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Abstract This paper is concerned with the problem of

optimal and adaptive control for controlling chaos in a

novel bounded four-dimensional (4D) chaotic system. This

system can display hyperchaos, chaos, quasiperiodic and

periodic behaviors, and may have a unique equilibrium,

three equilibria and five equilibria for the different system

parameters. An optimal control law is designed for the

novel bounded chaotic system, based on the Pontryagin

minimum principle. Furthermore, we propose Lyapunov

stability conditions to control the new bounded 4D chaotic

system with unknown parameters by a feedback control

approach. Numerical simulations are presented to show the

effectiveness of the proposed chaos control scheme.

Keywords Optimal control � New bounded four-

dimensional (4D) chaotic system � Lyapunov function �
Pontryagin minimum principle � Legendre spectral

method

1 Introduction

Chaotic dynamical systems are very complex nonlinear

systems that exhibit unpredictable and irregular behaviors.

A chaotic system has several particular features such as

extreme sensitivity to initial conditions and system

parameter variations, broad spectra of Fourier transform,

fractal properties of the motion in phase space, and strange

attractors. Chaotic dynamics has been studied in many

fields of science and engineering such as physics, biology,

electronic circuits, chemistry and mechanical engineering

[1–5].

Recently a considerable amount of research is devoted

to study the chaotic behavior of nonlinear dynamical sys-

tems. In some applications, it is required to control a sys-

tem in order to eliminate chaos. The first attempt to control

a chaotic dynamical system with an analytical method was

made in 1990s by Ott, Grebogy and Yorke (OGY method)

[6, 7]. After that, the methods for stabilizing unstable

periodic orbits (UPOs) embedded in chaotic attractors have

been extensively studied in the field of nonlinear dynamics.

For instance, adaptive control, adaptive fuzzy control,

sliding mode control, robust control, time-delayed feed-

back control, etc. [8–11].

Ultimate bound sets have important applications in

chaos control and its synchronization [12–15]. It can also

be applied in estimating the fractal dimensions of chaotic

attractors, such as the Hausdorff dimension and the

Lyapunov dimension of chaotic attractors [16–18].

Recently, a novel bounded 4D chaotic system with the

nonlinear terms in the form of quadratic function was

presented by Zhang and Tang [19]. It is shown that the new

system can display hyperchaos, chaos, quasiperiodic and

periodic behaviors, and may have a unique equilibrium,

three equilibria and five equilibria respectively corre-

sponding to the different parameters. The authors have

investigated the ultimate bound and positively invariant set

for the chaotic system based on the Lyapunov function

method, and obtained a hyperelliptic estimate of it for the

system with certain parameters.

Designing optimal controllers for chaotic dynamical

systems have been investigated by many researchers

[20–22]. There are many applications for optimal control of

chaotic dynamics in mechanical systems [23], medical and

drug systems [25], tumor and cancer models [26, 27] and
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so on. In the present paper, we use a strategy for optimal

control of Zhang and Tang chaotic system. For this pur-

pose, we will apply the Pontryagin minimum principle

(PMP). Furthermore, the design of the feedback controller

is achieved through an application of the optimal control

and Lyapunov stability theory which guarantee the global

stability of the nonlinear error system. In addition, most

real-world engineering systems can be described by com-

plex dynamical networks composed of many different sub-

systems with connections in and among them [28]. Thus, it

is important to further explore the networked systems via

various coupling. Due to the significance of scientific and

engineering background of collective dynamics, one could

start with studying the optimal and adaptive synchroniza-

tion of complex dynamical networks.

Dynamical systems modeled by nonlinear differential

equations. The exact solution for the chaotic systems in the

general form does not exist therefore numerical methods

are needed for simulating dynamical systems and com-

puting their Lyapunov characteristic exponents (LCE).

Several numerical methods have been applied to solve the

chaotic systems. Spectral methods are one of the principal

methods of discretization for the numerical solution of

differential equations. The main advantage of these meth-

ods lies in their accuracy for a given number of unknowns.

For smooth problems in simple geometries, they offer

exponential rates of convergence/spectral accuracy. In

contrast, finite-difference and finite-element methods yield

only algebraic convergence rates. The three most widely

used spectral versions are the Galerkin, collocation, and tau

methods [29–31]. Collocation methods [31, 32] have

become increasingly popular for solving differential

equations, also they are very useful in providing highly

accurate solutions to chaotic systems.

This paper is organized as follows. In Sect. 2, we discuss

the chaotic Zhang–Tang system and it’s stability analysis.

We first show the existence of an attractor, and then discuss

the existence of equilibria and their stability. In Sect. 3, we

discuss the control of chaos for the Zhang–Tang system. In

Sect. 4, the dynamic estimators of uncertain parameters in

the Zhang–Tang system is investigated based on the

Lyapunov stability theory from the conditions on the

asymptotic stability of this system about its steady states.

In Sect. 5, we summarize the main results obtained in this

paper.

2 The novel four-dimensional chaotic system

and stability analysis

In this section, we discuss on equilibrium and stability of

the chaotic Zhang–Tang system [19]. Consider the non-

linear system of the form

_x1 ¼ a1x1 þ a2x4 � x2x3;

_x2 ¼ �a3x1 þ a4x2 þ b1x1x3;

_x3 ¼ a5x3 þ b2x1x2 þ b3x1x4;

_x4 ¼ a6x2 þ a7x4 � b4x1x3;

ð1Þ

where xi (i = 1, 2, 3, 4) are system state variables.

ai\0; i ¼ 1; 2; . . .; 7; bj [ 0; ðj ¼ 1; 2; 3; 4Þ are constant

parameters of the system. Note that when a2 = a3 =

b4 = 0, system (1) would reduce to the form of the chaotic

system proposed in [33]. Nevertheless, system (1) will

display a completely different dynamics with that of the

chaotic system in [33].

With different parameters ai and bj, it is shown that

system (1) can display hyperchaos, chaos, quasiperiodic

and periodic behaviors. Figures 1 and 2 show the time

response and the strange attractors such as hyperchaos and

chaos, respectively.

2.1 Dissipation

The differential coefficient of the system (1) stream can be

obtained as

r � F ¼ oF1

ox1

þ oF2

ox2

þ oF3

ox3

þ oF3

ox4

¼ a1 þ a4 þ a5 þ a7;

ð2Þ

while

F ¼ ðF1;F2;F3;F4Þ
¼ ða1x1 þ a2x4 � x2x3;�a3x1 þ a4x2 þ b1x1x3; a5x3

þ b2x1x2 þ b3x1x4; a6x2 þ a7x4 � b4x1x3Þ:

Therefore, to ensure that system (1) being dissipative, it

is required that a1 ? a4 ? a5 ? a7 \ 0. Under this

condition, system (1) converges exponentially

dF

dt
¼ ða1 þ a4 þ a5 þ a7ÞF ) F ¼ F0eða1þa4þa5þa7Þt: ð3Þ

Therefore, it can be concluded from (3) that in the case

of a1 = -0.16; a4 = -0.15; a5 = -0.45; a7 = -0.4, the

exponential contraction rate of the forced dissipative sys-

tem is calculated as

F ¼ F0e�1:16t: ð4Þ

This implies that each volume containing the system

trajectory shrinks to zero as t!1 at an exponential rate,

a1 ? a4 ? a5 ? a7.

Remark 2.1 In [19] based on the Lyapunov function

method, a hyperelliptic estimate of the ultimate bound and

positively invariant set for the system with certain param-

eters was obtained. In fact, with the parameters a1 =

a2 = -1.5, a3 = -1.2, a4 = -0.8, a5 = -0.5, a6 = -2,

a7 = -0.3, b1 = 2, b2 = 0.3, b3 = 1, b4 = 0.2, the cha-

otic system (1) has the following hyperellipsoid:
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X ¼ fXj30:06x2
1 þ 15x2

2 þ 0:2ðx3 þ 225:45Þ2

þ x2
4� 17128g:

2.2 Equilibrium and stability

In the following, we consider the equilibrium of the system

(1). Obviously the origin S0(0, 0, 0, 0) is an equilibrium of

the system (1). For the nonzero equilibria, we have

x1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðkia3�a4Þa5a7

ða6b3�a7b2Þb1�ðkia3�a4Þb3b4

q

;

x2 ¼ 1
ki

x1;

x3 ¼ �a6b1b3�a7b1b2�ðkia3�a4Þb3b4

kia5a7b1
x2

1;

x4 ¼ ðkia3�a4Þb4�a6b1

kia7b1
x1; i ¼ 1; 2;

8

>

>

>

>

>

<

>

>

>

>

>

:

ð5Þ
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Fig. 2 Chaotic attractors of the

system (1) with parameters

a1 = -0.16, a2 = -0.35,

a3 = -0.75, a4 = -0.15,

a5 = -0.45, a6 = -0.5,

a7 = -0.4, b1 = 1.5, b2 = 1.1,

b3 = 1, b4 = 1.15
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Fig. 1 Time responses of the

system states with parameters

a1 = -0.16, a2 = -0.35,

a3 = -0.75, a4 = -0.15,

a5 = -0.45, a6 = -0.5,

a7 = -0.4, b1 = 1.5, b2 = 1.1,

b3 = 1, b4 = 1.15
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k1 ¼
Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 � 4a4a7A
p

2A
;

k2 ¼
B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 � 4a4a7A
p

2A
;

and

A ¼ a1a7b1 þ a2a3b4; B ¼ a2a4b4 þ a2a6b1 þ a3a7:

Therefore, it can be concluded from (5) that in the case

of B2 \ 4a4a7A the system (1) has a unique zero

equilibrium S0, and in the case of B2 = 4a4a7A the

system (1) has two nonzero equilibria when the inequality

(6) holds. In the case of B2 [ 4a4a7A, the system (1) has

four nonzero equilibria when the inequality (6) holds for

both i = 1, 2, and the system (1) has two nonzero

equilibria when the inequality (6) holds only for i = 1 or

i = 2, and the system (1) has a unique zero equilibria when

the inequality (6) holds neither for i = 1 nor for i = 2.

ðkia3 � a4Þðða6b3 � a7b2Þb1 � ðkia3 � a4Þb3b4Þ[ 0: ð6Þ

It can be verified that the system with a1 = -0.16,

a2 = -0.35, a3 = -0.75, a4 = -0.15, a5 = -0.45,

a6 = -0.5, a7 = -0.4, b1 = 1.5, b2 = 1.1, b3 = 1,

b4 = 1.15. has a unique equilibrium zero, and the system

corresponding with a1 = -0.3, a2 = -0.5, a3 = -0.6,

a4 = -0.1, a5 = -0.1, a6 = -0.6, a7 = -0.15, b1 = 1.2,

b2 = 1.5, b3 = 2.5, b4 = 0.4 has three equilibria as:

E1 ¼ ð0; 0; 0; 0Þ;E2

¼ ð0:8859; 0:3320; 58:3507;�0:2203Þ;E3

¼ ð�0:8859;�0:3320; 58:3507; 0:2203Þ:

Proposition 2.1 The equilibrium points of the system (1)

with the parameters of hyperchaos and chaos are unstable.

Proof The Jacobian matrix of the system (1) is given by

J ¼

a1 �x3 �x2 a2

�a3 þ b1x3 a4 b1x1 0

b2x2 þ b3x4 b2x1 a5 b3x1

�b4x3 a6 �b4x1 a7

2

6

6

4

3

7

7

5

: ð7Þ

The eigenvalues of the Jacobian matrix JS_0 with

a1 = -0.16, a2 = -0.35, a3 = -0.75, a4 = -0.15,

a5 = -0.45, a6 = -0.5, a7 = -0.4, b1 = 1.5, b2 = 1.1,

b3 = 1, b4 = 1.15. can be calculated as

k1 ¼ 0:2833; k2 ¼ �0:4967þ j0:4275; k3

¼ �0:4967� j0:4275; k1 ¼ �0:45; ð8Þ

It is observed that according to Lyapanov stability theory

the equilibrium point S0 is unstable. Similarly, it can be

verified that the nonzero equilibrium points of the system

with the parameters a1 = -0.3, a2 = -0.5, a3 = -0.6,

a4 = -0.1, a5 = -0.1, a6 = -0.6, a7 = -0.15, b1 = 1.2,

b2 = 1.5, b3 = 2.5, b4 = 0.4, are also unstable [19].

3 Optimal control of the novel bounded 4D chaotic

system

3.1 Design of the optimal controller

In this subsection, optimal control problem of the chaotic

Zhang–Tang system (1) is discussed. For this purpose, we

will apply the PMP. First, we add the controls u1, u2, u3 and

u4 to the equations in system (1):

_x1 ¼ a1x1 þ a2x4 � x2x3 þ u1;

_x2 ¼ �a3x1 þ a4x2 þ b1x1x3 þ u2;

_x3 ¼ a5x3 þ b2x1x2 þ b3x1x4 þ u3;

_x4 ¼ a6x2 þ a7x4 � b4x1x3 þ u4;

ð9Þ

where ui, i = 1, 2, 3, 4 are control inputs which will be

satisfied the optimality conditions, obtained via the PMP.

The proposed control strategy is to design the optimal

control inputs u1, u2, u3 and u4 such that the state

trajectories tend to an unstable equilibrium point in a

given finite time interval [0, tf]. The initial and final

conditions are

x1ð0Þ ¼ x1;0; x1ðtf Þ ¼ x1;
x2ð0Þ ¼ x2;0; x2ðtf Þ ¼ x2;
x3ð0Þ ¼ x3;0; x3ðtf Þ ¼ x3;
x4ð0Þ ¼ x4;0; x4ðtf Þ ¼ x4;

8

>

>

<

>

>

:

ð10Þ

where xi; ði ¼ 1; 2; 3; 4Þ, denote the coordinates of the

equilibrium points.

The objective functional to be minimized is defined as

J ¼ 1

2

Z

tf

0

X

4

i¼1

ðaið/i � /iÞ2 þ biui
2Þdt; ð11Þ

where ai, bi, (i = 1, 2, 3, 4) are positive constants,

/i = xi, (i = 1, 2, 3, 4) and /i ¼ xi; ði ¼ 1; 2; 3; 4Þ. It is

note that, the cost function is a positive definite function of

the variables /i, and ui, i ¼ 1; . . .; 4. In particular, we will

derive the fundamental nonlinear two-point boundary value

problem arising in PMP. The corresponding Hamiltonian

function will be

H ¼ � 1

2
½a1ðx1 � x1Þ2 þ a2ðx2 � x2Þ2 þ a3ðx3 � x3Þ2

þ a4ðx4 � x4Þ2 þ b1u1
2 þ b2u2

2 þ b3u3
2 þ b4u4

2�
þ k1½a1x1 þ a2x4 � x2x3 þ u1� þ k2½�a3x1 þ a4x2

þ b1x1x3 þ u2� þ k3½a5x3 þ b2x1x2 þ b3x1x4 þ u3�
þ k4½a6x2 þ a7x4 � b4x1x3 þ u4�;

ð12Þ

where, ki, (i = 1, 2, 3, 4) are co-state variables. According

to the PMP, we obtain the Hamiltonian equations:
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_k1 ¼ �
oH

ox1

;

_k2 ¼ �
oH

ox2

;

_k3 ¼ �
oH

ox3

;

_k4 ¼ �
oH

ox4

;

ð13Þ

Substituting (12) into (13), the co-state equations can be

derived in the form:

_k1 ¼ a1ðx1 � x1Þ � a1k1 þ a3k2 � b1k2x3

� b2k3x2 � b3k3x4 þ b4k4x3;

_k2 ¼ a2ðx2 � x2Þ þ k1x3 � a4k2 � b2k3x1 � a6k4;

_k3 ¼ a3ðx3 � x3Þ þ k1x2 � b1k2x1 � a5k3 þ b4k4x1

_k4 ¼ a4ðx4 � x4Þ � a2k1 � b3k3x1 � a7k4:

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

ð14Þ

The optimal control functions that have to be used are

determined from the conditions oH
oui
¼ 0; ði ¼ 1; 2; 3; 4Þ.

Hence, we get

ui
� ¼ ki

bi

; ði ¼ 1; 2; 3; 4Þ: ð15Þ

Substituting from (15) into (9) we get the nonlinear

controlled state equations:

_x1 ¼ a1x1 þ a2x4 � x2x3 þ
k1

b1

;

_x2 ¼ �a3x1 þ a4x2 þ b1x1x3 þ
k2

b2

;

_x3 ¼ a5x3 þ b2x1x2 þ b3x1x4 þ
k3

b3

_x4 ¼ a6x2 þ a7x4 � b4x1x3 þ
k4

b4

:

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

ð16Þ

This system of nonlinear differential equations in

addition to (14) form a complete system to solve the

optimal control of the novel bounded 4D chaotic system.

This system has the following boundary conditions

x1ð0Þ ¼ x1;0; x1ðtf Þ ¼ x1;
x2ð0Þ ¼ x2;0; x2ðtf Þ ¼ x2;
x3ð0Þ ¼ x3;0; x3ðtf Þ ¼ x3;
x4ð0Þ ¼ x4;0; x4ðtf Þ ¼ x4;
kiðtf Þ ¼ 0; i ¼ 1; 2; 3; 4:

8

>

>

>

>

<

>

>

>

>

:

ð17Þ

Then, by solving the nonlinear systems (14) and (16)

with the boundary conditions of (17), we obtain the optimal

control law and the optimal state trajectory.

3.2 Analysis and numerical simulation

In this section to demonstrate and verify the effectiveness

of the theoretical analysis, we solve the systems (16) and

(17). In the following numerical simulations, the MAT-

LAB’s bvp4c in-built solver is used to solve the systems.

The initial values and system parameters are selected as

x1(0) = -1, x2(0) = 2, x3(0) = -3, x4(0) = 4, in all sim-

ulations so that new bounded 4D chaotic system exhibits a

chaotic behavior if no control is applied.

The initial values of co-states for Ei (i = 1, 2, 3) are

taken in Table 1. Also, the positive constants in cost func-

tion J, are chosen a1 = 0.1, a2 = 0.1, a3 = 0.1, a4 = 0.1,

b1 = 2, b2 = 2, b3 = 2, b4 = 2. The behaviors of the states

(x1, x2, x3, x4) of the controlled new bounded 4D chaotic

system (1) with time are displayed in Figs. 3, 4 and 5.

Note that, the parameters of a1 = -0.16, a2 = -0.35,

a3 = -0.75, a4 = -0.15, a5 = -0.45, a6 = -0.5, a7 =

-0.4, b1 = 1.5, b2 = 1.1, b3 = 1, b4 = 1.15. are relate to

equilibrium zero (E1), and the system corresponding with

a1 = -0.3, a2 = -0.5, a3 = -0.6, a4 = -0.1, a5 = -0.1,

a6 = -0.6, a7 = -0.15, b1 = 1.2, b2 = 1.5, b3 = 2.5,

b4 = 0.4 has three equilibria (E1, E2, E3).

4 Adaptive control of the chaotic Zhang–Tang system

4.1 Design of the adaptive controller

In this section, we obtain new results for the adaptive

control of the chaotic Zhang–Tang system based on the

Lyapunov stability theory and from the conditions of

the asymptotic stability of this system about its steady

states.

Let us assume that we have the controlled system in the

following form

_x1 ¼ a1x1 þ a2x4 � x2x3 þ v1;

_x2 ¼ �a3x1 þ a4x2 þ b1x1x3 þ v2;

_x3 ¼ a5x3 þ b2x1x2 þ b3x1x4 þ v3;

_x4 ¼ a6x2 þ a7x4 � b4x1x3 þ v4;

ð18Þ

Table 1 The initial values of co-states for different equilibrium points

Ei k1(0) k2(0) k3(0) k4(0)

E1 1.0242 9 10-5 -1.9990 9 10-5 2.9949 9 10-5 -3.9793 9 10-5

E2 2.1704 9 10-4 -1.7096 9 10-4 6.1 9 10-3 -4.2409 9 10-4

E3 -2.3440 9 10-4 3.8054 9 10-5 6.1 9 10-3 -3.8593 9 10-4
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Fig. 4 The stabilized behavior of state and control functions for the equilibrium point E2
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Fig. 3 The stabilized behavior of state and control functions for the equilibrium point E1

0 0.002 0.004 0.006 0.008 0.01
−10

0

10

20

30

40

50

60

t

x
1
(t)

x
2
(t)

x
3
(t)

x
4
(t)

0 0.002 0.004 0.006 0.008 0.01
−1

0

1

2

3

4

5

6

7
x 10

4

t

u
1
(t)

u
2
(t)

u
3
(t)

u
4
(t)
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where x1, x2, x3 and x4 are the states of the system, ai; ði ¼
1; 2; . . .; 7Þ; bj; ðj ¼ 1; 2; 3; 4Þ are unknown parameters of

the system, and v1, v2, v3 and v4 are the adaptive controllers

to be designed.

Theorem 4.1 The novel chaotic system (18) with

unknown system parameters is globally and asymptotically

stabilized for all initial states ðx1ð0Þ; x2ð0Þ; x3ð0Þ; x4ð0ÞÞ 2
R

4 by the adaptive control law:

v1 ¼ �â1x1 � â2x4 þ x2x3 � k1ðx1 � x1Þ;
v2 ¼ â3x1 � â4x2 � b̂1x1x3 � k2ðx2 � x2Þ;
v3 ¼ �â5x3 � b̂2x1x2 � b̂3x1x4 � k3ðx3 � x3Þ;
v4 ¼ �â6x2 � â7x4 þ b̂4x1x3 � k4ðx4 � x4Þ;

ð19Þ

and the following parameter estimation update law

_̂a1 ¼ ðx1 � x1Þx1 þ k5ða1 � â1Þ;
_̂a2 ¼ ðx1 � x1Þx4 þ k6ða2 � â2Þ;
_̂a3 ¼ �ðx2 � x2Þx1 þ k7ða3 � â3Þ;
_̂a4 ¼ ðx2 � x2Þx2 þ k8ða4 � â4Þ;
_̂a5 ¼ ðx3 � x3Þx3 þ k9ða5 � â5Þ;
_̂a6 ¼ ðx4 � x4Þx2 þ k10ða6 � â6Þ;
_̂a7 ¼ ðx4 � x4Þx4 þ k11ða7 � â7Þ;
_̂
b1 ¼ ðx2 � x2Þx1x3 þ k12ðb1 � b̂1Þ;
_̂
b2 ¼ ðx3 � x3Þx1x4 þ k13ðb2 � b̂2Þ;
_̂
b3 ¼ ðx3 � x3Þx1x4 þ k14ðb3 � b̂3Þ;
_̂
b4 ¼ �ðx4 � x4Þx1x3 þ k15ðb4 � b̂4Þ;

ð20Þ

where âi; ði ¼ 1; 2; . . .; 7Þ; b̂j; ðj ¼ 1; 2; 3; 4Þ are estimate

values of uncertain parameters ai, bj and krðr ¼
1; 2; . . .; 15Þ are positive constants, respectively.

Proof Substituting (19) into (18), we get the closed-loop

system as

_x1 ¼ ða1 � â1Þx1 þ ða2 � â2Þx4 � k1ðx1 � x1Þ;
_x2 ¼ �ða3 � â3Þx1 þ ða4 � â4Þx2 þ ðb1 � b̂1Þx1x3 � k2ðx2 � x2Þ;
_x3 ¼ ða5 � â5Þx3 þ ðb2 � b̂2Þx1x2 þ ðb3 � b̂3Þx1x4 � k3ðx3 � x3Þ;
_x4 ¼ ða6 � â6Þx2 þ ða7 � â7Þx4 � ðb4 � b̂4Þx1x3 � k4ðx4 � x4Þ;

8

>

>

<

>

>

:

ð21Þ

For the derivation of the update law for adjusting the

parameter estimates, the Lyapunov approach is used. We

consider the quadratic Lyapunov function
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Fig. 6 Time history of state functions and parameter estimates for the equilibrium point E1
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Vðx1; x2; x3; ~ai; ~bjÞ ¼
1

2
ððx1 � x1Þ2 þ ðx2 � x2Þ2 þ ðx3 � x3Þ2

þ ðx4 � x4Þ2 þ ~a2
1 þ ~a2

2 þ ~a2
3 þ ~a2

4 þ ~a2
5

þ ~a2
6 þ ~a2

7 þ ~b2
1 þ ~b2

2 þ ~b2
3 þ ~b2

4Þ;
ð22Þ

where the variables ~ai ¼ ai � âi; ~bj ¼ bj � b̂j;

ði ¼ 1; 2; . . .; 7Þ; ðj ¼ 1; 2; 3; 4Þ.
Taking time derivative of the Lyapunov function V, we

obtain

_V ¼ðx1 � x1Þ _x1 þ ðx2 � x2Þ _x2 þ ðx3 � x3Þ _x3 þ ðx4 � x4Þ _x4

þ ~a1
_~a1 þ ~a2

_~a2 þ ~a3
_~a3 þ ~a4

_~a4 þ ~a5
_~a5 þ ~a6

_~a6 þ ~a7
_~a7

þ ~b1
_~b1 þ ~b2

_~b2 þ ~b3
_~b3 þ ~b4

_~b4: ð23Þ

Substituting (21) and (20) into (23), the time derivative

of the Lyapunov function becomes

_V ¼ �k1ðx1 � x1Þ2 � k2ðx2 � x2Þ2 � k3ðx3 � x3Þ2

� k4ðx4 � x4Þ2 � k5ða1 � â1Þ2 � k6ða2 � â2Þ2

� k7ða3 � â3Þ2 � k8ða4 � â4Þ2 � k9ða5 � â5Þ2

� k10ða6 � â6Þ2 � k11ða7 � â7Þ2 � k12ðb1 � b̂1Þ2

� k13ðb2 � b̂2Þ2 � k14ðb3 � b̂3Þ2 � k15ðb4 � b̂4Þ2:
ð24Þ

The Lyapunov function V is positive definite on R
15 and

its derivative _V is negative definite on R
15, according to the

Lyapunov stability theory [34], the equilibrium solution of

the controlled system (18) is asymptotically stable, namely,

the controlled system (18) can asymptotically converge to

the equilibrium Eðx1; x2; x3; x4; â1; â2; â3; â4; â5; â6; â7;

b̂1; b̂2; b̂3; b̂4Þ with the adaptive control law (19) and the

parameter estimation update law (20). This completes the

proof. h

4.2 Numerical results

For the numerical simulations, we solve the controlled

novel chaotic system (18) with the adaptive control law

(19) and the parameter update law (20). In the following

numerical simulations, the MATLAB’s ode45 in-built

solver is used to solve the systems. The initial values and

system parameters are selected as x1(0) = -1, x2(0) = 2,

x3(0) = -3, x4(0) = 4. For the adaptive and update laws,

we take ki = 50 for ði ¼ 1; 2; . . .; 15Þ:
Suppose that the initial values of the parameter esti-

mates are chosen as ai ¼ 0; bj ¼ 0; i ¼ 1; 2. . .7; j ¼ 1; 2;

3; 4. Figures 6, 7, 8, 9, 10 and 11 show that the controlled
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Fig. 8 Time history of state functions and parameter estimates for the equilibrium point E2
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chaotic system (18) converges to Ei (i ¼ 1; . . .; 3) asymp-

totically with time. Also, these figures show that the

parameter estimates ai; ði ¼ 1; 2; . . .; 7Þ; bj; ðj ¼ 1; 2; 3; 4Þ
converge to the system parameter values a1 = -0.16,

a2 = -0.35, a3 = -0.75, a4 = -0.15, a5 = -0.45,

a6 = -0.5, a7 = -0.4, b1 = 1.5, b2 = 1.1, b3 = 1,

b4 = 1.15.

5 Conclusion

In this paper, we have studied the problem of optimal

control and adaptive control of the chaotic Zhang–Tang

system. As the system can be chaotic, it makes sense to

determine whether an adequate control method can be

applied to control this chaos. To this end, we considered

the problems of optimal control of chaos and of parameter

estimation for the Zhang–Tang system. Based on the PMP,

this system is stabilized to its equilibrium points. The

stability and instability of the steady-states of this system

are studied using the linear stability approach. In addition,

we proposed Lyapunov stability to control the new

autonomous chaotic system by a feedback control

approach. In fact, we used the feedback control approach

for estimating the system of unknown parameters.

Numerical simulations demonstrate the effectiveness of the

analytical results.

Acknowledgments The authors wish to thank the editor and

reviewers for their conscientious reading of this paper and their

numerous comments for improvement which were extremely useful

and helpful in modifying the paper.

References

1. Lakshmanan M, Murali K (1996) Nonlinear oscillators: control-

ling and synchronization. World Scientific, Singapore

2. Han SK, Kerrer C, Kuramoto Y (1995) Dephasing and bursting in

coupled neural oscillators. Phys Rev Lett 75:3190–3193

3. Blasius B, Huppert A, Stone L (1999) Complex dynamics and

phase synchronization in spatially extended ecological system.

Nature 399:354–359

4. Choudhury SR, Van Gorder RA (2012) Competitive modes as

reliable predictors of chaos versus hyperchaos and as geometric

mappings accurately delimiting attractors. Nonlinear Dyn

69(4):2255–2267

5. Van Gorder RA (2013) Shil’nikov chaos in the 4D Lorenz–

Stenflo system modeling the time evolution of nonlinear acoustic-

gravity waves in a rotating atmosphere. Nonlinear Dyn

72(4):837–851

6. Ott E (2002) Chaos in dynamical systems, 2nd edn. Cambridge

University Press, Cambridge

7. Chen G (2000) Controlling chaos and bifurcation in engineering

systems. CRC Press, Boca Raton

0 0.05 0.1 0.15 0.2
−10

0

10

20

30

40

50

60

t

x
1
(t)

x
2
(t)

x
3
(t)

x
4
(t)

0 0.05 0.1 0.15 0.2
−6

−5

−4

−3

−2

−1

0

1

t

  a
1
(t)

  a
2
(t)

  a
3
(t)

  a
4
(t)

  a
5
(t)

  a
6
(t)

  a
7
(t)

Fig. 10 Time history of state functions and parameter estimates for the equilibrium point E3

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

2

2.5

t

  b
1
(t)

  b
2
(t)

  b
3
(t)

  b
4
(t)

Fig. 11 Time history of parameter estimates for the equilibrium point

E3

Neural Comput & Applic (2014) 25:683–692 691

123



8. Zhao M, Zhang H, Wang Z (2013) Synchronization in complex

dynamical networks based on the feedback of scalar signals.

Neural Comput Appl 23(3–4):683–689

9. Yu WG (2010) Stabilization of three-dimensional chaotic sys-

tems via single state feedback controller. Phys Lett A

374:1488–1492

10. Aghababa MP, Khanmohammadi S, Alizadeh G (2011) Finite-

time synchronization of two different chaotic systems with

unknown parameters via sliding mode technique. Appl Math

Model 35:3080–3091

11. Li C, Gao DY, Liu C, Chen G (2013) Impulsive control for

synchronizing delayed discrete complex networks with switching

topology. Neural Comput Appl. doi:10.1007/s00521-013-1470-3

12. Wang P, Li D, Hu Q (2010) Bounds of the hyper-chaotic Lorenz–

Stenflo system. Commun Nonlinear Sci Numer Simul 15:

2514–2520
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