norm least-squares solution of the above multiple

regression system is:

b̂ ¼ HyT ð6Þ

where Hy is the Moore-Penrose generalized inverse of

matrix H. Then, the output function of ELM can be

modeled as follows.

f ðxÞ ¼ hðxÞb ¼ hðxÞHyT ð7Þ

The computational process for ELM training is given in

Algorithm 1. Only after properly setting the related

parameters, ELM can start the training process. Step one is

to generate L pairs of hidden node parameters (wi, bi)

(Lines 1–3). Step two actually calculates the hidden-layer

output matrix H by using Eq. (4) (Line 4). Step three

mainly computes the corresponding output weight vector b

(Line 5). After completing the above training process, the

output of the new dataset can be predicted by ELM

according to Eq. (7).

2.2 ComMapReduce framework

MapReduce is a parallel programming framework pro-

cessing of the large-scale datasets on clusters with

numerous commodity machines. An overview of the exe-

cution course of a MapReduce application is shown in

Fig. 1. When a MapReduce job is processed in the cluster,

as the brain of the whole framework, the Master node

schedules a number of parallel tasks to run on the Slave

nodes. First, in Map phase, each Map task independently

operates a non-overlapping split of the input file and calls

the user-defined Map function to emit its intermediate

\key,value[ tuples in parallel. Second, once a Map task

completes, each Reduce task fetches all the particular

intermediate data remotely. This course is called the shuffle

phase in MapReduce.

In the actual applications of MapReduce, when the final

results are much smaller than the original data, such as a

top-k query, there are a large number of unpromising

intermediate data to be transferred in the shuffle phase,

leading to the waste of disk access, CPU resources and

network bandwidth. ComMapReduce [16, 17] is an opti-

mized MapReduce framework with lightweight communi-

cation mechanisms. In ComMapReduce framework as

shown in Fig. 2, a new node, named the Coordinator node,
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Output 
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Split 2 

Split 3 
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Mapper

Mapper

Reducer
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Fig. 1 Framework of MapReduce
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is added to store and generate the certain shared informa-

tion of different applications. The Coordinator node can

communicate with the Mappers and Reducers with simple

lightweight communication mechanisms.

InMap phase, after eachMapper completes, it computes its

local shared information according to the features of the

application and sends it to theCoordinator node.After that, the

Coordinator node gains the most optimal one as the global

shared information from the local shared information it

receives according to the features of the application too.

Simultaneously, the Mappers receive the global shared

information to filter out their unpromising intermediate data to

be transferred in the shuffle phase. The amounts of the inter-

mediate data can be decreased, so as to shorten the latency

time and improve the utility of bandwidth and CPU resources.

Three basic communication strategies are designed to illus-

trate how to communicatewith theCoordinator node to obtain

the global shared information, respectively, lazy communi-

cation strategy (LCS), eager communication strategy (ECS)

and hybrid communication strategy (HCS). Two optimization

communication strategies are proposed to enlarge the ways of

receiving and generating the shared information, respectively,

prepositive optimization strategy (PreOS) and postpositive

optimization strategy (PostOS).

In summary, without affecting the existing characteris-

tics of the original MapReduce framework, ComMapRe-

duce is an efficient parallel programming framework with

global shared information to filter out the unpromising

data. It can not only process the one pass massive data

applications, but also implements the iterative massive data

analysis applications.

3 ELM-based query processing optimization

In this section, the overview of our ELM_CMR approach is

introduced first in Sect. 3.1, and then, we propose an effi-

cient feature subset selection method to train the ELM

model in Sect. 3.2. In Sect. 3.3, two implementations of

ELM_CMR are presented, one query and multiple queries.

3.1 Overview of ELM_CMR approach

There are four main components of Our ELM_CMR

approach that can optimize the query processing programs

effectively in ComMapReduce framework. Figure 3 shows

the flow of information through the approach. The four

main components are, respectively, the Feature Selector,

the ELM Classifier, the Query Optimizer and the Execution

Fabric. The Feature Selector examines the training data

and selects the features that can wholly affect the query

performance. There are many features that can be used to

describe a ComMapReduce job, but not all of them can

drastically affect the performance. Therefore, it is impor-

tant to select the main features. How to select the main

features is to be illustrated in Sect. 3.2 in detail. After

selecting the features of training data, the Feature Selector

sends the extracted training data to the ELM Classifier. The

ELM Classifier uses the training data to construct the ELM

model by the traditional ELM algorithm. After that, when

there are one or multiple queries to be processed, the ELM

Classifier can rapidly obtain the classification results of the

queries, and then sends them to the Query Optimizer. The

Query Optimizer applies the classification results of the

ELM Classifier and combines the implementation patterns

to choose an optimized execution order. How to choose the

execution order will be presented in Sect. 3.3. After

gaining the execution order, the Query Optimizer sends it

to the Execution Fabric. The Execution Fabric implements

the program in ComMapReduce framework.

For the query processing applications, we can identify

the most optimal communication strategies of ComMa-

pReduce framework by using our ELM_CMR approach.

With the optimal communication strategy, the processing

cost of the shuffle phase can be reduced drastically.

Although the computation of ELM_CMR approach adds the

whole processing cost, the computation cost of ELM_CMR

approach is relatively cost-effective and time-efficient

contrast to the processing course with the other commu-

nication strategies of ComMapReduce framework. So, we

can realize the optimized query processing implementation

so as to further enhance the performance of ComMapRe-

duce framework by ELM_CMR approach.

3.2 Feature subset selection

A query processing program q of MapReduce or ComMa-

pReduce is regarded as job j = \q, d, r, c[, where d is the

original input data; r is the cluster resource; and c is the con-

figuration parameter setting of q. In this situation, because d,

r and c can have different configurations, a number of selec-

tions can bemade to fully specify how the job should execute.

For example, d contains the data size and distribution of the

input data; r contains the number of Slave nodes and the net-

work configuration. Moreover, c in j = \q, d, r, c[ comes

from a high dimensional space of configuration parameters

settings that contain (but are not limited to):

• The number of Map and Reduce tasks.

• The size of the memory buffer to use while sorting

mapout.

• Whether adopting Combiner function to aggregate map

outputs.

We call these parameters the feature parameters of a

query program q. Figure 4 shows the impact of execution

time of a skyline [35] query in ComMapReduce framework
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by changing two feature parameters. We can see that the

execution time changes a lot with different feature

parameters. Therefore, it is important to specify the proper

settings of feature parameters for the submitted job j. Due

to the high dimensional property of c in j, we should

identify the configuration parameters that can largely affect

the performance of q. For any parameter whose value is not

specified explicitly during job submission, either is shipped

with the system or specified by the system administrator.

Finding the proper configuration parameter setting is a

time-consuming course, which requires extensive knowl-

edge of the whole framework. In this paper, we adopt the

execution time as the performance metric, but is not limited

this metric.

The first problem is to obtain the proper configuration

parameters of program q by dynamically generating the

concise statistical summaries of MapReduce job execution.

In this paper, we use the job profiles to obtain the config-

uration parameter settings. The job profile is a vector where

each field captures some unique features during the job

execution. We use task-level sampling to generate the

appropriate job profiles while keeping the run-time over-

head low. In order to collect a job profile for j, the profile

can be gained by only selecting small samples of j’s tasks.

For example, for a job containing 50 Map tasks, it is only to

run 5 tasks of them to generate the profile.

The second problem is to minimize the number of

parameters in the near-optimal configuration parameter

settings. All configuration parameters form a space of

parameter settings S. There are so many parameters in

S that the high dimensionality space of S affects the sca-

lability of our approach. If the individual parameters in

S can be grouped into clusters, Si, the globally optimal

setting in S can be computed from the optimal settings of

the clusters Si as shown in Algorithm 2. Step one divides

the high dimensional space S into the lower dimensional

subspaces Si (Line 1). Step two considers an independent

optimization problem in each smaller subspace (Lines

2–4). Step three combines the optimal parameter settings

found in per subspace Si (Line 5).

Naturally, the parameters of program q can be divided

into three clusters, parameters that predominantly affect

Map task execution; parameters that predominantly affect

Reduce task execution and the cluster parameters. For

example, Hadoop’s io.sort.record.percent parameter

affects the storing record boundaries of the Map outputs,
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Query Optimizer
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Split 
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while mapred.job.shuffle.merge.percent only affects the

shuffle phase in Reduce tasks. The dfs.hearbeate.interval

determines the interval of sending the heartbeat informa-

tion of the whole system, and so on. In this paper, we

adopt the minimum-redundancy-maximum-relevance

(mRMR) [36] feature selection to find the optimal

parameters sharply affecting the performance in each

cluster. The mRMR is a first-order incremental feature

selection to select a compact set of superior features at

very low cost. And then, we generate the globally optimal

configuration parameter settings by combining the results

of the each subspace.

The globally optimal configuration parameter settings,

combining with the input data d and the cluster resource r,

form the feature parameters of the ELM Classifier. Table 1

lists the feature parameters in our experiments along with

their default values that can impact the performance of

jobs, but not all the configuration parameters in the system.

We can use the ELM algorithm to generate the ELM

model. When a new query or multiple queries come, the

ELM model can effectively classify them to identify

whether adopting ComMapReduce framework and deter-

mine which communication strategies of ComMapReduce

to be adopted. After obtaining the feature parameters of the

ELM_CMR approach, the ELM Classifier can generate

classification results of the query processing applications.

Then, the implementations of our ELM_CMR are intro-

duced in Sect. 3.3.

3.3 Implementations of ELM_CMR

After generating the ELM Classifier, the pending queries

may be one query or multiple queries. In this section, we

first propose the implementation of one query, and then the

implementation of multiple queries.

3.3.1 Implementation of one query

When there is one query to be processed, the Feature

Selector abstracts its feature parameters of this query, and

then, the ELM Classifier generates its classification result.

After obtaining the classification result, the Query Opti-

mizer can make a decision of adopting which communi-

cation strategy of ComMapReduce framework is suitable.

The Execution Fabric then implements the query pro-

cessing application according to the result of the Query

Optimizer.

The implementation of one query is shown in Algorithm

3. First, the feature parameters of query processing job

j are extracted using the above feature selection method

(Line 1). Second, after obtaining the feature parameters of

job j, the ELM Classifier generates the classification of

j (Line 2). Third, according to the classification result of j,

the Query Classifier ensures how to implement the program

and sends it to the Execution Fabric. The Execution Fabric

uses the optimization result to implement the query pro-

gram (Line 3).

For example, for a top-k query, after abstracting its

feature parameters, the ELM Classifier generates its clas-

sification and then identifies the communication strategy of

Table 1 Feature parameters in

the experiments
Property name Type Default value

Io.sort.mb int 100

Io.sort.factor int 10

min.num.spills.for.combine int 3

mapred.compress.map.output boolean False

mapred.reduce.parallel.copies int 5

mapred.reduce.copy.backoff Int 300

dfs.heartbeat.interval int 3

dfs.block.size (M) int 64

mapred.map.task int 4

mapred.reduce.task int 4

mapred.tasktracker.map.task.maximum int 4

mapred.tasktracker.reduce.task.maximum int 4

Data size (G) int 10(top-k, kNN), 1(skyline), 2(join)

Data distribution char Uniform

Number of slave nods int 8
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this top-k query, such as ECS. After that, the top-k query is

implemented with ECS in ComMapReduce framework.

3.3.2 Implementation of multiple queries

When there are multiple queries to be processed, the Query

Optimizer can design an execution order of the queries

without considering the situation of concurrently executing

queries. Under the execution order, the performance of the

multiple queries can reach the most optimal status. So the

execution order is important to enhance the performance of

our ELM_CMR approach.

With the same method as one query, the multiple queries

can be classified by ELM Classifier and gain its best

communication strategy of each program. After that, dur-

ing the course of obtaining the job profile, a Task Sched-

uler Simulator is used to simulate the scheduling and

execution of Map and Reduce tasks of each q. The

implementation of the Task Scheduler Simulator is a

lightweight discrete event simulation, only requiring a

small task of job j. The output from the simulator is a

complete description of the execution of job j in the cluster,

such as the estimated job completion time, the amount of

local I/O or even a visualization of the task execution time.

Therefore, according to the classification results, the exe-

cution time of a job j can be estimated by the Task Sche-

dular Simulator. So, according to the common principle of

Shortest Job First (SJF), we suppose that the shorter the

execution time of a query is, the better priority order the

query is. We can generate an execution order (Os) of the

multiple queries with the ascending order of the simulated

execution time. According to Os, the multiple queries can

be implemented. Algorithm 4 illustrates the complete

implementation course of the multiple queries. First, we

can obtain the classification and simulate its execution time

of each query (Lines 1–4). Then, the execution order is

generated by Shortest Job First (SJF) principle (Line 5).

Figure 5 shows an example of the multiple queries

implementation course. Suppose that there are eight queries

to be proposed by our ELM_CMR approach. We want to

confirm the final execution order. After classified by the

ELM Classifier, these queries obtain their classification

results as shown in Fig. 5. According to the simulated exe-

cution time of the queries and SJF principle, we can get an

execution order Os, q2, q5, q3, q1, q6, q4, q7, q8.

4 Performance evaluation

In this section, the performance of our ELM_CMR

approach is evaluated in detail with various experimental

settings. We first describe the platform used in our exper-

iments in Sect. 4.1. Then, we present and discuss the

experimental results in Sect. 4.2.

4.1 Experimental platform

Our experimental platform is a cluster of 9 commodity PCs

in a high-speed Gigabit network, with one PC as the Master

node and the Coordinator node, the others as the Slave

nodes. Each PC has an Intel Quad Core 2.66GHZ CPU,

4GB memory and CentOS Linux 5.6. We use Hadoop

0.20.2 and compile the source codes under JDK 1.6. The

ELM algorithm is implemented in MATLABR2009a. The

data in our experiments are synthetic data. Table 1 sum-

marizes the parameters used in the experiments including

the default values. The ELM Classifier divides the com-

munication strategies into 7 classifications, respectively,

ECS, HCS-0.5, HCS-1, HCS-2, PreOS, PostOS and Ma-

pReduce (MR). HCS-0.5 means the preassigned time

interval of HCS is 0.5s. We evaluate the performance of

ELM_CMR in different implementations for one query and

multiple queries.

4.2 Experimental results

First, four typical query processing applications are adop-

ted to evaluate the implementations of one query, top-k,

kNN, skyline and join. We use the ELM_CMR to identify

the most optimal communication strategy of each query

and then implement the query under different communi-

cation strategies to test their performance. Figure 6 shows

the performance of a top-k query (k = 1,000). We can see

that the performance of this top-k query is different in

different communication strategies, and PreOS is the best

one. This is same as the classification result of our

ELM_CMR. When k is much smaller than the original data,

the global shared information can reach the most optimal

one quickly, so the Mappers can retrieve the shared

information in the initial phase to filter out the unpromising

data.

q2,q5,q3,q1,q6,q4,q7,q8ELM Classifier

q1,q2,q3,q4,
q5,q6,q7,q8

q3,q4: ECS
q1,q7,q8: HCS  1s
q2,q5: HCS  0.5s

q6: none Os

SJF

Fig. 5 Implementation of multiple queries
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Figure 7 shows the performance of a kNN query. The

classification of this kNN query is HCS-0.5 and the running

time of HCS-0.5 is the shortest in the experiment. HCS can

obtain the shard information in a preassigned time interval.

It does not only have to wait for all Mapper completed

wasting extra time, but also receives the shard information

after each Mapper completes.

Figure 8 shows the performance of a skyline query in

anti-correlated distribution. We can see that the perfor-

mance of different communication strategies is not obvi-

ously different, but PostOS is a little better. The

classification result of this skyline query is just PostOS.

The reason is that the original data are skewed to the final

results in anti-correlated distribution. The percentage of

filtering is low, so the performance difference is not

obvious. In this situation, although ELM_CMR can obtain

the classification, the query can also choose the other

communication strategies.

Figure 9 shows the performance of a join query of

small-big tables with its classification ECS. The perfor-

mance of ECS is much better than MR. By the commu-

nication strategy, ECS, the join attributes of the small table

can be set as the shared information to filter out the

unpromising intermediate results.

Second, we evaluate the performance in different exe-

cution orders of multiple queries. Figure 10 illustrates the

performance of four top-k queries in the group. The run-

ning time of our optimized execution order is shorter than

the running time of the original order. Our ELM_CMR can

identify the proper classifications of the queries to enhance

the performance. In the original order, the queries do not

have the most optimal classification and implement with

random communication strategies.

Figure 11 shows the performance of the multiple queries

about different types under different execution orders,

respectively, top-k, kNN, skyline and join. There are four

queries in the multiple queries group. We can see that the

running time under our optimized execution order is much

optimal than the original order. In our ELM_CMR

approach, according to the classification results of the ELM

Classifier, the Query Optimizer can generate the optimized

execution order of the queries. Under the optimized exe-

cution order, the performance is much better than the

original one.
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5 Conclusions

In this paper, we propose an efficient query processing

optimization based on ELM in ComMapReduce frame-

work. Our ELM_CMR approach can effectively analyze the

query processing applications, and then generate the most

optimized implementations of query processing applica-

tions. After analyzing the implementation of ComMapRe-

duce framework, we train the ELM model to classify the

query processing applications in ComMapReduce frame-

work. Then, we propose two implementations of our

ELM_CMR, one query and the multiple queries. The

experiments demonstrate that our ELM_CMR approach is

efficient and the query processing applications can reach an

optimal performance.
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