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Abstract This paper studies the exponential synchroni-
zation problem for a class of stochastic perturbed chaotic
neural networks with both Markovian jump parameters and
mixed time delays. The mixed delays consist of discrete
and distributed time-varying delays. At first, based on a
Halanay-type inequality for stochastic differential equa-
tions, by virtue of drive-response concept and time-delay
feedback control techniques, a delay-dependent sufficient
condition is proposed to guarantee the exponential syn-
chronization of two identical Markovian jumping chaotic-
delayed neural networks with stochastic perturbation.
Then, by utilizing the Jensen integral inequality and a
novel Lemma, another delay-dependent criterion is estab-
lished to achieve the globally stochastic robust synchroni-
zation. With some parameters being fixed in advance, these
conditions can be solved numerically by employing the
Matlab software. Finally, a numerical example with their
simulations is provided to illustrate the effectiveness of the
presented synchronization scheme.
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1 Introduction

In 1990, Pecora and Carroll [10] addressed the synchroni-
zation of chaotic systems using a drive-response concept.
The idea is to use the output of the drive system to control
the response system so that they oscillate in a synchronized
manner. Research on the synchronization of chaotic activity
has broadened considerably in the last few decades. Besides
the original master—slave mechanism for chaos synchroni-
zation, a wide variety of approaches have been presented for
the synchronization of chaotic systems which include linear
feedback control, nonlinear feedback control, impulsive
control method, and adaptive design control, among many
others. Synchronization in chaotic systems has been utilized
in many applications. It was used to understand self-orga-
nization behavior in the brain as well as in ecological sys-
tems and has been applied to secure communications,
among others [13-15, 17, 23, 27, 28].

Meanwhile, many neural networks may experience
abrupt changes in their structure and parameters caused by
some phenomena such as component failures or repairs,
changing subsystem interconnections, and abrupt environ-
mental disturbances. In this situation, there exist finite
modes in the neural networks, and the modes may be
switched (or jumped) from one to another at different
times. These kinds of systems are known as Markovian
jump neural networks. When noise disturbances are con-
sidered in Markovian jump neural networks, this class of
neural networks is usually called Markovian jump sto-
chastic neural networks or stochastic neural networks with
Markovian switching. It is known that a Markovian jump
stochastic neural network is more complicated and com-
prises a general stochastic neural network as its special
case. Owing to the practical importance, many papers have
recently devoted to study the stability analysis issue for
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Markovian jump stochastic neural networks [4, 17, 18, 21,
24, 27]. However, up to now, the synchronization problem
for stochastic chaotic neural networks with Markovian
switching has received little research attention, despite its
practical importance. This situation motivates our present
investigation.

This paper studies the exponential synchronization
problem for a class of stochastic perturbed chaotic neural
networks with both Markovian jump parameters and mixed
delays. The mixed delays consist of discrete and distributed
time-varying delays. Firstly, by using drive-response con-
cept, a Halanay-type inequality for stochastic differential
equations and time-delay feedback control techniques, a
delay-dependent sufficient condition is obtained to guar-
antee the exponential synchronization of two identical
Markovian jumping chaotic-delayed neural networks with
stochastic perturbation. Next, by means of the Jensen
integral inequality and a novel Lemma, another delay-
dependent result is established to achieve the globally
stochastic robust synchronization. With some parameters
being fixed in advance, these conditions are expressed in
terms of linear matrix inequalities, which can be solved
numerically by employing the Matlab software. Finally, a
numerical example is provided to illustrate the effective-
ness of the presented synchronization scheme.

Notations Throughout this paper, W/,W~' denote the
transpose and the inverse of a square matrix W, respec-
tively. W > 0(<0) denotes a positive (negative) definite
symmetric matrix, I denotes the identity matrix with
compatible dimension, the symbol “*” denotes a block
that is readily inferred by symmetry. The shorthand
col{M,M,,...,M;} denotes a column matrix with the
matrices M|, M,,... .M. sym(A) is defined as A+
AT diag{-} stands for a diagonal or block-diagonal matrix.
For © > 0,C([—7,0]; R") denotes the family of continuous
functions ¢ from [ —1, 0] to R" with the norm ||¢|| =
Sup_. < ;<o |¢(s)|. Moreover, let (Q,F,P) be a complete
probability space with a filtration {F,}, ., satisfying the
usual conditions and E{-} representing the mathematical
expectation. Denote by Cf ([—7,0];R") the family of all
bounded, Fy-measurable, C([—7,0];R")-valued random
variables ¢ = {{(s): — 7 < s < 0} such that sup_ . ¢
E|&(s)[” <oo. || - || stands for the Euclidean norm; Matri-
ces, if not explicitly stated, are assumed to have compatible
dimensions.

2 Problem description and preliminaries
In this paper, we consider the following stochastic neural

networks with both discrete and distributed time-varying
delays
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dx(r) = ( = Blx(r) + At n(1)f (x(1))
+ B(t,n(1))f (x(t — (1, n(1))))

/ fx ds—&-o)d M

tn(t))
+ P(t,x(f)vx(f —1(t,n(1))))do(z),
x(t) = ng(t),l € [_f7 OL

(x1 (1), x2(1), . . .,
vector associated with n neurons, f(x(r)) =
By (x2(2)), ..., B, (xn(r)))" € R" is the behaved function.
Alt,1(0)) = An(0)) + AAG1(1)), Bl n(r) = Blr(r)) +
AB(t, (1)), Gle,n(1) = Gn(1) + AG(,n(r)) are  the
interconnection matrices representing the  weight
coefficients of the neurons. A(y(?)), B(n(¢)), G(n(t)) are
known real constant matrices. AA(z,7(t)), AB(t,n(t)),
AG(t 11( )) are the time-varying structured uncertainties.

= (fi (1), (2(0)), - fola(1)) € R”
the neural activation function. The bounded functions
1(t, y(1)), o(t, n(r)) represent unknown time-varying delays
with  0<t(t,n(r)) <t(n(1)) < 7,7(t,n(1)) <al(n()),
0<o(t,n(1)) < e(n(r)) <@, where (n(1)), 7, a(n(1)), ¢ are
positive scalars, T = max{7,¢}. I = (I1,L,.. .,In)T is an
external input, ¢, (¢) is a real-valued initial vector function
that is continuous on the interval [—7,0]. {5(¢), t > 0} is a
homogeneous, finite-state Markovian process with right
continuous trajectories and taking values in finite set
N ={1,2,...,N} based on given probability space
(Q,F,P) and the initial model no. p(t,x(¢),x(t —
7(t,1(t)))) is called the noise intensity vector. (¢) is a one-
dimensional Brownian motion defined on space (Q,F,P)
with E{dw(r)} =0, E{[do(r)]*} = dr. Let TT = [m]y,y
denote the transition rate matrix with transition probability:

P(n(t+6) =jn(t) =i) = { ij ;g@;(é), i i;

x,(1))" €R" is the state

(B (x1 (1)),

where x(1) =

denotes

where 6 > 0, limg_o+ =5 o) _ () and m;; is the transition rate
from mode i to mode j satlsfymg n; > 0 for i # j with

N
== > my iLjeEN.
=L

For convenience, each possible value of #(¢) is denoted
by i(i € N) in the sequel. Then, we have

A= A((D), B =B((t), G =Gn(r)),
AAL(r) = AA(t (1), AB(r) = AB(t (1)),
AGi(1) = AG(t,n(1)).
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Throughout this
assumptions:

paper, we make the following

Assumption 1 The noise intensity vector is assumed to
be of the form:

pt,x(1),x(t — wi(1))) = Ci()x(t) + Di(1)x(t — (1)),
where

Gi(t) = G + ACi(1), Di(1) =

with C;, D; being known real constant matrices.

D; + ADi(1),

Assumption 2 The admissible parameter uncertainties
are assumed to be of the following form:

[AA;(1) ABi(t) AGi(t) ACi(t) AD(1)]
= E®;(t)[H; Hy Hiy Hiy Hsi),

where E;, H;(j =1,...,5) are known real constant matri-
ces with appropriate dimensions, and ®;(7) € R™" is the

time-varying uncertain matrix satisfying ®;(r)” ®;() <1 for
any 1 > 0.

Assumption 3 Each [ij(C) is differentiable and satisfies
the following condition

Bi(&) = B(©)
&=

where 4;, d; are known positive real constants.

0< /1< géj, véa CGRaé%Ca

For notational simplicity, we denote A=diag{dy,...
A=diag{l,....,2n}.

75n}7

Assumption 4 Each neural activation function ]5()(] =
1,2,...,n) is bounded, differentiable and satisfies the fol-
lowing condition

/]_Js(ié Jg(g)ﬁajv VELER,EH#L,

where y;, 6; are known real constants.

We denote I'=diag{y,,7,,....,7,}, X=diag{oy,02,...,0,},
O= diag{0,,0,,...,0,}, where 0;=max{|y,],|o;|}.

The system (1) is considered as a drive system. Based on
the drive-response concept for synchronization of coupled
chaotic systems, which was initially proposed by Pecora
and Carroll in [10], the corresponding response system of
(1) is given in the following form:

dy(r) = ( = BO(0) +AOF (1) + BUf ({1 = (1))

()T €R" is the state
Mi(t) = (uil (t), Ce
un(t))" € R" is the state feedback controller given to
achieve the exponential synchronization between drive-
response system, ¢,(¢) is a real-valued continuous vector
function on the interval [—1,0].

In order to investigate the problem of exponential syn-
chronization for the chaotic-delayed neural networks with
stochastic perturbation, ej(t) = y(f) — x;(f) is defined as
the synchronization error, where x,(t) and y«(t) are the ith
state variables of drive system (1) and response system (2),
respectively. Therefore, the error dynamical system
between (1) and (2) is given as follows:

where y(7) = (y1(1),y2(2), - -
vector associated with »n neurons,

de(r) = ( — Ble(t)) +Ai(0)f (e(r) + Bi(0)f (e(r — i(1)))-
+ Gi(1) / fle(s))ds + u,-(t)) dr
1—0;(1)

+ p(t,e(1), e(t — (1)) )dar(t) = g;(1)de + p;()deo (1),

e(t) = () =0,(1) = 9,(1)1 € [~£,0), ()
where (1) = (e1(1),e2(1),---vea(r)), Ble(t) = (B (1 (1)~
&0%&%ﬂﬂm0ﬁ—ﬁ4hUD,,QAhO»—ﬁn%UDf7
() =), A020) A, ..
o»7fmﬂm»:0mfm»

t

—fi(xi(t— )
Julolt =1 <<r@m%mw
(1) = plty )
C,-(t)e(t)+D,-(t)e(t—r,-(t)).

In this paper, the control input vector with state feed-
back is designed as follows:

Fulon(®) f
(

l/tl'(t) = Ylie(t) —+ Yzl'e(l - Ti(t)). (4)
From Assumptions 2,3, we obtain that

B;(0) 5©
¢

)‘j— C

(5)

Therefore, it follows from [3] that system (3) admits a
trivial solution e(f) = 0.

To prove our main theorem, we need the following
preliminaries.

Definition 1 Let i : R — R be a continuous function, the
upper right Dini derivative of (¢) is defined as

Wi+ A0 — ()

Du0) = iy s HE

Definition 2 The drive system (1) and the response
system (2) are said to be exponentially synchronized if, for
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a suitably designed feedback controller, there exist

constants v > 1 and ¥ > 0 such that

E{Iv(0) = (0]} < o= {|13(0) — x(0)] b

for any t > 0, and the constant ¥ is defined as the expo-
nential synchronization rate.

The development of the work in this paper requires the
following lemmas.

Lemma 1 (see [8, 12, 16, 25]). Let A, B and C be real
constant matrices with appropriate dimensions, matrix
®(1) satisfies D(1)D(t)" <I. Then for any matrix P > 0 and
scalar ¢ > 0, we have the following inequalities:

(1) A'B+ B"A <A"P™'A + B"PB;
(2) (A+Bd(1)C)' P (A+BD(1)C) <AT(P
—¢BBT) 'A 4+ ¢CTCif P — ¢BB” > 0.

Lemma 2 (see [5], Jensen integral inequality). For any
positive symmetric constant matrix M € R™", scalars
r1 < ry and vector function @ : [r,r;] — R" such that the
integrations concerned are well defined, the following
matrix inequality holds:

jwmmik fw@m
SOa—nyfw%wa@m&

a

From Lemma 2 of [26], we can easily establish the
following Lemma 3, which plays an important role in
obtaining our delay-dependent stability result.

Lemma 3 Set /; u; be scalars satisfying A;<1,4; +
w<4(j=1,2),%(l=1,...,4) be any nonnegative sym-
metric matrices, 0(t), v(f) be real functions such that

0:R" — (0,0),v:R" — (v,7), then we have

T, T, R T,
0)—0 0—0(r) v(t)—v v—v(r)
S max{_ /1121_4’ ‘Ltlzz _ }»223 + ,u2247
0—-0
_ )»12] + ,LL122 _ ,u223 + )\,224 _ /112] + /l]Zz
6-06 6-06

R O N e A /1224}
) G—Q .

V—y

V-

vV—y vV—y

(6)
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If we set 4; = y; = 1(j = 1,2) in (6), noticing that

i+ X3+ X 23
—— - — < maxq — = — — ,
0—0 V—y 0—-0 v—y
X p) pY) 23 pY} 24}
E b

0—0 v—y’ v—y 0-0 Vv-—

S
I
S

then we have the following lemma which is used in [11, 20].

Lemma 4 (See [11, 20]). Ser X1, 25, X3, X4 be any non-
negative symmetric matrices, 0(t), v(t) be real functions
such that 0 : R™ — (0,0),v:R" — (v,7), then we have

%, T, T,

—0(1)
23 2 I

0 —0 @
b}
< maxq — = — — , — = —
0—-0 v—y 0-106
B pI) B 25 B hI) B P
0—0 v—v' 0 '

Remark 1 Usually, we choose /; = 1, p; = 3(Gi = 1, 2) in
Lemma 3. Apparently the result derived from Lemma 3 is
less conservative than Lemma 4.

3 Main result

As well known, 1t6’s formula plays important role in the
stability analysis of stochastic Markovian systems and we
cite some related results here [1]. Consider a general sto-
chastic Markovian delay system

dZ(Z) :f(t,Z(l),Z(t - K)vn(t))dt +g(l,Z(I),Z([ - 19)3
n(t))dw(r), (7)
on t > to with initial value z(f) = zo € R", where ¢ > 0 is
time delay, f:RT xR"xR"x A — R" and g:R"x
R" x R" x N — R"™™ Let C*!(RT x R" x R" x N/, R")
denote the family of all nonnegative functions V(t, z, v,
n(@) on R™ x R" x R" x N which are continuously twice
differentiable in z, v and once differentiable in r. Let £ be

the weak infinitesimal generator of the random process
{z(t),n(t)},,, along the system (7) (see [9, 19]), i.e.,

. .1
£V(t7 2ty Vi l) L= 5{%5 [E{V(t + 5,Z[+5,V[+57 n(l + 5))|

2,V n(t) = i} = V(5 2, ve, (1) = D)),
(8)
then, by the Dynkin’s formula [24, 28], one can get
EV(z,z(1),v(t),i) = EV(t9,2(t0), v(t0), i)
‘

+E / £V (s, 2(s), v(s), i)ds.
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In order to get our main results, we propose the following

Halanay-type inequality for stochastic differential
equations:
Lemma5 [2,7]. Let constants a > b > 0,d > 0. Assume

that there exists a positive continuous function V(t, x)
satisfying the following inequality
DYE(V(t,x(2))) < — aE(V(t,x(t)))
+b sup E(V(s,x(s))),1> 1o
s€(t—d 1]

then

E(V(t,x(2))) < sup E(V(s,

s€(to—d,to)

x(s)))e ),

where v € (0,a — b] is the unique positive solution of the
equation: v = a — be* .

First, we consider model (1) with G;(¢) = 0, i.e., the
error dynamical system between (1) and (2) is given as
follows:

de(r) = [=(e(r)) + Ai(t)f (e(1)) + Bi(0)f (e(t — (1))

+ u,(t)]dt + p;(t)dow(2),
e(t) = o(t), te[-1,0] (9)

Before presenting our first result, for simplicity, we
introduce a new vector as

i(r) =col{e(r), Ble(r)), fle(r), e(t—m(t)), fle(t—n()}

Let w;(j = 1,2,...,5) be row vectors with block matrix
entries, i.e., the j-th block is an identity matrix and the
others are zero blocks, such that e(t) = @ &(1), fle(r)) =
@, &(t), and so on.

Now, we begin to state our result for error system (9).

Theorem 1 (See Appendix 1 for a proof). Assume that
Assumptions 1-4 hold and 7;, 7,14 are given scalars. The
drive system (1) and the response system (2) with G(t) = 0
can be exponentially synchronized for any 0<1,(t) <
T; <7,1i(t) <y, if there exist symmetric definite positive
matrices P;, F;, U, K;, diagonal positive matrices Q;, R,
S, W, J;, Z;, M;, L;, and positive scalars ¢, €;, 1, v, such that
the following matrix inequalities hold

VP < F;, (10)
vOWO — 1F; +vU <0, (11)
(1+1%)(K; + OL®) — vP; <0, (12)
Q; <0, (13)

where

Pi=Pi+Qi(A—A)+ (Si+R)Z-T),

N
T T T T
Q=o' Fo + E nw, Piw — wyK;wy — w5 Liws
=1

+ sym{w|{ Mw, } — 20| M;Tw,

()] r —ZFJ, %(Z + F)J, w1
+

w3 * —Ji w3

W4 r —ZFZ,' %(Z + F)Z, W4
+

wWs * —Z; w5

N
+ 3 {0l QA — A) + (R +S5)(Z ~Dim,

+ fj(tDZUtm + wSTWW5)} + wlTle
+ wSTWw3 — (1 —a) (wZUzm + wSTWw5)
+ €(Hiim3 + Hyws)' (Hyw3 + Hyws)

+ 6 Yo EE Yo + sym{yg, (Vi
+ Yriws + Biws)} + (Cimy + Diw4)T
x (P;!

+ & ' (Hyw, + Hs;wy)" (Hyw) + Hsioy),

— Wy +Ai‘lU3
-1
— Sl‘El'EiT) (C,»wl + DiW4)

with
Yo = Pimy + Qs + (Si — R))ws,

i)i = P,‘ — AQ, + ZR, — FSi, ﬂ?:»j = max{O, T[U}

Remark 2 If we set U = W = 0 in Theorem 1, then we
can obtain a criterion to verify the exponential
synchronization of system (1) and system (2) with
7(t,n(¢)) are not known or the time-varying delays
1(t, y(f)) are not differentiable.

Remark 3 Based on Schur complements, inequality (13)
is equivalent to the following linear matrix inequality
which can be solved numerically by employing the Matlab
software:

Y; AiEi Bi C,‘ 0

*  —el 0 0 0

x o« —gEET 0 1 | <0, (14)
* * * —glI 0

* * * x =P
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where
Fi+yu Yy Vs + Pii P;Yy; P;B;
* =20; Ri—Si+ QA 0iYa; 0iB;
Vi = * * Yo+ W —Ji (Si—Ri)Yxu (Si—Ri)Bi+ e;H{;H;
* * * s 3Zi(Z+T)
* * * * Ve + EinTiHZi

Ai=col{P; Qi Si—R; 0 0}, Bi=col{Cl 0 0 DI 0}, Ci=col{HI 00 HIL 0},

with

N
Yy = sym(PiYy) + U — ETJ; — 2M;T + Z“UPJ
j=1
N
+ > 1 [Q(A = A) + (R +5) (2~ T,

=1

_ 1
Vo = —Pi+Y[Qi+ M;, Y3 = Y[i(Si — R) +§(2 + D),
W = sym((S; — R)A;) + EiHlTiHIh

N
lrbSi = —(1 — ‘Cd,')U — Ki — ZFZ, + ZTC:]‘E/U,
Jj=1

N
l//6i = 7(1 — ‘L'd,')W — Z,' - L,‘ + ZTC;@W
Jj=1

Remark 4 For the inequalities (10-12), note that several
nonlinear terms, such as, vP; and 1K;, coexist in the LMIs (10—
12); thus, the conventional LMI solvers (feasp, mincx, and
GEVP) are not applicable directly. In view of this fact, we
present the following procedure to solve the inequalities (10-13).

1. Initialize the system parameters, including A;, B;, C;, D;,
E,',I‘Ij,‘(j = 1, 2,4, 5), T, Z, F, A, A, @, ‘E,', f, Tdi (l,l =
1,2,...,N), and two given coefficients of accuracy
k> 0and K > 0.

2. To obtain the theoretic maximum value of v that
satisfies the LMIs (10)-(13), we can solve the follow-
ing generalized eigenvalue minimization problem
(GEVP) (see [6, 22]):
minimize v; > 0
s.t. inequalities (13) and P; < v, F; hold.

Denote the obtained minimum value by v,, then we

obtain the maximum value v = 1/y; of v. Set v=1 (i.e.,

choose v as the first value of v in the beginning of the new
iterative operation).

3. Check whether v < 0; if yes, go to step 9). Otherwise,
go to step 4).

@ Springer

4. Fix v and use the following GEVP technique to obtain
the maximum value of i:
minimize 1; > 0
s.t. inequalities (10), (13) and the following inequal-
ities hold

‘fi(Kl‘ + @Ll‘(")) < l](VPi —K; — @L,‘@).

Denote the obtained minimum value by 1;, then we
obtain the maximum value 7 = 1/1; of 1. By setting 1 =7
(i.e., choose 1 as the first value of 1 in the beginning of the
new iterative operation).

5. Check whether 1 <0; if yes, go to step 7). Otherwise,
go to step 6).

6. Check whether the LMIs (10-13) are feasible; if yes, go to
step 8). Otherwise, set 1 = 1 — «, and then go to step 5).

7. Setv=v—K, go to step 3).

8. Terminate the program and output the maximum
values v, 1.

9. Terminate the program and print “The LMIs (10-13)
are infeasible”.

Before presenting our result of error system (3), we
introduce another new vector as

G =cod . [ et
t—0;(1) t—1(1)

Let ¢; (j=1,2,...,12) be row vectors with block
matrix entries, i.e., the j-th block is an identity matrix
and the others are zero blocks, such that e(r) = ¢,{;(¢),
%i(t) = ¢124i(2), and so on.
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Now, based on Lemma 3, we can propose the following
delay-dependent stability criterion for error system (3):

Theorem 2 (See Appendix 2 for a proof). Assume that
Assumptions 1-4 hold and 7;, 7,14 are given scalars. The
drive system (1) and the response system (2) can be
exponentially synchronized for any 0<t;(t)<7; <7,
(1) < 14, if there exist symmetric definite positive matri-
ces P;, U, K;, T;, diagonal positive matrices Q;, R;, S,
W, Ji, Z;, M;, L;, real matrices Xy;, X»;, X3; and positive
scalars ¢&;, €;,1, v, such that the following matrix inequalities
hold

Q; — 2/ T — 2cI Thg <0, 1=7,8;k=6,11,  (15)
where
& _ HTZM ;(z+r)1i] H
l C3 * —Ji S
N g4]T{—Zl"Z, %(ZJFF)ZiHﬂ
Cs * -7 Cs

>

+ sym{c] Mic,} — 2¢|M;Tc; + ¢ Z 7iPic1
=1

+ sym{c{ Picio} + Trc, Ticin + 0763 Tacs
N
- (1 - Z 7Tij‘£j> (s9T350 + 510 T3510)
=
+ sym{(Xaic; + Xaic4) (61 — ¢4 — 67 — o)}
+ sym{yL:(Yiic, — cip — & + Aics
+ Bics + Gice + Y2ic4) }
+ €i(Hiicy + Hacs + Hycg) (Hyics + Haics + Hsice)
+ e "WLEE W, + (Cici + Dicy)”
[(Pi+T3)"" — 8iEiEiT]_] (Cicy + Dicy)
+ &7 (Haicy + Hsicy)" (Hygy + Hsicy)
—aITigy — i Tigy — e Tage — o1 Tacii,
) N ) N
Ty=(1-> mg |, Ty=|(1-) mg;|T,
= =
with
Vi = Picy + Qicy + (Si = Ri)gs + Xuicpo.
Remark 5 Similar to Remark 2, if we set U = W =0 in

Theorem 1, then we can obtain a criterion to verify the
exponential synchronization of system (1) and system (2)

with 7(¢,7(z)) are not known or the time-varying delays
(¢, n(t)) are not differentiable.

Remark 6 Similar to Remark 3, by Schur complements,
inequalities (15) can be equivalently transformed into lin-
ear matrix inequalities which could be solved numerically
by employing the Matlab software.

4 Tllustrative example
In this section, we give a example to demonstrate the
effectiveness of our theoretic results.

Example 1 Consider system (1) with n = 2 and the fol-
lowing parameters:

1.9 —0.11 2.0 —0.14 ~1.8 —0.1
A = Ay = By = ,
50 32 50 3.1 02 27
~1.7 —0.1 25 0 28 0
BZZ 7C|= 7C2: 7D]ZZI7
02 -27 0 2 0 2

e I e g LR R

Ey =0.11,H; = 0.15,Gi(1) = 0,3 =0,j = 1,2,4,5,i = 1,2.

The behaved functions are f,(x) = f,(x) = 1.5x+
0.5sinx, the activation functions are fi(x)=/(x) =
tanh(x), and the time-varying delays are 1,(¢) =
75(tf) =0.8 4 0.2sinz. Then Assumptions 1-4 are
satisfied with A=2I,A=X=0=[I'=0 and 7,
Thy=1T= 1,191 =100 = 0.2.

In this paper, the transition rate matrix is given as
follows

0.7 0.7
= [ 0.3 0.3}

and the control input vector with state feedback is designed
as (4) with
Yii =—14.51, Y1, = —10.71, Yy = 2.11, Yo = 2.31.

Set v=0.2,1=0.1, solving the LMIs (10-13) in

Theorem 1 by resorting to the Matlab LMI Control
Toolbox, we have one feasible solution as follows

b _ [ 00071 —00002] [ 0.0016 —0.0001}
"7 1200002 0.0007 |7 | —0.0001 0.0002 |’
0.9308 —0.0465 .
U= x 1073,
—0.0465 0.3153
. _ [ 00013 —00000) 02756 —0.0099
"7 1200000 0.0001 |2 [—0.0099 0.0290
s 0.0019  —0.0001
x10 ,Fl = )
—0.0001  0.0007
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0.0023  —0.0003 04592 0
> [ 200003 0.0008 | 0 0.0495
. 02088 0 B
x1077,0, = x 1077,
0 0.0243

0.1832 0 \ 02956 0
R, = x 1073, R, =
0  0.0569 0  0.0817

, 0.0483 0
%1073, J; = :
0 0.0038
0.0070 0 0.5399 0
J2 = 7S1 =
0 0.0012 0 0.0490
0.1862 0
x1074,8, = x 1074,
0 0.1634

1=

0.0020 0 0.8249 0
Z) = 7Z2 =
0 0.0004 0 0.3355

0.9356 0 s
x 107,
0 0.0969

0.3488 0 5 0.0015 0
L, = x 10~ ,M] = N
0 0.3402 0 0.0002

) =
0.6877 0 ,
M, = x 1077,
0  0.1575
0.6496 0
| 0 04187
6 = 0.0033, ¢, = 13.9798, &, = 16.3399.

x1073, L, = l

] x 1073, ¢; = 0.0029,

Figure 1 shows the neural network model has a chaotic
attractor  with initial values x(r) =0.2,x,(r) = 0.5,
t € [-1,0]. The initial values of the response system are
taken as y(t) =—1.3,y,(¢t) =2.1,r € [-1,0]. Figures 2

Fig. 1 Chaotic attractor of Example 1

@ Springer

and 3 depict the phase trajectories of the drive system
and response system, respectively. Figure 4 shows the error
states. By numerical simulation, we can see that the
dynamical behaviors of response system (2) synchronize
with master system (1) as shown in Figs. 2, 3.

4

3+

N
T

x1y1

Fig. 2 The phase trajectories of t — x;(t) — y;(¢)

x2y2
o

ot

-3
t/s

Fig. 3 The phase trajectories of 1 — x,(f) — y»(?)

e(t)

t/s

Fig. 4 The error state of 1 — e(f) — es(f)



Neural Comput & Applic (2014) 25:429-442

437

5 Conclusion

In this paper, the exponential synchronization problem has
been investigated for a class of stochastic perturbed chaotic
neural networks with discrete and distributed time-varying
delays as well as Markovian jump parameters. Based on a
Halanay-type inequality for stochastic differential equa-
tions, the Jensen integral inequality and a novel Lemma,
two delay-dependent sufficient condition are proposed to
guarantee the exponential synchronization of two identical
Markovian jumping chaotic-delayed neural networks with
stochastic perturbation. With some parameters being fixed
in advance, these conditions are expressed in terms of
linear matrix inequalities, which can be solved numerically
by employing the Matlab software. Finally, a numerical
example with simulations is provided to illustrate the
effectiveness and usefulness of the presented synchroni-
zation scheme.
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Appendix 1
Proof of Theorem 1

Consider the following Lyapunov-Krasovskii functional:

€(1)

Vi(t e, i) = e(t)" Pe(t —|—2qu,/ (.

— Jys|ds
u ei(t)

+2Zrﬁ/ [ajs — f;(s)]ds
=y

¢(1)

+2Zs,,/

_Vj]d

(16)

where Q; =diag{q1i,q2i,---,qni },Ri = diag{ri;,r2i,...,1i},
S,-:diag{sli,S2,»,...,s,1i}.
It can be easily verified that V(¢ e, i) is a nonnega-

tive function over [—7,4o00). Evaluating the time

derivative of V/(t, e,, i) along the trajectory of system
(9), we have that

0
dVl (tv €, l) = £V1 (t7 €, l)dt + _Vl(ta €r, l)pl(t)dw(t)v

Oe
(17)
where
£Vi(t,er,i) = 2{e(t)" P + [B(t) — e(t)]TQ,-
+ [Ze(t) — fe(t)]" R + [f(e(r)) n)'si}

x| = B0) + A0 (e(e)) + Bie)f (el = (1))

+ Yye(r) + Yoe(t — Ti(t))]

(1)

+ 2 7T1k Z / djk [ﬁ

k=1 0

4i(8)] + riclags = fi(s)]

~.

+ silfi(s) — ;(5)] }ds +e(t (Z ;P + U) 1)

— (1= ti(0)e(r — (1)) Ve(t — (1))
( (1) Wf(e(1)

+Z7rljrj () [e(t — i(

+ f( (r— fz(l)))TWf(e(l —(1)))]
—(1 = %(0))f (et — (1)) Wf (et — (1))

1 r 0 .
+ —trace | p;(1) @W(henl)/’i(t) .

Y Ue(t — (1))

2

From Assumptions 3 and 4, we get that

ej(r
n J(

{ qjk [ﬂ

N
227['1‘

=1 =1

s) = 4i(8)] + rielays = fi(s )]""Vﬂ»[ﬁ(y)—}’, }df

(1)
n

N
SZ; kzl:/ {4 (8; = 25)s + ri(a; — 7))s + sj(a; — 7)s s
= J= 0

Al

=e()" ) mh[0(A = A) + (R + Si)(Z — D)e(r).

(19)
In addition, we derive that
Zn’JTJ e(t — 7;(t ))TUe(t—T,-(t))
+ fle(t — (1)) W (et — :(1)))] (20)

N
t>T Z nl’:ifj(QZ;UQ4 + QSTUCS)Ci(t)-
=
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For any j = 1,2,...,n, it follows from (5) that

d € _)u' i
0< (ﬁ](ej) je;) <5 — iy,
de]'
d(fi(e;) — vse;)
0< # <a;—,
d(gje; — fie)
OS JJdejJ J go.j_,yl

Thus, we have that

10 '

E@VI(tﬂetal) = Pi + Qi

« diag{d(ﬁl(el) — 1€1) . vd(ﬂ,,(e,,) — /Lnen)}
del de,,

d —f d n n_fn n
TR xdiag{ (01€1de 1(61)),'_.’ (one - (e ))}
1 n

d(f - d(f, -
+S,-><diag{ (l(egel /lel),..., ("(e‘ge y“e“)}
n

1 r &
ztrace pi(1) 32 Vi(t, e, i)p;(t)

= [C,-e(t) + Die(t — ’L','(l)) =+ Eiq)i(t)(H3i€(t) + H4,‘€(l — Ti(t)))]T

% Pi[Cie(r) + Die(t — (1)) + E:®; (1) (Hye(t) + Hye(r — 7i(1)))]
<&\ (Hye(t) + Hye(t — 7i(t)))" (Hye(t) + Hye(t — 7:(1)))
+ (Cie(t) + Die(t — 7(1))T (P — 6EET) ™ (Cre(1)
+ Die(t — 1,(1))).
(24)

From (5), the following inequalities hold for any
positive diagonal matrix M; with compatible dimension

0<2{e(r)"M;p(e(r)) — e(t) MiTe(t)}. (25)
From (18-25), we obtain that

£v1<t7eni)§é(>“()é<>+e( -
+fe(t — (1) Lif (e(t — 7,(2))).

(1)) Kie(t — (1))

<P. (26)
(21) where
Vit Yy 3 + Pidi(t) PiYoi + g P;B;(1)
_ * —20; R — Si + QiAi(1) 0:iYs; QiBi(t)
Qi(t) - * * W — Ji =+ sym((S, — R,)A,(I)) (S, — R,’)Yzl' (S, — R,‘)B,‘(t) 5
* * * Us; + Yo 1Z(z+
* * * Vei
For any j = 1,2,...,n, from (5) we obtain that with
(f/'(ej(t)) - O'/e/ )(13 (ej(1)) — Vje/ )) <0, B .
. =CH(P7!' — EET) Ci+¢ 'HLH;;,
(st = (1)) — o1 - r(r))) by = G (P — oL Gt e HiHy
(file;(r —o( )) —yei(t = 7(1))) 0. Vg = C! (P7' = &EE!) "' Dy + &7 HY Hai,
Therefore, the following matrix inequalities hold for any Yo = DiT (P;l — giEl-EiT) ! D; + glfl H£H4i~
positive diagonal matrices J;, Z; with compatible
dimensions Now, by (14), it is easy to see that there exists a scalar
r r o > 1 such that
0< —e(t) ZTJie(t) +e(t) Ji(Z 4+ T)f (e(2))
—fle()"Jif (e(1)), (22) (¥, AE; B; Ci 0 ]
0< —e(t — (1)) Z0Ze(t — 1,(1)) * o —el 0 0 0
T et — (1) Z(Z + T)f (elt — (1)) (23 |+ o+ —uRF 0 1 |<0, (27)
— fle(t = (1)) Zif (e(r — (1)) X * —al 0
| * * * x*  —P;]

According to Assumption 1 and Lemma 1,
positive scalar ¢; we have that

for any
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where
aFi 4 Y Vi + Pi; PiYai + g PB;
N * —20;i Ri — Si + QiAi 0iYsi QiB;
¥, = * £ W—Ji+sym((S; — R)A) (Si—R)Yy (S:— R)B: |-
* * * Usi + Yo %Z,-(Z +T)
* * * * Vei

Applying Schur complements to (27) results in

oF; + g Vs + Piddi PiYai + P;B;
* —20; Ri — Si + QiAi 0iYai 0iBi
* * W —J; +sym((S; — R)A;) (Si—Ri)Yn (Si—Ri)B;
* * * Vs + Yo, %Z;(Z +T)
* * * * Vi
PiE; pE " 0]ro1"
OiL; OiE; 0 0
T | (Si—R)E: | | (S —R)E: | +e|Hf || Hf | <O0. (28)
0 0 0 0
0 0 Hj, | | Hy;

Using Assumption 1 and Lemma 1, for any positive
scalar ¢; we have that

0 0 PiAA;(1) 0 P;AB;(1)
x 0 0:AA(1) 0 Q:AB;(1)
x o+ sym((S; — R)AA;(t)) 0 (S, — R)AB(1)
* % * 0 0
* ok * * 0
PE; 01" 0 PE; T
OiE; 0 0 O.E;
(Si— R)E | ®i(0) | HI, | + | H | ®:(0)" | (S — R)E;
0 0 0 0
0 Hj, Hj; 0
P.E; pE 1" 077077
OiE; OiE; 0 0
<& (Si—R)E | | (Si—R)E: | +e | HI; | | HI,
0 0 0 0
0 0 H | LH],

This together with (28) provides that
Q;(t) + diag{aF; 0 0 0 0}<0.
By this inequality and (26), it is easy to see that
Vit e,i) < — ote( 1) Fre(r) + e(t — (1)) Kie(t — w(1))
+flelt — () Lif (e(r — u(1))).

Taking the mathematical expectations on both sides of
(17), from above inequality we have that

dE{V/(t,e,,i)} = E£V (2, e,,i)dt
+E{ S vilnenpnaon) |

< [—ae(t)" Fie(t)dt + e(t — ;(1))" Kie(t — wi(t))dt
+f (et — (1)) Lif (e(t — 7:(t))))dr.

By integrating above inequality from ¢ — 7(¢) to ¢, we
obtain that

1

E{Vi(t,e;,0)} — E{V/(z, er—z(1) N} = / E{Vi(s, e, i)}ds

1=(t)
<-4 /() (5)" Fre(s)ds + /() [e(s — ti(5))"Kiels — w(s))

It follows that

dVi(z, e, i . .
E [%} +1E [vl (t7 €, l) -V (t: €r—(1)s l)}

< —ae(t) Fie(t) + e(t — 7(1)) Kie(t — (1))

t

/ o(s)" Fie(s)ds

1—1(r)

+fe(t = (1) Lif (e(t — (1)) —

t

+1 / le(s — 1;(s)) Ke (s — 1;(s))

t—1(1)

+f(e(s — () Lif (e(s — i(s)))]ds.

In view of (10) and (11), we have that
—e(t) Fie(r) < — ve(t) Pe(t), (30)

t

. / o(s)" Fie(s)ds

t—1(1)

Noticing that
€i(1)

ZZq,,/

/ls ds <22qj,

/ (6 — 7,)sds = e(t) O:(A — A)e(s),

ej(t)
n
zzr,,/ (035 — f,(5) d;<zzr,,
J=1 0
e(t)
/ j)sds = e(t) Ry(Z — T)e(r),
0
(1)
n
2 5],/ [fi(s) — s d3<225,,
J=1 0
ej(1)

—9,)sds = (1) S;(Z — T)e(t).
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Therefore, from (16) we have that
E{Vi(t,er,i)} <e(r)" Pie(r)
1

" / Te(s)" Ue(s) + £(e(s)) W (e(s))] ds.
t—1(1)

This together with (30-31) yields that

t

—e(t) Fre(t) — / [e(s)TF,-e(s)}ds <
1=;(t)
—VE{V1(t,e,,i)}. (32)
Moreover, E{Vi(t,e;,i)} >e(r)" Pie(r), therefore, it

follows from (5) and (12) that

e(t — (1) Kie(t — wi(2)) +fle(t — w(2))"
<e(t —1;(1))" (K; + OL®)e(r — 1,(1))
<5 :ﬁi e(t — (1)) Pie(r — (1))

< 1+ lfiE{Vl(ty er—r;(r)vi)}'

Lif (e(t — (1))

Thus, we obtain that

/ le(s — 7(s)) Kie(s — wi(s))
t—1,(1)

+f(els — ui(s))) Lif (e(s — wi(s)))lds (34)

t

/ E{V] (Sv Cs—1,(s)> l)}dS

t=7i(t)

v

<
1417

Substituting (32-34) into (29) derives that

dE{V\ (1, e,,i
w < — (14 w)E{Vi (t,e1,0)} + E{Vi (¢, €10, )}
i t
v .
+ 147 E{Vl (t7 €r—1(1)> l)} +1 / E{Vl (S, es—‘r;(s))}ds

L 1=7;(t)
— (1 +a)E{Vi(t,e;,0)} +1E{Vi (1, €,—r,0), 1) }

v .
+ - E{Vl (tv Cr—7(1)» l)} + lfi(t) sup E{Vl (S7 es—r,-(s))}
1417 (=27

- (14 ocv)-IE{Vl(t7 e )} +(+v) [ il;?]E{Vl (s, e5,0)}.

Noting that o > 1,
inequality results in

E{Vi(t,e:,i)} < sup E{V(s, e i)} e ™,
[-27,0]

applying Lemma 5 to above

where x is the unique positive solution of the following
equation:

@ Springer

K=14+av— (v+1)e*.
Therefore, we arrive at the conclusion that
2 —K 2
E{lle®)[I"} <e™E{llo®)|"}-

The proof is completed.

Appendix 2
Proof of Theorem 2

Define the following Lyapunov-Krasovskii functional:

V(t, e, Q) ZV t,e:,0)

where V,(t, ¢, i) ie deﬁned in (16) and

/ / 1 T1 7;(s)dsdv

t e,, ==
e(s))dsdv

T3 p(s)dsdv.

It can be easily verified that V(z, e,, i) is a nonnegative
function over [—7, +00). Evaluating the time derivative of
V(t, e,, i) along the trajectory of system (3), we have that

dV(t, e, i) = £V(t,e;,0)dr + % V(t, e, i)p;(H)dw(t), (35)
where
£Vi(1, e1,1) <2{e()) P + [B(r) — Ae(1)]"Q;

+ [Ze(t) — f(e()]"Ri + [f(e(t) — Te(r)]" S}

x| = B() + Ai(0)f (e(1)) + Bi(t)f (e(t — (1)) + Gi(1)

t

/ f(e(s))ds + Yie(r) + Yoe(t — (1))

t—0;(t)

T Z nj/k Qk A /\ (Rk + Sk)(E — l—‘)}e(t)

N
k=1

N

n’ (Z ;P + U)

j=1

= (1= %(0))e(t — u(0)"

N
e(t — 7i( —|—an, e(t — (1)) Ue(t — 7;(1))
=1

+f(e (I_Tt(t))) Wf(e(t — (1)) +/(e (t))TWf(E(f)
= (1= (0)f (et — (1)) W (e

\
=
2
=
!
2
=2
=
+
2
=
%
L
2
=
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£Va(t,er,i) = Th1,(0) Tuyi(e)
t

/ 14(8) T z,(s)ds
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<1 - Z n,]rj>
—T;

+ 81/ (e(1) Tof (e(1)) — Q;(

_
I
(1=
8
=
)
N———

t

/ F(e(s)) Taf (e(s))ds

(37)

For any ¢ with 0<7;(r)<7; and 0<g,;(t)<g; from
Lemma 2 we have the following inequalities
t

( }:nﬂJ /‘ () Ty ,(s)ds

t—1;

¢ t—1,(1)
-z / ) Tds -7 [ ) Tigls)d
t—1;() =7
-~ t r t
T; _
<5 [ aos| n| [ oaes
t—7i(1) 1t=;(t)
B t—7i(t) T 1=7;(t)
T; —
- [ awa | n| [ s,
(38)
N
—@-(1 S ) / F(e(5)" Taf (els))ds
=1
1—0;(1)
/ (e(s) T Taf e ))ds_@./ F(e(s) Taf (els))ds
1=0i(r) 1=¢;
t r t
<=8l [ senns| | [ setnas
1—0;(1) 1—0;(1)
) 1—0,(1) T e
Q;
"o | ) Sl /f $)ds |-
1-g;
(39)

Set A; = 1, u; = 3, based on Lemma 2 we get from (38—
39) that

_s / 1) T (s)ds — g / F(e(s)) Tof (e(s))ds

T T T T
< max{—cI T1¢; — 3¢§Tics — ¢ Tags — 3¢], Taciy,
T T T T
— 671167 — 363 Tics — 3¢ 1266 — €11 126115 -
T T
=3¢ 1167 — cgTics

— 38Ty — i Tigg — ¢t Toce — 3¢], Tacyy )

— 3¢ Tacs — 1, Tacyys
(40)

It is easy to verify that Eq. (40) holds for any ¢ with
0<7;(t)<7; and 0 <g,(r) <g;.
From [4, 17], we have that

Bl [ T

1=17;(t)

On the other hand, by the Leibniz-Newton formula, we

get that
[ s =)= eti-uw)- [ plsaot)
t—1,(1) t—1,(1)

Therefore, the following equalities hold for any real
matrices X;;(j = 1, 2, 3) with compatible dimensions

260" X118 = 1:(t) = Ble(t)) + Ai(D)f (e(t)) + Bi(1)f (e(t — wi(1)))

t

+Gi(t) /f(e(s))dS+Y1i€(f)+Y2ie(f*’«'i(1)) =0,

1=0;(t)

(43)
2(Xuie(t) + Xae(t — 7i(1)))”
e(t) —e(r — 1 / pi(s)do(s / 1i(s)dsp =0
t—7(t) 1—1(t)
(44)

From Lemma 1, the following matrix inequalities hold
for any positive scalar ¢;
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ZCi(f)TlpZi(AAi(f)% + AB;(t)cs + AGi(t)c6) (i)
= 20,(t) " WLE®:(1) (Hyics + Haics + Haice)(i(1)
<G e "WEEENWE, + e(Hucs + Haics + Hace)'
(Hyics + Haics + Hzice) }i(1).
(45)
By (22-25), (36-37) and (40-45), and taking the

mathematical expectations on both sides of (35), we
obtain that

Oe
< Ci(t)T(Qi + Zmax{—CgTTI Cg — €1T1T2Q11» —QgTTI Cg — ‘;gTZC()v

—e1Tigr — 5 Tage, =57 Tigy — ¢ Tacun }) (D).

dE{V(t,e;,i)} = E£V(t, e, 0)dt + E{g V(t, e, i)pi(t)dw(t)}

From (15), there exists a positive scalar o, such that
dE{V(1,e,,i)} < — olE||e(t)|]*.

Similar to the proof of Theorem 1 in [27], it implies that
the error system (3) is globally exponentially stable. This
completes the proof.
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