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Abstract Recently, neuro-rehabilitation based on brain–

computer interface (BCI) has been considered one of the

important applications for BCI. A key challenge in this

system is the accurate and reliable detection of motor

imagery. In motor imagery-based BCIs, the common spa-

tial patterns (CSP) algorithm is widely used to extract

discriminative patterns from electroencephalography sig-

nals. However, the CSP algorithm is sensitive to noise and

artifacts, and its performance depends on the operational

frequency band. To address these issues, this paper pro-

poses a novel optimized sparse spatio-spectral filtering

(OSSSF) algorithm. The proposed OSSSF algorithm

combines a filter bank framework with sparse CSP filters to

automatically select subject-specific discriminative fre-

quency bands as well as to robustify against noise and

artifacts. The proposed algorithm directly selects the opti-

mal regularization parameters using a novel mutual

information-based approach, instead of the cross-validation

approach that is computationally intractable in a filter bank

framework. The performance of the proposed OSSSF

algorithm is evaluated on a dataset from 11 stroke patients

performing neuro-rehabilitation, as well as on the publicly

available BCI competition III dataset IVa. The results show

that the proposed OSSSF algorithm outperforms the

existing algorithms based on CSP, stationary CSP, sparse

CSP and filter bank CSP in terms of the classification

accuracy, and substantially reduce the computational time

of selecting the regularization parameters compared with

the cross-validation approach.

Keywords Brain–computer interface � EEG � Mutual

information � Regularization � Spatio-spectral filtering

1 Introduction

A brain–computer interface (BCI) provides a direct com-

munication pathway between the brain and an external

device that is independent from any muscular signals.

Thus, BCIs enable users with severe motor disabilities to

use their brain signals for communication and control

[1–3]. Most BCIs use electroencephalography (EEG) to

measure brain signals due to its low cost and high temporal

resolution [4]. Among EEG-based BCIs, the detection of

motor imagery has attracted increased attention in recent

years, which is neuro-physiologically based on the detec-

tion of changes in sensorimotor rhythms called event-

related desynchronization (ERD) or synchronization (ERS)

during motor imagery [4–6].

Recently, it was shown that motor imagery-based BCI is

effective in restoring upper extremities motor function in

stroke [7–10]. To benefit from BCI in the stroke
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rehabilitation, the accurate and reliable detection of ERD/

ERS patterns is important. However, detecting ERD/ERS

patterns is generally impeded by poor spatial specifications

of EEG due to the volume conduction [11] and different

sources of noise and artifacts [12]. Moreover, the dis-

criminative spatio-spectral characteristics of motor imag-

ery vary from one person to another [13]. Thus, extracting

discriminative spatio-spectral features is a challenging

issue for EEG-based BCIs. Nevertheless, the common

spatial patterns (CSP) algorithm has been shown to be

effective in discriminating two classes of motor imagery

tasks [12, 14]. Despite its effectiveness and widespread

use, the CSP is highly sensitive to noise and artifacts [15],

and its performance greatly depends on the operational

frequency band [12].

To address the sensitivity to noise and artifacts of the CSP

algorithm, regularization algorithms were introduced to ro-

bustify it [16–19]. In [19], it was shown that regularizing the

CSP objective function generally outperformed regularizing

the estimates of the covariance matrices. Recently, the sparse

common spatial patterns (SCSP) algorithm was proposed by

inducing sparsity in the CSP spatial filters [20, 21]. The

proposed SCSP algorithm optimizes the spatial filters to

emphasize on the regions that have high variances between

the classes, and attenuates the regions with low or irregular

variances, which can be due to noise or artifacts. Stationary

CSP (sCSP) is another algorithm which regularized CSP by

penalizing the variations between covariance matrices [36].

In [36], it is shown that sCSP outperforms several existing

regularized CSP algorithms.

To address the dependency on the operational frequency

band of the CSP algorithm, several spatio-spectral algo-

rithms were introduced. Common spatio-spectral patterns

(CSSP) optimized a first-order finite impulse response

(FIR) temporal filter with the CSP algorithm [22]. To

improve the flexibility of CSSP, common sparse spectral

spatial patterns (CSSSP) were then proposed by simulta-

neous optimization of an arbitrary FIR filter within the CSP

analysis [23]. Subsequently, the spectrally weighted com-

mon spatial patterns (SPEC-CSP) algorithm [24] and the

iterative spatio-spectral patterns learning (ISSPL) [25]

algorithm were proposed to further improve CSSP [25].

Recently, the filter bank common spatial patterns (FBCSP)

algorithm [26] was proposed that combined a filter bank

framework with CSP to select the most discriminative

features using a mutual information-based criterion [27].

The FBCSP algorithm was used as the basis of all the

winning algorithms in the EEG category of the BCI com-

petition IV.

However, to the best of the authors knowledge, the

issues of the sensitivity to noise and artifacts and the

dependency on the operational frequency band of the CSP

algorithm have not been simultaneously addressed yet. To

address these two issues simultaneously, this paper pro-

poses a novel sparse spatio-spectral filtering algorithm

optimized by a mutual information-based approach. The

proposed OSSSF algorithm decomposes EEG data into an

array of pass bands and subsequently performs the sparse

CSP optimization in each band. In the proposed algorithm,

the optimal regularization parameters are directly selected

using a new mutual information-based approach, instead of

using the cross-validation approach that is computationally

intractable in a filter bank framework (for more explana-

tion, see Sect. 2.2)

In order to evaluate the performance of the proposed

algorithm, two datasets are used: the publicly available

dataset IVa from BCI competition III [28] and the data

collected from 11 stroke patients [9]. The classification

accuracies of the proposed OSSSF algorithm are also

compared with four existing algorithms, namely CSP [12],

sCSP [36], SCSP [20] and FBCSP [27].

The remainder of this paper is organized as follows:

Sect. 2 describes the proposed method. The applied data-

sets and the performed experiments are explained in Sect.

3, Sect. 4 presents the experimental results and finally,

Sect. 5 concludes the paper.

2 Methodology

The architecture of the proposed optimized sparse spatio-

spectral filters (OSSSF) is illustrated in Fig. 1. It consec-

utively performs spectral filtering and sparse spatial filter-

ing to extract and select the most discriminative features

for motor imagery classification. The proposed methodol-

ogy comprises the following steps:

• Step 1-Spectral filtering: This step uses a filter bank that

decomposes the EEG data using nine equal bandwidth

filters, namely 4-8, 8-12,…, 36-40 Hz as proposed

in [26, 27]. These frequency ranges cover most of the

manually or heuristically selected settings used in the

literature.

• Step 2-Sparse spatial filtering: In this step, the EEG

data from each frequency band are spatially filtered

using optimal sparse CSP filters. Let Xb 2 RNc�S

denote a single-trial EEG data from the bth band-pass

filter, where Nc and S denote the number of channels

and the number of measurement samples, respectively.

A linear projection transforms Xb to the spatially

filtered Zb as

Zb ¼W�
bXb; ð1Þ

where each row of the transformation matrix W�
b 2

R2m�Nc indicates one of the 2m optimal sparse spatial

filters. The details on finding the optimal sparse spatial
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filters corresponding to each frequency band are

explained in Sects. 2.1 and 2.2.

• Step 3-Feature extraction: The sparse spatio-spectrally

filtered EEG data are used to determine the features

associated with each frequency range. Based on the

Ramoser formula [29], the features of the kth EEG trial

from the bth band-pass filter are given by

vb;k ¼ logðdiagðZb;kZT
b;kÞ=trace½Zb;kZT

b;k�Þ; ð2Þ

where vb;k 2 R1�2m; diag(.) returns the diagonal

elements of the square matrix; trace[.] returns the sum

of the diagonal elements of the square matrix; and the

superscript T denotes the transpose operator. Since nine

frequency bands are used, the feature vector for the kth

trial is formed as

Vk ¼ ½v1;k; v2;k; . . .; v9;k�; ð3Þ

where Vk 2 R1�18m.

• Step 4-Feature selection: The last step selects the most

discriminative features of the feature vector V. Various

feature selection algorithms can be used in this step.

The study presented in [26] showed that the mutual

information-based best individual feature (MIBIF)

algorithm [27] yielded better 10 9 10-fold cross-vali-

dation results than other considered feature selection

algorithms. Moreover, the study showed that selecting

four pairs of the best individual features using MIBIF

yielded a higher averaged accuracy compared to the

different numbers of selected features [26]. Thus, in

this work, the MIBIF algorithm is used to select four

pairs of features.

2.1 Sparse spatial filters

The second step of the proposed algorithm performs sparse

spatial filtering using the optimized SCSP filters. This

subsection describes details of the SCSP filters, and the

next subsection describes the proposed mutual information-

based approach to find the optimum SCSP filters.

The CSP algorithm [12, 14] is an effective technique in

discriminating two classes of EEG data. The CSP algo-

rithm linearly transforms the band-pass filtered EEG data

to a spatially filtered space, such that the variance of one

class is maximized while the variance of the other class is

minimized. The CSP transformation matrix corresponding

to the bth band-pass filter, Wb, is generally computed by

solving the eigenvalue decomposition problem:

Cb;1Wb ¼ Cb;1 þ Cb;2

� �
WbD; ð4Þ

where Cb,1 and Cb,2 are, respectively, the average covari-

ance matrices of the band-passed EEG data of each class;

D is the diagonal matrix that contains the eigenvalues of

(Cb,1 ? Cb,2)-1Cb,1. Usually, only the first and the last

m rows of Wb are used as the most discriminative filters to

perform spatial filtering [12].

Despite the popularity and efficiency of the CSP algo-

rithm, the CSP algorithm which is based on the covariance

matrices of EEG trials can be distorted by artifacts and

noise [15]. This issue motivated an approach that involves

sparsifying the CSP spatial filters to emphasize on the

regions with high variances between the classes and to

attenuate the regions with low or irregular variances. To

sparsify the CSP spatial filters of the bth band, first the CSP

algorithm is reformulated as an optimization problem

proposed in our previous work [21]:

min
wb;i

Xi¼m

i¼1

wb;iCb;2wT
b;iþ

Xi¼2m

i¼mþ1

wb;iCb;1wT
b;i

Subject to: wb;iðCb;1þCb;2ÞwT
b;i ¼ 1 i¼ f1;2; . . .;2mg

wb;iðCb;1þCb;2ÞwT
b;j ¼ 0 i; j¼ f1;2; . . .;2mg i 6¼ j;

ð5Þ

where the unknown weights wb;i 2 R1�Nc ; i ¼ f1; ::; 2mg;
respectively, denote the first and the last m rows of the CSP

projection matrix from the bth band-pass filter. In this

optimization, the constraints keep the covariance matrices

of the both projected classes diagonal and uncorrelated.

Sparsity can be induced in the CSP algorithm by adding

an l0 norm regularization term into the optimization prob-

lem given in (5). kxk0; the l0 norm of x, is the measure

giving the number of nonzero elements of x. However,

solving a problem with the l0 norm is combinatorial in

nature and thus computationally prohibitive. Furthermore,

since an infinitesimal value is treated the same as a large

value, the presence of noise in the data may render the l0
norm completely ineffective in inducing sparsity [30].

Therefore, instead of the l0-norm, the approximation below

is used to measure the sparsity [21]:

Fig. 1 Architecture of the proposed OSSSF algorithm
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kxk0 �!
kxk1

kxk2

; ð6Þ

where kxkk ¼ ð
Pn

i¼1 jxijkÞ1=k
for k equal to either 1 or 2,

and n denotes the total number of elements of the vector

x. For the sparsest possible vector whereby, only a single

element is nonzero
kxk1

kxk2
equals to one, whereas for a vector

with all equal nonzero elements
kxk1

kxk2
equals to Hn. The

proposed SCSP algorithm is then formulated as:

min
wb;i

ð1� rÞ
Xi¼m

i¼1

wb;iCb;2wT
b;i þ

Xi¼2m

i¼mþ1

wb;iCb;1wT
b;i

 !

þ r
Xi¼2m

i¼1

kwb;ik1

kwb;ik2

Subject to: wb;iðCb;1 þ Cb;2ÞwT
b;i ¼ 1 i ¼ f1; 2; . . .; 2mg

wb;iðCb;1 þ Cb;2ÞwT
b;j ¼ 0 i; j ¼ f1; 2; . . .; 2mg i 6¼ j;

ð7Þ

where r (0 B r B 1) is a regularization parameter that

controls the sparsity and the classification accuracy. When

r = 0, the solution is essentially the same as the CSP

algorithm.

The SCSP algorithm is a nonlinear optimization prob-

lem, and due to the equality constraints, it is a nonconvex

optimization problem. It is solved using several methods

such as sequential quadratic programming (SQP) and

augmented Lagrangian methods [31]. In this study, for

r = 0, spatial filters obtained from the CSP algorithm are

used as the initial point.

2.2 Optimizing sparse spatial filters using mutual

information

Choosing a suitable value for the regularization parameter

r in (7) is a challenging issue in the proposed algorithm. A

larger value of r results in more sparse spatial filters, but

may decrease the accuracy because some useful informa-

tion is lost. Therefore, optimal r values should be chosen in

a way to yield more efficient features.

The existing regularized CSP algorithms generally use

the cross-validation method on the train data to automati-

cally select the optimal regularization parameters [19].

Thus, a set of candidates is considered for the regularization

parameter. For each candidate, the corresponding regular-

ized CSP filters are calculated and then evaluated using

m 9 n-fold cross-validation on the train data. Finally, the

candidate yielding the highest average m 9 n-fold cross-

validation accuracy is selected as the regularization

parameter. However, performing m 9 n-fold cross-valida-

tion for a set of different regularization parameters is

computationally intensive. Particularly, in the proposed

filter bank framework, the problem is more pronounced due

to the use of a separate SCSP for each band, since the value

of the regularization parameter may differ from band to

band. As an illustration, if five different r values (candi-

dates) were to be evaluated for each SCSP of the nine fre-

quency bands, the m 9 n-fold cross-validation should be

performed for 59 different combinations. Thus, selecting the

optimal regularization parameters using the cross-valida-

tion approach is computationally intractable in a filter bank

framework.

To address this issue of computationally intractable

approach, this paper proposes a mutual information-based

algorithm to directly select the r values from a predefined

set. Mutual information is a nonlinear measure of statistical

dependence based on information theory [32]. Indeed, in

this work, the r value is optimized by maximizing the

mutual information between the feature vectors obtained

from the sparse spatio-spectral filters and the corresponding

class labels. Based on the proposed algorithm, the optimal

r value and consequently the optimal SCSP filters from the

bth band-pass filter are found as follows:

1. For each r value from a predefined set R; r 2 R ¼
fr1; r2; . . .; rng; obtain the corresponding sparse spatial

filters wr
b;i; i ¼ f1; . . .; 2mg; from the bth band by

solving (7).

2. Initialize the set of features Fb ¼ ½Fb;r1
;Fb;r2

; . . .;Fb;rn
�

as given in (2) from the training data, where Fb;rj
2

Rnt�2m denotes the features obtained from SCSP filters

when r = rj, and nt denotes the total number of

training trials. In this work, the ith column vector of

Fb,rj is presented as fb,rj, i.

3. Compute the mutual information of each feature vector

fb,r,i with the class label X ¼ f1; 2g: The mutual

information of fb;r;i;I fb;r;i;X
� �

8 ½ r2R¼fr1;r2;...;rng;
i¼f1;2;...;2mg�; can be computed using [33]:

I fb;r;i; X
� �

¼ H Xð Þ � H Xjfb;r;i

� �
; ð8Þ

where H Xð Þ is the entropy of the class label defined as:

H Xð Þ ¼ �
X2

X¼1

P Xð Þ log2 P Xð Þ; ð9Þ

and the conditional entropy is

H Xjfb;r;i

� �
¼ �

X2

X¼1

P Xjfb;r;i

� �
log2 P Xjfb;r;i

� �

¼ �
X2

X¼1

Xnt

k¼1

P Xjfb;r;i;k
� �

log2 P Xjfb;r;i;k
� �

;

ð10Þ

where fb,r,i,k is the ith feature value of the kth trial from

Fb,r, and P is the probability function. The conditional

probability P Xjfb;r;i;k

� �
can be computed using Bayes

rule given in (11) and (12).
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P Xjfb;r;i;k

� �
¼ ðP fb;r;i;kjX

� �
P Xð ÞÞ=P fb;r;i;k

� �
; ð11Þ

P fb;r;i;k

� �
¼
X2

X¼1

P fb;r;i;kjX
� �

P Xð Þ: ð12Þ

The conditional probability Pðfb;r;i;kjXÞ can be estimated

using the Parzen window algorithm [27], given by

p̂ fb;r;i;kjX
� �

¼ 1

nX

X

t2IX

/ fb;r;i;k � fb;r;i;t; h
� �

; ð13Þ

where nX is the number of trials in the training data

belonging to class X; IX is the set of indices of the

training trials belonging to class X; fb;r;i;t is the ith

feature value of the tth trial from Fb,r, and / is a

smoothing kernel function with a smoothing parameter

h. The proposed algorithm employs the univariate

Gaussian kernel given by

/ y; hð Þ ¼ 1
ffiffiffiffiffiffi
2p
p e

� y2

2h2

� �
; ð14Þ

and normal optimal smoothing strategy [34] given by

hopt ¼ 4

3nX

� �1
5

r; ð15Þ

where r denotes the standard deviation of y from (14).

4. Find the feature with the highest mutual information.

The r value corresponding to this feature is selected as

the optimal regularization parameter for SCSP from

the bth frequency band. Mathematically, this step is

performed as follows:

I fb;r�
b
;i� ; X

� �
¼ max

i¼f1;2;...;2mg
r2R¼fr1;r2;...;rng

I fb;r;i; X
� �

; ð16Þ

where rb
* denotes the optimal regularization parameter

constructing the optimal SCSP filters from the bth

frequency band (i.e., Wb
*).

The relevance of computing mutual information to select

the optimal r value is as follows: The mutual information

I fb;r;i; X
� �

evaluates the reduction in uncertainty given by

the feature vector fb,r,i. If the mutual information between

the feature vector fb,r,i and the class labels X is large (small),

it means that fb,r,i and X are closely (not closely) related

[33]. Maximizing the objective function (16) results in

selecting the optimal r value that yields the feature with the

highest relevance with respect to the class labels. Note that

the proposed method to select the optimal regularization

parameter is not limited to the SCSP algorithm, but appli-

cable for all regularized CSP algorithms that require auto-

matic selection of regularized parameters.

The relevance of computing mutual information to

select the optimal r value is as follows: The mutual

information I fb;r;i; X
� �

evaluates the reduction in uncer-

tainty given by the feature vector fb,r,i. If the mutual

information between the feature vector fb,r,i and the class

labels X is large (small), it means that fb,r,i and X are

closely (not closely) related [33]. Maximizing the objective

function (16) results in selecting the optimal r value that

yields the feature with the highest relevance with respect to

the class labels. Note that the proposed method to select the

optimal regularization parameter is not limited to the SCSP

algorithm, but applicable for all regularized CSP algo-

rithms that require automatic selection of regularized

parameters.

2.3 Feature extraction

Based on the optimal regularization value selected for each

SCSP, the third step of the proposed OSSSF algorithm

extracts the features from the bth band as Fb;r�
b
¼

½fb;r�
b
;1; fb;r�

b
;2; . . .; fb;r�

b
;2m� where Fb;r�

b
2 Rnt�2m; nt and

2m denote the total number of the training trials and the

sparse spatial filters, respectively. Since there are nine

frequency bands, all the extracted features can be presented

as V ¼ ½F1;r�
1
;F2;r�

2
; . . .;F9;r�

9
� where V 2 Rnt�18m.

2.4 MIBIF feature selection

The forth step of the OSSSF algorithm selects discrimi-

native features from the features V using the MIBIF

algorithm. The MIBIF sorts all the 18m extracted features

in descending order of mutual information computed in

step 2 and selects the first k features. Mathematically, this

step is performed as follows till |S| = k

V ¼ Vnfb;r�
b
;i; S ¼ S [ fb;r�

b
;ij

I fb;r�
b
;i; X

� �
¼ max

i¼1...ð2mÞ
b¼1...9

I fb;r�
b
;i; X

� �
; ð17Þ

where S is the set of the selected features; \ denotes set

theoretic difference; [ denotes set union; and | denotes

given the condition. The parameter k in the MIBIF algo-

rithm denotes the number of best individual features to

select. Based on the results presented in Sect. 4, k = 4 is

used in this work.

3 Experiments

3.1 Data description

In this study, the EEG data of 16 subjects from two datasets

were used. These two datasets are described as follows:

Neural Comput & Applic (2014) 25:625–634 629
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1. Dataset IVa [28] from BCI competition III [35]: This

publicly available dataset comprised EEG data from

five healthy subjects recorded using 118 channels.

During the recording session, the subjects were

instructed to perform one of two motor imagery tasks:

right hand or foot. A total of 280 trials were available

for each subject, where 168, 224, 84, 56 and 28 trials

formed the training sets for subjects aa, al, av, aw and

ay, respectively. Subsequently, the remaining trials

formed the test sets. Since the objective of this work is

not investigating the performance of the OSSSF

algorithm on a small training set, the number of

training trials was increased to 140 for subjects aw and

ay

2. Neuro-rehabilitation dataset [9]: This dataset contained

25 channels EEG data from 11 hemiparetic stroke

patients who used motor imagery-based BCI with

robotic feedback neuro-rehabilitation (refer

NCT00955838 in ClinincalTrials.gov). In this study,

the data collected from the calibration phase of this

dataset were used. This phase comprised 80 motor

imagery trials of stroke-affected hand and 80 trials of

the rest condition. Each trial lasted approximately 12 s.

For each trial, the subject was first prepared with a

visual cue for 2 s on the screen, and another visual cue

then instructed the subject to perform either the motor

imagery task or the rest for 4 s, followed by 6 s of

resting.

3.2 Data processing

The performance of the proposed OSSSF algorithm was

compared with three existing feature extraction algorithms,

namely CSP, SCSP and FBCSP. The SCSP algorithm with

two different approaches in selecting the optimal regular-

ization parameters were considered: SCSP-CV, which uses

the tenfold cross-validation approach, and SCSP-MI, which

uses the proposed mutual information approach.

The EEG data from 0.5 to 2.5 s after the visual cue were

used in all the above-mentioned algorithms. For the CSP

algorithm, the EEG signals were band-pass filtered using

8–35 Hz elliptic filters, since this frequency band included

the range of frequencies that are mainly involved in per-

forming motor imagery. Subsequently, the CSP filters were

used to compute the features. For the sCSP and SCSP

algorithms, the EEG signals were also band-pass filtered

using 8–35 Hz elliptic filters. Next, the spatially filtered

signals obtained by sCSP and SCSP were used to compute

the features accordingly. For the FBCSP algorithm, the

EEG data were band-pass filtered using nine Chebyshev

Type II filters. Thereafter, CSP was performed in each

band, and a reduced set of features from all the bands was

selected using the MIBIF algorithm [27]. For the OSSSF

algorithm, the EEG data were band-pass filtered using nine

Chebyshev Type II filters, and the subsequent steps

described in Sect. 2 were applied.

It is noted that in this study, for each applied (s/S) CSP,

m = 2 pairs of the filters were used, and for all the men-

tioned algorithms, the Naı̈ve Bayesian Parzen window

classifier [27] was employed in the classification step. For

the proposed OSSSF (s/SCSP) algorithms, 20 different

candidates of r, r 2 R ¼ f0:01; 0:02; . . .; 0:19; 0:2g; were

evaluated using the train data, and those yielding

the highest mutual information with the class labels (the

highest cross-validation accuracy) were selected as the

optimal r values. In case that none of the r values yielded

the higher mutual information with the class labels (higher

cross-validation accuracy) compared with the standard CSP

filters, the CSP features were used rather than the OSSSF

(s/SCSP) features (i.e., r = 0). In the sCSP algorithm, the

number of trials in each epoch was selected from the set of

{1, 5, 10} using cross-validation as suggested by [36].

4 Results and discussion

In the proposed algorithm, in each frequency band, the

regularization value r that yielded the highest mutual

information between the best feature and the class labels is

selected as the optimal r value. However, in the cross-

validation algorithm, the optimal regularization value is the

one resulting in the highest cross-validation accuracy.

Figure 2 illustrates how the mutual information between

the best features and the class labels, as well as the tenfold

cross-validation accuracy, changes by varying the r value

for two subjects. This figure shows that the use of small

values of r increased the mutual information and the ten-

fold cross-validation accuracy by attenuating noisy and

redundant EEG signals, while further increase in the

r value reduced both the mutual information and the cross-

validation accuracy. Interestingly, for subject av, both the

mutual information-based algorithm and the cross-valida-

tion algorithm yielded the same optimal r value (see

Fig. 2a). For subject aa, although the two algorithms

yielded different optimal r values, the difference between

the cross-validation accuracies of the optimal r values is

very small (see Fig. 2b). According to Fig. 2, evaluating a

small set of r values suffices to find the optimal r values.

As described in the Sect. 2.1, selecting the optimal

regularization parameters of the OSSSF algorithm using

the cross-validation method is computationally intractable,

due to the use of a separate SCSP for each frequency band.

Therefore, the proposed mutual information-based

approach which is computationally tractable is used to
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select the optimal regularization parameters of the pro-

posed OSSSF algorithm.

As mentioned in Sect. 2.4, in the fourth step of the

proposed OSSSF algorithm, the MIBIF feature selection

algorithm is used to select the most discriminative features

among the features extracted from all the nine bands. The

proposed OSSSF algorithm was evaluated using different

number of selected features by performing fivefold cross-

validation on the train data of dataset IVa [28] from BCI

competition III. Figure 3 shows the average classification

accuracies of the proposed OSSSF algorithm using differ-

ent number of features selected by MIBIF. This figure

shows that selecting four pairs of the features yielded on

average the highest classification accuracy. According to

these results, in the remaining of this paper, the OSSSF

algorithm with four pairs of the features was used.

Table 1 presents the classification accuracies on the test

data from the dataset IVa obtained using different algo-

rithms. The SCSP algorithms using the tenfold cross-vali-

dation and the mutual information-based approach to select

the regularization parameters are respectively abbreviated

as SCSP-CV and SCSP-MI. Table 1 shows that the SCSP-

MI algorithm substantially outperformed the CSP

algorithm in terms of the classification accuracy by an

average of 1.93 %. Hence, the results show that the pro-

posed mutual information-based approach truly finds a

regularization parameter leading to more discriminative

spatial filters. The results also show that SCSP-CV per-

formed slightly better than sCSP and SCSP-MI and yielded

an average improvement of 2.4 % in the classification

accuracy compared to the CSP algorithm. However, there

is no statistically significant difference between the SCSP-

MI and the SCSP-CV results, and the sCSP results and

SCSP-CV results (p [ 0.05).

Importantly, using an Intel Quad 2.83 GHz CPU and the

package fmincon in MATLAB 7.5, the SCSP-CV algorithm

took an average of 5339.9 s to select the optimal regular-

ization parameters among 20 different small r values. In

contrast, the SCSP-MI algorithm only took an average of

505.36 s under the same conditions. The elapsed compu-

tational times and the obtained classification accuracies

illustrated that the proposed mutual information-based

approach is able to select the optimal regularization

parameter of the SCSP algorithm effectively and

efficiently.

Table 1 also shows that the FBCSP algorithm improved

the CSP results by an average of 3.49 %. Although FBCSP

averagely outperformed SCSPs, SCSPs resulted in higher

classification accuracies for subject ay. Taking the advan-

tages of both SCSP and FBCSP, the proposed OSSSF

algorithm further improved the results and outperformed

CSP, sCSP, SCSP-MI, SCSP-CV and FBCSP by an aver-

age of 5.18, 3.14 2.78, 3.25 and 1.69 %, respectively.

Regarding the computation time, the most time con-

suming part of the OSSSF algorithms is finding the regu-

larization parameters. Although the computation time has

been considerably reduced using the proposed mutual

information-based algorithm, it may be still challenging to

train the model using the OSSSF algorithms in few minutes

break between the calibration and test sessions. However,

using parallel computing can make this issue feasible.

Figure 4 illustrates the operational frequency bands

selected by the FBCSP and the proposed OSSSF algo-

rithms for the five subjects from the BCI competition III

Fig. 2 Effects of varying

regularization value on the

mutual information of the best

features, as well as the tenfold

cross-validation accuracy for:

a Subject av, and b Subject aa.

The train data filtered from 8 to

35 Hz were used in this figure.

r* indicates the optimal

regularization value
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Fig. 3 Average fivefold cross-validation accuracy of the proposed

OSSSF algorithm using different number of features, on the train data

of the dataset IVa BCI competition III
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dataset IVa. Comparing this figure and the classification

accuracies given in Table 1, the results show that the

selected frequency bands for subjects aa and av are similar

for both FBCSP and OSSSF. However, OSSSF yielded

higher classification accuracy in these subjects by opti-

mizing the CSP spatial filters of the selected frequency

bands. The results also show that the selected frequency

bands of the subjects aw and ay are different in FBCSP and

OSSSF. Indeed, in these two subjects, the proposed OSSSF

algorithm improved the classification accuracy by opti-

mizing the spatial filters and also by selecting more optimal

frequency bands due to attenuating noisy EEG signals.

Table 2 compares the average tenfold cross-validation

accuracies of 11 stroke patients from the neuro-rehabilita-

tion dataset obtained using the OSSSF algorithm against the

CSP, sCSP, SCSP-CV, SCSP-MI and FBCSP algorithms.

The results showed that the proposed OSSSF algorithm

outperformed the other algorithms by an average of 12.6,

4.94, 4.1, 4.5 and 2.3 %, respectively. Compared to the

dataset IVa, the performance difference between OSSSF

and CSP in the neuro-rehabilitation dataset was more

salient. This can be due to the fact that the neuro-rehabil-

itation dataset was more contaminated by noise and arti-

fact-corrupted trials. Thus, the OSSSF algorithm could

considerably improve the performance by increasing the

signal to noise ratio.

In terms of the statistical significance, a Friedman test

[37] was applied. We used the Friedman test, since it is a

nonparametric equivalent of the repeated-measure

ANOVA [37]. Statistical analysis on all the results pre-

sented in the Tables 1 and 2 showed that the regularized

spatial and spatio-spectral filters used in this paper had

significant effects on the classification performance at the

1 % level (p = 2 9 10-7). Post hoc multiple comparisons

revealed that sCSP, SCSP-CV, SCSP-MI, FBCSP and the

proposed OSSSF algorithms were significantly more effi-

cient than the CSP algorithm. Moreover, the proposed

OSSSF algorithm was significantly more efficient than

sCSP and SCSP-MI, while among the sCSP, SCSP-MI,

SCSP-CV and FBCSP algorithms none of them performed

significantly more efficient than the other.

The limitation of the proposed algorithm is when the

train set is very small. Our investigation showed that the

FBCSP algorithm and the proposed OSSSF algorithm were

unsuccessful in classifying trials with a small training size

(e.g., \20 trials per class). This may be due to overfitting.

Thus, when the number of train trials is too small, we

suggest using the SCSP algorithm with a fixed frequency

band rather than the OSSSF algorithm.

Table 1 Test classification accuracies of dataset IVa from BCI III, obtained by CSP, sCSP, SCSP-CV, SCSP-MI, FBCSP and the proposed

OSSSF

Subject Train size Test size CSP sCSP SCSP-CV SCSP-MI FBCSP OSSSF

aa 168 112 66.96 71.43 72.32 71.42 73.21 77.68

al 224 56 98.21 98.21 98.21 98.21 100 100

av 84 196 66.32 69.39 68.88 68.88 74.49 77.04

aw 140 140 90.17 92.14 92.85 93.57 93.57 94.28

ay 140 140 93.57 94.28 95 92.85 91.43 92.14

Mean 151 129 83.05 85.09 85.45 84.98 86.54 88.23

Fig. 4 Selected operational frequency bands using the FBCSP and

the proposed OSSSF algorithms

Table 2 Tenfold cross-validation accuracies of neuro-rehabilitation

dataset obtained by CSP, sCSP, SCSP-CV, SCSP-MI, FBCSP and the

proposed OSSSF

Patient

code

CSP sCSP SCSP-

CV

SCSP-

MI

FBCSP OSSSF

P003 70.62 72.57 78.12 79.37 78.75 79.37

P005 57.5 61.38 65.0 64.37 66.87 68.75

P007 66.25 75.69 77.5 77.5 85.0 93.12

P010 58.75 66.76 66.87 68.12 62.5 67.5

P012 43.75 58.65 58.12 57.5 64.37 65.0

P029 85.0 90.13 90.0 90.0 87.5 89.37

P034 63.75 75.06 72.5 71.87 78.12 81.25

P037 53.12 69.78 70 66.82 70 72.5

P044 67.47 72.57 71.87 71.25 69.37 70.62

P047 88.12 90.33 91.87 91.25 93.75 93.12

P050 71.25 78.05 77.5 76.25 82.5 83.75

Mean 65.96 73.64 74.49 74.02 76.25 78.58
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The proposed OSSSF algorithm reduces the adverse

effects of some intra-session nonstationarities by attenuat-

ing irrelevant channels as well as selecting the most dis-

criminative frequency bands. However, the variations in

the data are not considered directly in the OSSSF optimi-

zation problem. Moreover, since the OSSSF algorithm only

uses the train data, the trained model may not be able to

capture some of session-to-session nonstationarities that

are not seen in the train data. Thus, the OSSSF results can

be further improved by jointly using adaptive algorithms

such as [38] to better deal with nonstationarities.

5 Conclusion

This paper proposed a novel optimized sparse spatio-

spectral filtering algorithm (OSSSF) to simultaneously

address the dependency on operational frequency bands

and the sensitivity to noise and artifacts of the CSP algo-

rithm. The proposed OSSSF algorithm optimizes the sparse

spatial filters over multi-band frequency filters to find the

best combination of the sparse CSP features extracted from

different frequency bands. The SCSP filters of the proposed

algorithm are directly optimized using a new mutual

information-based approach instead of using the cross-

validation approach that is computationally intractable in a

filter bank framework. The experimental results on five

healthy subjects from the publicly available BCI compe-

tition III dataset IVa, as well as 11 stroke patients per-

forming neuro-rehabilitation, demonstrated that the

proposed OSSSF algorithm outperformed the existing

algorithms called CSP, sCSP, SCSP and FBCSP. Further-

more, the results showed that compared to the cross-vali-

dation method, the proposed mutual information-based

approach is able to efficiently and effectively optimize the

regularization parameters of the sparse CSP spatial filters

with substantially reduced computational time. More

importantly, the proposed new mutual information-based

approach is not limited to the SCSP algorithm, but it is

applicable for all general regularized CSP algorithms that

require automatic selection of optimal regularization

parameters.
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