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Abstract This paper studies the exponential synchroni-

zation problem for a class of stochastic perturbed chaotic

neural networks with both Markovian jump parameters and

mixed time delays. The mixed delays consist of discrete

and distributed time-varying delays. At first, based on a

Halanay-type inequality for stochastic differential equa-

tions, by virtue of drive-response concept and time-delay

feedback control techniques, a delay-dependent sufficient

condition is proposed to guarantee the exponential syn-

chronization of two identical Markovian jumping chaotic-

delayed neural networks with stochastic perturbation.

Then, by utilizing the Jensen integral inequality and a

novel Lemma, another delay-dependent criterion is estab-

lished to achieve the globally stochastic robust synchroni-

zation. With some parameters being fixed in advance, these

conditions can be solved numerically by employing the

Matlab software. Finally, a numerical example with their

simulations is provided to illustrate the effectiveness of the

presented synchronization scheme.

Keywords Halanay-type inequality � Exponential

synchronization � Chaotic-delayed neural networks �
Markovian jump

1 Introduction

In 1990, Pecora and Carroll [10] addressed the synchroni-

zation of chaotic systems using a drive-response concept.

The idea is to use the output of the drive system to control

the response system so that they oscillate in a synchronized

manner. Research on the synchronization of chaotic activity

has broadened considerably in the last few decades. Besides

the original master–slave mechanism for chaos synchroni-

zation, a wide variety of approaches have been presented for

the synchronization of chaotic systems which include linear

feedback control, nonlinear feedback control, impulsive

control method, and adaptive design control, among many

others. Synchronization in chaotic systems has been utilized

in many applications. It was used to understand self-orga-

nization behavior in the brain as well as in ecological sys-

tems and has been applied to secure communications,

among others [13–15, 17, 23, 27, 28].

Meanwhile, many neural networks may experience

abrupt changes in their structure and parameters caused by

some phenomena such as component failures or repairs,

changing subsystem interconnections, and abrupt environ-

mental disturbances. In this situation, there exist finite

modes in the neural networks, and the modes may be

switched (or jumped) from one to another at different

times. These kinds of systems are known as Markovian

jump neural networks. When noise disturbances are con-

sidered in Markovian jump neural networks, this class of

neural networks is usually called Markovian jump sto-

chastic neural networks or stochastic neural networks with

Markovian switching. It is known that a Markovian jump

stochastic neural network is more complicated and com-

prises a general stochastic neural network as its special

case. Owing to the practical importance, many papers have

recently devoted to study the stability analysis issue for
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Markovian jump stochastic neural networks [4, 17, 18, 21,

24, 27]. However, up to now, the synchronization problem

for stochastic chaotic neural networks with Markovian

switching has received little research attention, despite its

practical importance. This situation motivates our present

investigation.

This paper studies the exponential synchronization

problem for a class of stochastic perturbed chaotic neural

networks with both Markovian jump parameters and mixed

delays. The mixed delays consist of discrete and distributed

time-varying delays. Firstly, by using drive-response con-

cept, a Halanay-type inequality for stochastic differential

equations and time-delay feedback control techniques, a

delay-dependent sufficient condition is obtained to guar-

antee the exponential synchronization of two identical

Markovian jumping chaotic-delayed neural networks with

stochastic perturbation. Next, by means of the Jensen

integral inequality and a novel Lemma, another delay-

dependent result is established to achieve the globally

stochastic robust synchronization. With some parameters

being fixed in advance, these conditions are expressed in

terms of linear matrix inequalities, which can be solved

numerically by employing the Matlab software. Finally, a

numerical example is provided to illustrate the effective-

ness of the presented synchronization scheme.

Notations Throughout this paper, WT,W-1 denote the

transpose and the inverse of a square matrix W, respec-

tively. W [ 0(\0) denotes a positive (negative) definite

symmetric matrix, I denotes the identity matrix with

compatible dimension, the symbol ‘‘*’’ denotes a block

that is readily inferred by symmetry. The shorthand

colfM1;M2; . . .;Mkg denotes a column matrix with the

matrices M1;M2; . . .;Mk. sym(A) is defined as Aþ
AT ; diagf�g stands for a diagonal or block-diagonal matrix.

For s [ 0; C ½�s; 0�;Rnð Þ denotes the family of continuous

functions / from [ -s, 0] to R
n with the norm jj/jj ¼

sup�s� s� 0 j/ðsÞj. Moreover, let ðX;F;PÞ be a complete

probability space with a filtration fFtgt� 0 satisfying the

usual conditions and Ef�g representing the mathematical

expectation. Denote by Cp
F0
½�s; 0�;Rnð Þ the family of all

bounded, F0-measurable, C ½�s; 0�;Rnð Þ-valued random

variables n = {n(s): - s B s B 0} such that sup�s� s� 0

EjnðsÞjp\1. jj � jj stands for the Euclidean norm; Matri-

ces, if not explicitly stated, are assumed to have compatible

dimensions.

2 Problem description and preliminaries

In this paper, we consider the following stochastic neural

networks with both discrete and distributed time-varying

delays

dxðtÞ ¼
 
� ~bðxðtÞÞ þ Aðt; gðtÞÞ~f ðxðtÞÞ

þ Bðt; gðtÞÞ~f ðxðt � sðt; gðtÞÞÞÞ

þ Gðt; gðtÞÞ
Z t

t�.ðt;gðtÞÞ

~f ðxðsÞÞdsþ I

!
dt

þ ~qðt; xðtÞ; xðt � sðt; gðtÞÞÞÞdxðtÞ;
xðtÞ ¼ u1ðtÞ; t 2 ½�ŝ; 0�;

ð1Þ

where xðtÞ ¼ ðx1ðtÞ; x2ðtÞ; . . .; xnðtÞÞT 2 R
n is the state

vector associated with n neurons, ~bðxðtÞÞ ¼ ð~b1ðx1ðtÞÞ;
~b2ðx2ðtÞÞ; . . .; ~bnðxnðtÞÞÞT 2 R

n is the behaved function.

Aðt; gðtÞÞ ¼ AðgðtÞÞ þ DAðt; gðtÞÞ; Bðt; gðtÞÞ ¼ BðgðtÞÞ þ
DBðt; gðtÞÞ;Gðt; gðtÞÞ ¼ GðgðtÞÞ þ DGðt; gðtÞÞ are the

interconnection matrices representing the weight

coefficients of the neurons. A(g(t)), B(g(t)), G(g(t)) are

known real constant matrices. DAðt; gðtÞÞ;DBðt; gðtÞÞ;
DGðt; gðtÞÞ are the time-varying structured uncertainties.

~f ðxðtÞÞ ¼ ~f1ðx1ðtÞÞ; ~f2ðx2ðtÞÞ; . . .; ~fnðxnðtÞÞ
� �T2 R

n denotes

the neural activation function. The bounded functions

s(t, g(t)), .(t, g(t)) represent unknown time-varying delays

with 0� sðt; gðtÞÞ� �sðgðtÞÞ� �s; _sðt; gðtÞÞ� sdðgðtÞÞ;
0� .ðt; gðtÞÞ� �.ðgðtÞÞ� �., where �sðgðtÞÞ; �s; �.ðgðtÞÞ; �. are

positive scalars, ŝ ¼ maxf�s; �.g. I ¼ ðI1; I2; . . .; InÞT is an

external input, u1ðtÞ is a real-valued initial vector function

that is continuous on the interval �ŝ; 0½ �. {g(t), t C 0} is a

homogeneous, finite-state Markovian process with right

continuous trajectories and taking values in finite set

N ¼ f1; 2; . . .;Ng based on given probability space

ðX;F;PÞ and the initial model g0. ~qðt; xðtÞ; xðt �
sðt; gðtÞÞÞÞ is called the noise intensity vector. x(t) is a one-

dimensional Brownian motion defined on space ðX;F;PÞ
with EfdxðtÞg ¼ 0; Ef½dxðtÞ�2g ¼ dt: Let P ¼ ½pij�N�N

denote the transition rate matrix with transition probability:

Pðgðt þ dÞ ¼ jjgðtÞ ¼ iÞ ¼ pijdþ oðdÞ; i 6¼ j;
1þ piidþ oðdÞ; i ¼ j;

�

where d [ 0; limd!0þ
oðdÞ
d ¼ 0 and pij is the transition rate

from mode i to mode j satisfying pij C 0 for i = j with

pii ¼ �
XN

j¼1;j 6¼i

pij; i; j 2 N :

For convenience, each possible value of g(t) is denoted

by iði 2 NÞ in the sequel. Then, we have

Ai ¼ AðgðtÞÞ; Bi ¼ BðgðtÞÞ; Gi ¼ GðgðtÞÞ;
DAiðtÞ ¼ DAðt; gðtÞÞ; DBiðtÞ ¼ DBðt; gðtÞÞ;
DGiðtÞ ¼ DGðt; gðtÞÞ:
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Throughout this paper, we make the following

assumptions:

Assumption 1 The noise intensity vector is assumed to

be of the form:

~qðt; xðtÞ; xðt � siðtÞÞÞ ¼ CiðtÞxðtÞ þ DiðtÞxðt � siðtÞÞ;

where

CiðtÞ ¼ Ci þ DCiðtÞ;DiðtÞ ¼ Di þ DDiðtÞ;

with Ci, Di being known real constant matrices.

Assumption 2 The admissible parameter uncertainties

are assumed to be of the following form:

DAiðtÞ DBiðtÞ DGiðtÞ DCiðtÞ DDiðtÞ½ �
¼ EiUiðtÞ H1i H2i H3i H4i H5i½ �;

where Ei;Hjiðj ¼ 1; . . .; 5Þ are known real constant matri-

ces with appropriate dimensions, and UiðtÞ 2 R
n�n is the

time-varying uncertain matrix satisfying UiðtÞTUiðtÞ� I for

any t [ 0.

Assumption 3 Each ~bjðfÞ is differentiable and satisfies

the following condition

0\kj�
~bjðnÞ � ~bjðfÞ

n� f
� dj; 8n; f 2 R; n 6¼ f;

where kj, dj are known positive real constants.

For notational simplicity, we denote D¼diagfd1;...;dng;
K¼diagfk1;...;kng.

Assumption 4 Each neural activation function ~fjð�Þðj ¼
1; 2; . . .; nÞ is bounded, differentiable and satisfies the fol-

lowing condition

cj�
~fjðnÞ � ~fjðfÞ

n� f
� rj; 8n; f 2 R; n 6¼ f;

where cj, rj are known real constants.

We denote C¼diagfc1;c2;...;cng; R¼diagfr1;r2;...;rng;
H¼ diagfh1;h2;...;hng, where hj¼maxfjcjj;jrjjg.

The system (1) is considered as a drive system. Based on

the drive-response concept for synchronization of coupled

chaotic systems, which was initially proposed by Pecora

and Carroll in [10], the corresponding response system of

(1) is given in the following form:

dyðtÞ ¼
 
� ~bðyðtÞÞ þ AiðtÞ~f ðyðtÞÞ þ BiðtÞ~f ðyðt � siðtÞÞÞ:

þ GiðtÞ
Z t

t�.iðtÞ

~f ðyðsÞÞdsþ Iþ uiðtÞ
!

dt

þ ~qðt; yðtÞ; yðt � siðtÞÞÞdxðtÞ;
yðtÞ ¼ u2ðtÞ; t 2 ½�ŝ; 0�; ð2Þ

where yðtÞ ¼ ðy1ðtÞ; y2ðtÞ; . . .; ynðtÞÞT 2 R
n is the state

vector associated with n neurons, uiðtÞ ¼ ðui1ðtÞ; . . .;

uinðtÞÞT 2 R
n is the state feedback controller given to

achieve the exponential synchronization between drive-

response system, u2ðtÞ is a real-valued continuous vector

function on the interval ½�ŝ; 0�.
In order to investigate the problem of exponential syn-

chronization for the chaotic-delayed neural networks with

stochastic perturbation, ej(t) = yj(t) - xj(t) is defined as

the synchronization error, where xj(t) and yj(t) are the ith

state variables of drive system (1) and response system (2),

respectively. Therefore, the error dynamical system

between (1) and (2) is given as follows:

deðtÞ ¼
 
� bðeðtÞÞ þ AiðtÞf ðeðtÞÞ þ BiðtÞf ðeðt � siðtÞÞÞ:

þ GiðtÞ
Z t

t�.iðtÞ

f ðeðsÞÞdsþ uiðtÞ
!

dt

þ qðt; eðtÞ; eðt � siðtÞÞÞdxðtÞ¼: viðtÞdt þ qiðtÞdxðtÞ;
eðtÞ ¼ uðtÞ¼: u2ðtÞ � u1ðtÞ; t 2 ½�ŝ; 0�; ð3Þ

where eðtÞ¼ ðe1ðtÞ;e2ðtÞ; . . .;enðtÞÞT ;bðeðtÞÞ¼
�

~b1ðy1ðtÞÞ�
~b1ðx1ðtÞÞ; ~b2ðy2ðtÞÞ� ~b2ðx2ðtÞÞ; . . .; ~bnðynðtÞÞ� ~bnðxnðtÞÞ

�T
;

f ðeðtÞÞ¼
�
~f1ðy1ðtÞÞ� ~f1ðx1ðtÞÞ; ~f2ðy2ðtÞÞ� ~f2ðx2ðtÞÞ; . . .;

~fnðynðtÞÞ� ~fnðxnðtÞÞ
�T
; f ðeðt� siðtÞÞÞ¼

�
~f1ðy1ðt� siðtÞÞÞ

�~f1ðx1ðt� siðtÞÞÞ; ~f2ðy2ðt� siðtÞÞÞ �~f2ðx2ðt� siðtÞÞÞ; . . .;
~fnðynðt� siðtÞÞÞ �~fnðxnðt� siðtÞÞÞ

�T
;qiðtÞ¼

:
qðt;eðtÞ; eðt�

siðtÞÞÞ ¼ ~qðt;yðtÞ; yðt� siðtÞÞÞ �~qðt;xðtÞ;xðt� siðtÞÞÞ¼
CiðtÞeðtÞþDiðtÞeðt� siðtÞÞ.

In this paper, the control input vector with state feed-

back is designed as follows:

uiðtÞ ¼ Y1ieðtÞ þ Y2ieðt � siðtÞÞ: ð4Þ

From Assumptions 2,3, we obtain that

kj�
bjðfÞ

f
� dj; fjð0Þ ¼ 0; cj�

fjðfÞ
f
� rj; 8f 2 R; f 6¼ 0:

ð5Þ

Therefore, it follows from [3] that system (3) admits a

trivial solution e(t) = 0.

To prove our main theorem, we need the following

preliminaries.

Definition 1 Let w : R! R be a continuous function, the

upper right Dini derivative of w(t) is defined as

DþwðtÞ ¼ lim
Dt!0þ

sup
wðt þ DtÞ � wðtÞ

Dt
:

Definition 2 The drive system (1) and the response

system (2) are said to be exponentially synchronized if, for
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a suitably designed feedback controller, there exist

constants t C 1 and #[ 0 such that

E jjyðtÞ � xðtÞjj2
n o

� tE jjyð0Þ � xð0Þjj2
n o

e�#t

for any t C 0, and the constant # is defined as the expo-

nential synchronization rate.

The development of the work in this paper requires the

following lemmas.

Lemma 1 (see [8, 12, 16, 25]). Let A, B and C be real

constant matrices with appropriate dimensions, matrix

UðtÞ satisfies UðtÞUðtÞT � I. Then for any matrix P [ 0 and

scalar e [ 0, we have the following inequalities:

(1) ATB ? BTA B ATP-1A ? BTPB;

(2) ðAþ BUðtÞCÞT P�1ðAþ BUðtÞCÞ�ATðP
�eBBTÞ�1

Aþ eCT C if P� eBBT [ 0:

Lemma 2 (see [5], Jensen integral inequality). For any

positive symmetric constant matrix M 2 R
n�n, scalars

r1 \ r2 and vector function - : ½r1; r2� ! R
n such that the

integrations concerned are well defined, the following

matrix inequality holds:

Zr2

r1

-ðsÞds

0
@

1
A

T

M

Zr2

r1

-ðsÞds

0
@

1
A

�ðr2 � r1Þ
Zr2

r1

-TðsÞM-ðsÞds:

From Lemma 2 of [26], we can easily establish the

following Lemma 3, which plays an important role in

obtaining our delay-dependent stability result.

Lemma 3 Set kj, lj be scalars satisfying kj� 1; kj þ
lj� 4ðj ¼ 1; 2Þ;Rlðl ¼ 1; . . .; 4Þ be any nonnegative sym-

metric matrices, h(t), m(t) be real functions such that

h : Rþ ! ðh; �hÞ; m : Rþ ! ðm; �mÞ, then we have

� R1

hðtÞ � h
� R2

�h� hðtÞ
� R3

mðtÞ � m
� R4

�m� mðtÞ

� max � k1R1 þ l1R2

�h� h
� k2R3 þ l2R4

�m� m
;

�

� k1R1 þ l1R2

�h� h
� l2R3 þ k2R4

�m� m
;� l1R1 þ k1R2

�h� h

� k2R3 þ l2R4

�m� m
;� l1R1 þ k1R2

�h� h
� l2R3 þ k2R4

�m� m

�
:

ð6Þ

If we set kj = lj = 1(j = 1,2) in (6), noticing that

� R1 þ R2

�h� h
� R3 þ R4

�m� m
� max � R1

�h� h
� R3

�m� m
;

�

� R1

�h� h
� R4

�m� m
;� R2

�h� h
� R3

�m� m
;� R2

�h� h
� R4

�m� m

�
;

then we have the following lemma which is used in [11, 20].

Lemma 4 (See [11, 20]). Set R1;R2;R3;R4 be any non-

negative symmetric matrices, h(t), m(t) be real functions

such that h : Rþ ! ðh; �hÞ; m : Rþ ! ðm; �mÞ, then we have

� R1

hðtÞ � h
� R2

�h� hðtÞ
� R3

mðtÞ � m
� R4

�m� mðtÞ

� max � R1

�h� h
� R3

�m� m
;� R1

�h� h
� R4

�m� m
;

�

� R2

�h� h
� R3

�m� m
;� R2

�h� h
� R4

�m� m

�
:

Remark 1 Usually, we choose kj = 1, lj = 3(j = 1, 2) in

Lemma 3. Apparently the result derived from Lemma 3 is

less conservative than Lemma 4.

3 Main result

As well known, Itô’s formula plays important role in the

stability analysis of stochastic Markovian systems and we

cite some related results here [1]. Consider a general sto-

chastic Markovian delay system

dzðtÞ ¼ f ðt; zðtÞ; zðt � jÞ; gðtÞÞdt þ gðt; zðtÞ; zðt � #Þ;
gðtÞÞdxðtÞ; ð7Þ

on t C t0 with initial value zðt0Þ ¼ z0 2 R
n, where #[ 0 is

time delay, f : Rþ � R
n � R

n �N ! R
n and g : Rþ�

R
n � R

n �N ! R
nþm. Let C2;1

R
þ � R

n � R
n �N ;Rþð Þ

denote the family of all nonnegative functions V(t, z, v,

g(t)) on R
þ � R

n � R
n �N which are continuously twice

differentiable in z, v and once differentiable in t. Let £ be

the weak infinitesimal generator of the random process

fzðtÞ; gðtÞgt� t0
along the system (7) (see [9, 19]), i.e.,

£Vðt; zt; vt; iÞ : ¼ lim
d!0þ

1

d
E Vðt þ d; ztþd; vtþd; gðt þ dÞÞjf½

zt; vt; gðtÞ ¼ ig � Vðt; zt; vt; gðtÞ ¼ iÞ�;
ð8Þ

then, by the Dynkin’s formula [24, 28], one can get

EVðt; zðtÞ; vðtÞ; iÞ ¼ EVðt0; zðt0Þ; vðt0Þ; iÞ

þ E

Z t

t0

£Vðs; zðsÞ; vðsÞ; iÞds:

432 Neural Comput & Applic (2014) 25:429–442
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In order to get our main results, we propose the following

Halanay-type inequality for stochastic differential

equations:

Lemma 5 [2, 7]. Let constants a [ b C 0, d [ 0. Assume

that there exists a positive continuous function V(t, x)

satisfying the following inequality

DþEðVðt; xðtÞÞÞ� � aEðVðt; xðtÞÞÞ
þ b sup

s2½t�d;t�
EðVðs; xðsÞÞÞ; t� t0;

then

EðVðt; xðtÞÞÞ� sup
s2½t0�d;t0�

EðVðs; xðsÞÞÞe�tðt�t0Þ;

where t 2 ð0; a� b� is the unique positive solution of the

equation: t = a - betd.

First, we consider model (1) with Gi(t) = 0, i.e., the

error dynamical system between (1) and (2) is given as

follows:

deðtÞ ¼ �bðeðtÞÞ þ AiðtÞf ðeðtÞÞ þ BiðtÞf ðeðt � siðtÞÞÞ½
þ uiðtÞ�dt þ qiðtÞdxðtÞ;

eðtÞ ¼ uðtÞ; t 2 ½��s; 0�: ð9Þ

Before presenting our first result, for simplicity, we

introduce a new vector as

niðtÞ ¼ col eðtÞ; bðeðtÞÞ; f ðeðtÞÞ; eðt � siðtÞÞ; f ðeðt � siðtÞÞÞf g:

Let -jðj ¼ 1; 2; . . .; 5Þ be row vectors with block matrix

entries, i.e., the j-th block is an identity matrix and the

others are zero blocks, such that eðtÞ ¼ -1niðtÞ; bðeðtÞÞ ¼
-2niðtÞ, and so on.

Now, we begin to state our result for error system (9).

Theorem 1 (See Appendix 1 for a proof). Assume that

Assumptions 1–4 hold and �si; �s; sdi are given scalars. The

drive system (1) and the response system (2) with Gi(t) = 0

can be exponentially synchronized for any 0� siðtÞ�
�si� �s; _siðtÞ� sdi, if there exist symmetric definite positive

matrices Pi, Fi, U, Ki, diagonal positive matrices Qi, Ri,

Si, W, Ji, Zi, Mi, Li, and positive scalars ei; �i; i; m, such that

the following matrix inequalities hold

m�Pi�Fi; ð10Þ
mHWH� iFi þ mU� 0; ð11Þ
ð1þ i�siÞðKi þHLiHÞ � mPi� 0; ð12Þ
Xi\0; ð13Þ

where

�Pi ¼ Pi þ QiðD� KÞ þ ðSi þ RiÞðR� CÞ;

Xi ¼ -1
TFi-1 þ

XN

j¼1

pij-
T
1 Pj-1 � -T

4 Ki-4 � -T
5 Li-5

þ sym -T
1 Mi-2

� �
� 2-T

1 MiC-1

þ
-1

-3

" #T �RCJi
1
2
ðRþ CÞJi

� �Ji

" #
-1

-3

" #

þ
-4

-5

" #T �RCZi
1
2
ðRþ CÞZi

� �Zi

" #
-4

-5

" #

þ
XN

j¼1

p0ij -T
1 ½QjðD� KÞ þ ðRj þ SjÞðR� CÞ�-1

�
þ �sj -T

4 U-4 þ -T
5 W-5

� ��
þ -T

1 U-1

þ -T
3 W-3 � ð1� sdiÞ -T

4 U-4 þ -T
5 W-5

� �
þ �iðH1i-3 þ H2i-5ÞTðH1i-3 þ H2i-5Þ

þ ��1
i wT

0iEiE
T
i w0i þ sym wT

0iðY1i-1 � -2 þ Ai-3

�
þ Y2i-4 þ Bi-5Þg þ ðCi-1 þ Di-4ÞT

� �P�1
i � eiEiE

T
i

� ��1ðCi-1 þ Di-4Þ

þ e�1
i ðH4i-1 þ H5i-4ÞTðH4i-1 þ H5i-4Þ;

with

w0i ¼ ePi-1 þ Qi-2 þ ðSi � RiÞ-3;ePi ¼ Pi � KQi þ RRi � CSi; p0ij ¼ maxf0; pijg:

Remark 2 If we set U = W = 0 in Theorem 1, then we

can obtain a criterion to verify the exponential

synchronization of system (1) and system (2) with

_sðt; gðtÞÞ are not known or the time-varying delays

s(t, g(t)) are not differentiable.

Remark 3 Based on Schur complements, inequality (13)

is equivalent to the following linear matrix inequality

which can be solved numerically by employing the Matlab

software:

Wi AiEi Bi Ci 0

� ��iI 0 0 0

� � �eiEiE
T
i 0 I

� � � �eiI 0

� � � � ��Pi

2
66664

3
77775\0; ð14Þ
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where

with

w1i ¼ sym ePiY1i

� �
þ U � RCJi � 2MiCþ

XN

j¼1

pijPj

þ
XN

j¼1

p0ij QjðD� KÞ þ ðRj þ SjÞðR� CÞ
� 	

;

w2i ¼ �ePi þ YT
1iQi þMi; w3i ¼ YT

1iðSi � RiÞ þ
1

2
ðRþ CÞJi;

w4i ¼ sym ðSi � RiÞAið Þ þ �iH
T
1iH1i;

w5i ¼ �ð1� sdiÞU � Ki � RCZi þ
XN

j¼1

p0ij�sjU;

w6i ¼ �ð1� sdiÞW � Zi � Li þ
XN

j¼1

p0ij�sjW :

Remark 4 For the inequalities (10–12), note that several

nonlinear terms, such as, mPi and iKi, coexist in the LMIs (10–

12); thus, the conventional LMI solvers (feasp, mincx, and

GEVP) are not applicable directly. In view of this fact, we

present the following procedure to solve the inequalities (10–13).

1. Initialize the system parameters, including Ai;Bi;Ci;Di;

Ei;Hjiðj ¼ 1; 2; 4; 5Þ; pil;R;C;D;K;H; �si; �s; sdi ði; l ¼
1; 2; . . .;NÞ, and two given coefficients of accuracy

j[ 0 and ~j [ 0.

2. To obtain the theoretic maximum value of m that

satisfies the LMIs (10)-(13), we can solve the follow-

ing generalized eigenvalue minimization problem

(GEVP) (see [6, 22]):

minimize m1 [ 0

s.t. inequalities (13) and �Pi� m1Fi hold.

Denote the obtained minimum value by m1, then we

obtain the maximum value �m ¼ 1=m1 of m. Set m ¼ �m (i.e.,

choose �m as the first value of m in the beginning of the new

iterative operation).

3. Check whether m\ 0; if yes, go to step 9). Otherwise,

go to step 4).

4. Fix m and use the following GEVP technique to obtain

the maximum value of i:
minimize i1 [ 0

s.t. inequalities (10), (13) and the following inequal-

ities hold

�siðKi þHLiHÞ� i1ðmPi � Ki �HLiHÞ:

Denote the obtained minimum value by i1; then we

obtain the maximum value �i ¼ 1=i1 of i. By setting i ¼ �i
(i.e., choose �i as the first value of i in the beginning of the

new iterative operation).

5. Check whether i\0; if yes, go to step 7). Otherwise,

go to step 6).

6. Check whether the LMIs (10–13) are feasible; if yes, go to

step 8). Otherwise, set i ¼ i� j, and then go to step 5).

7. Set m ¼ m� ~j; go to step 3).

8. Terminate the program and output the maximum

values m; i.
9. Terminate the program and print ‘‘The LMIs (10–13)

are infeasible’’.

Before presenting our result of error system (3), we

introduce another new vector as

fiðtÞ ¼ col niðtÞ;
Z t

t�.iðtÞ

f ðeðsÞÞds;

Z t

t�siðtÞ

viðsÞds;

8><
>:
Zt�siðtÞ

t��si

viðsÞds;

Z t

t�siðtÞ

qiðsÞdxðsÞ;
Zt�siðtÞ

t��si

qiðsÞdxðsÞ;

Zt�.iðtÞ

t��.i

f ðeðsÞÞds; viðtÞ

9>=
>;:

Let 1j ðj ¼ 1; 2; . . .; 12Þ be row vectors with block

matrix entries, i.e., the j-th block is an identity matrix

and the others are zero blocks, such that eðtÞ ¼ 11fiðtÞ;
viðtÞ ¼ 112fiðtÞ, and so on.

Wi ¼

Fi þ w1i w2i w3i þ ePiAi
ePiY2i

ePiBi

� �2Qi Ri � Si þ QiAi QiY2i QiBi

� � w4i þW � Ji ðSi � RiÞY2i ðSi � RiÞBi þ �iH
T
1iH2i

� � � w5i
1
2

ZiðRþ CÞ
� � � � w6i þ �iH

T
2iH2i

2
6666664

3
7777775

Ai ¼ col ePi Qi Si � Ri 0 0
� �

; Bi ¼ col CT
i 0 0 DT

i 0
� �

; Ci ¼ col HT
4i 00 HT

5i 0
� �

;

434 Neural Comput & Applic (2014) 25:429–442

123



Now, based on Lemma 3, we can propose the following

delay-dependent stability criterion for error system (3):

Theorem 2 (See Appendix 2 for a proof). Assume that

Assumptions 1–4 hold and �si; �s; sdi are given scalars. The

drive system (1) and the response system (2) can be

exponentially synchronized for any 0� siðtÞ� �si� �s;
_siðtÞ� sdi, if there exist symmetric definite positive matri-

ces Pi, U, Ki, Tj, diagonal positive matrices Qi, Ri, Si,

W, Ji, Zi, Mi, Li, real matrices X1i, X2i, X3i and positive

scalars ei; �i; i; m, such that the following matrix inequalities

hold

eXi � 21T
l

�T11l � 21T
k

�T21k\0; l ¼ 7; 8; k ¼ 6; 11; ð15Þ

where

eXi ¼
11

13


 �T �RCJi
1
2
ðRþ CÞJi

� �Ji


 �
11

13


 �

þ
14

15


 �T �RCZi
1
2
ðRþ CÞZi

� �Zi


 �
14

15


 �

þ
XN

j¼1

p0ijf1T
1 ½QjðD� KÞ þ ðRj þ SjÞðR� CÞ�11

þ �sjð1T
4 U14 þ 1T

5 W15Þg þ 1T
1 U11

þ 1T
3 W13 � ð1� sdiÞð1T

4 U14 þ 1T
5 W15Þ

þ symf1T
1 Mi12g � 21T

1 MiC11 þ 1T
1

XN

j¼1

pijPj11

þ symf1T
1 Pi112g þ �s2

i 1
T
12T1112 þ �.2

i 1
T
3 T213

� 1�
XN

j¼1

pij�sj

 !
ð1T

9 T319 þ 1T
10T3110Þ

þ symfðX2i11 þ X3i14ÞTð11 � 14 � 17 � 19Þg
þ symfwT

aiðY1i11 � 112 � 12 þ Ai13

þ Bi15 þ Gi16 þ Y2i14Þg
þ �iðH1i13 þ H2i15 þ H3i16ÞTðH1i13 þ H2i15 þ H3i16Þ
þ ��1

i wT
aiEiE

T
i wai þ ðCi11 þ Di14ÞT

½ð�Pi þ T3Þ�1 � eiEiE
T
i �
�1ðCi11 þ Di14Þ

þ e�1
i ðH4i11 þ H5i14ÞTðH4i11 þ H5i14Þ

� 1T
7

�T117 � 1T
8

�T118 � 1T
6

�T216 � 1T
11

�T2111;

�T1 ¼ 1�
XN

j¼1

pij�sj

 !
T1; �T2 ¼ 1�

XN

j¼1

pij �.j

 !
T2;

with

wai ¼ ~Pi11 þ Qi12 þ ðSi � RiÞ13 þ X1i112:

Remark 5 Similar to Remark 2, if we set U = W = 0 in

Theorem 1, then we can obtain a criterion to verify the

exponential synchronization of system (1) and system (2)

with _sðt; gðtÞÞ are not known or the time-varying delays

s(t, g(t)) are not differentiable.

Remark 6 Similar to Remark 3, by Schur complements,

inequalities (15) can be equivalently transformed into lin-

ear matrix inequalities which could be solved numerically

by employing the Matlab software.

4 Illustrative example

In this section, we give a example to demonstrate the

effectiveness of our theoretic results.

Example 1 Consider system (1) with n = 2 and the fol-

lowing parameters:

A1 ¼
1:9 �0:11

5:0 3:2


 �
;A2 ¼

2:0 �0:14

5:0 3:1


 �
;B1 ¼

�1:8 �0:1

0:2 �2:7


 �
;

B2 ¼
�1:7 �0:1

0:2 �2:7


 �
;C1 ¼

2:5 0

0 2


 �
;C2 ¼

2:8 0

0 2


 �
;D1 ¼ 2I;

D2 ¼
1:8 0

0 2


 �
;E2 ¼

0:5 �0:2

�1 0:6


 �
;UiðtÞ ¼

cosðtÞ 0

0 sinðtÞ


 �
;

E1 ¼ 0:1I;Hji ¼ 0:15I;GiðtÞ ¼ 0;I ¼ 0; j ¼ 1; 2; 4; 5; i ¼ 1; 2:

The behaved functions are ~b1ðxÞ ¼ ~b2ðxÞ ¼ 1:5xþ
0:5 sin x; the activation functions are ~f1ðxÞ ¼ ~f2ðxÞ ¼
tanhðxÞ, and the time-varying delays are s1ðtÞ ¼
s2ðtÞ ¼ 0:8þ 0:2 sin t. Then Assumptions 1–4 are

satisfied with D ¼ 2I;K ¼ R ¼ H ¼ I;C ¼ 0 and �s1 ¼
�s2 ¼ �s ¼ 1; sd1 ¼ sd2 ¼ 0:2.

In this paper, the transition rate matrix is given as

follows

P ¼ �0:7 0:7
0:3 �0:3


 �
;

and the control input vector with state feedback is designed

as (4) with

Y11 ¼ �14:5I; Y12 ¼ �10:7I; Y21 ¼ 2:1I; Y22 ¼ 2:3I:

Set m ¼ 0:2; i ¼ 0:1, solving the LMIs (10–13) in

Theorem 1 by resorting to the Matlab LMI Control

Toolbox, we have one feasible solution as follows

P1 ¼
0:0071 �0:0002

�0:0002 0:0007


 �
;P2 ¼

0:0016 �0:0001

�0:0001 0:0002


 �
;

U ¼
0:9308 �0:0465

�0:0465 0:3153


 �
� 10�3;

K1 ¼
0:0013 �0:0000

�0:0000 0:0001


 �
;K2 ¼

0:2756 �0:0099

�0:0099 0:0290


 �

�10�3;F1 ¼
0:0019 �0:0001

�0:0001 0:0007


 �
;
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F2 ¼
0:0023 �0:0003

�0:0003 0:0008

" #
;Q1 ¼

0:4592 0

0 0:0495

" #

�10�3;Q2 ¼
0:2088 0

0 0:0243

" #
� 10�3;

R1 ¼
0:1832 0

0 0:0569

" #
� 10�3;R2 ¼

0:2956 0

0 0:0817

" #

�10�3;J1 ¼
0:0483 0

0 0:0038

" #
;

J2 ¼
0:0070 0

0 0:0012

" #
;S1 ¼

0:5399 0

0 0:0490

" #

�10�4;S2 ¼
0:1862 0

0 0:1634

" #
� 10�4;

Z1 ¼
0:0020 0

0 0:0004

" #
;Z2 ¼

0:8249 0

0 0:3355

" #

�10�3;L1 ¼
0:9356 0

0 0:0969

" #
� 10�5;

L2 ¼
0:3488 0

0 0:3402

" #
� 10�5;M1 ¼

0:0015 0

0 0:0002

" #
;

M2 ¼
0:6877 0

0 0:1575

" #
� 10�3;

W ¼
0:6496 0

0 0:4187

" #
� 10�5; �1 ¼ 0:0029;

�2 ¼ 0:0033; e1 ¼ 13:9798; e2 ¼ 16:3399:

Figure 1 shows the neural network model has a chaotic

attractor with initial values x1ðtÞ ¼ 0:2;x2ðtÞ ¼ 0:5;

t 2 ½�1;0�. The initial values of the response system are

taken as y1ðtÞ ¼ �1:3;y2ðtÞ ¼ 2:1; t 2 ½�1;0�: Figures 2

and 3 depict the phase trajectories of the drive system

and response system, respectively. Figure 4 shows the error

states. By numerical simulation, we can see that the

dynamical behaviors of response system (2) synchronize

with master system (1) as shown in Figs. 2, 3.

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−4

−3

−2

−1

0

1

2

3

4

x1(t)

x2
(t

)

Fig. 1 Chaotic attractor of Example 1

0 2 4 6 8 10
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−1
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1
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3

4

t/s

x1
y1

Fig. 2 The phase trajectories of t - x1(t) - y1(t)

0 2 4 6 8 10
−3

−2

−1

0
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t/s

x2
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Fig. 3 The phase trajectories of t - x2(t) - y2(t)

0 2 4 6 8 10
−4
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Fig. 4 The error state of t - e1(t) - e2(t)
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5 Conclusion

In this paper, the exponential synchronization problem has

been investigated for a class of stochastic perturbed chaotic

neural networks with discrete and distributed time-varying

delays as well as Markovian jump parameters. Based on a

Halanay-type inequality for stochastic differential equa-

tions, the Jensen integral inequality and a novel Lemma,

two delay-dependent sufficient condition are proposed to

guarantee the exponential synchronization of two identical

Markovian jumping chaotic-delayed neural networks with

stochastic perturbation. With some parameters being fixed

in advance, these conditions are expressed in terms of

linear matrix inequalities, which can be solved numerically

by employing the Matlab software. Finally, a numerical

example with simulations is provided to illustrate the

effectiveness and usefulness of the presented synchroni-

zation scheme.
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Appendix 1

Proof of Theorem 1

Consider the following Lyapunov-Krasovskii functional:

V1ðt; et; iÞ ¼ eðtÞT PieðtÞ þ 2
XN

j¼1

qji

ZejðtÞ

0

bjðsÞ � kjs
� 	

ds

þ 2
Xn

j¼1

rji

ZejðtÞ

0

rjs� f jðsÞ
� 	

ds

þ 2
Xn

j¼1

sji

ZejðtÞ

0

fjðsÞ � cjs
� 	

ds

þ
Z t

t�siðtÞ

eðsÞT UeðsÞ þ f ðeðsÞÞT Wf ðeðsÞÞ
� 	

ds;

ð16Þ

where Qi¼ diagfq1i;q2i; . . .;qnig;Ri¼ diagfr1i;r2i; . . .;rnig;
Si¼ diagfs1i;s2i; . . .;snig.

It can be easily verified that V1(t, et, i) is a nonnega-

tive function over ½��s;þ1Þ. Evaluating the time

derivative of V1(t, et, i) along the trajectory of system

(9), we have that

dV1ðt; et; iÞ ¼ £V1ðt; et; iÞdt þ o

oe
V1ðt; et; iÞqiðtÞdxðtÞ;

ð17Þ

where

£V1ðt; et; iÞ ¼ 2 eðtÞT Pi þ ½bðtÞ � KeðtÞ�T Qi

�
þ ½ReðtÞ � f ðeðtÞÞ�T Ri þ ½f ðeðtÞÞ � CeðtÞ�T Si

�
�
h
� bðtÞ þ AiðtÞf ðeðtÞÞ þ BiðtÞf ðeðt � siðtÞÞÞ

þ Y1ieðtÞ þ Y2ieðt � siðtÞÞ
i

þ 2
XN

k¼1

pik

Xn

j¼1

ZejðtÞ

0

n
qjk½bjðsÞ � kjðsÞ� þ rjk½rjs� fjðsÞ�

þ sjk½fjðsÞ � cjðsÞ�
o

dsþ eðtÞT
XN

j¼1

pijPj þ U

 !
eðtÞ

� ð1� _siðtÞÞeðt � siðtÞÞT Ueðt � siðtÞÞ
þ f ðeðtÞÞT Wf ðeðtÞÞ

þ
XN

j¼1

pijsjðtÞ eðt � siðtÞÞT Ueðt � siðtÞÞ
�

þ f ðeðt � siðtÞÞÞT Wf ðeðt � siðtÞÞÞ
	

�ð1� _siðtÞÞf ðeðt � siðtÞÞÞT Wf ðeðt � siðtÞÞÞ

þ 1

2
trace qiðtÞT

o2

oe2
V1ðt; et; iÞqiðtÞ


 �
:

ð18Þ

From Assumptions 3 and 4, we get that

2
XN

k¼1

pik

Xn

j¼1

ZejðtÞ

0

qjk½bjðsÞ � kjðsÞ� þ rjk½rjs� fjðsÞ� þ sjk½fjðsÞ � cjðsÞ�
� �

ds

� 2
XN

k¼1

p0ik
Xn

j¼1

ZejðtÞ

0

qjkðdj � kjÞsþ rjkðrj � cjÞsþ sjkðrj � cjÞs
� �

ds

¼ eðtÞT
XN

k¼1

p0jk½QkðD� KÞ þ ðRk þ SkÞðR� CÞ�eðtÞ:

ð19Þ

In addition, we derive that

XN

j¼1

pijsjðtÞ eðt � siðtÞÞT Ueðt � siðtÞÞ
�

þ f ðeðt � siðtÞÞÞT Wf ðeðt � siðtÞÞÞ
	

� fiðtÞT
XN

j¼1

p0ij�sj 1T
4 U14 þ 1T

5 U15

� �
fiðtÞ:

ð20Þ
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For any j ¼ 1; 2; . . .; n; it follows from (5) that

0�
dðbjðejÞ � kjejÞ

dej

� dj � kj;

0�
dðfjðejÞ � cjejÞ

dej

� rj � cj;

0� dðrjej � fjðejÞÞ
dej

� rj � cj:

Thus, we have that

1

2

o2

oe2
V1ðt; et; iÞ ¼ Pi þ Qi

� diag
dðb1ðe1Þ � k1e1Þ

de1

; . . .;
dðbnðenÞ � knenÞ

den

� �

þ Ri � diag
dðr1e1 � f1ðe1ÞÞ

de1

; . . .;
dðrnen � fnðenÞÞ

den

� �

þ Si � diag
dðf1ðe1Þ � c1e1Þ

de1

; . . .;
dðfnðenÞ � cnenÞ

den

� �
� �Pi:

ð21Þ

For any j ¼ 1; 2; . . .; n; from (5) we obtain that

fjðejðtÞÞ � rjejðtÞ
� �

fjðejðtÞÞ � cjejðtÞ
� �

� 0;

fjðejðt � sðtÞÞÞ � rjejðt � sðtÞÞ
� �
fjðejðt � sðtÞÞÞ � cjejðt � sðtÞÞ
� �

� 0:

Therefore, the following matrix inequalities hold for any

positive diagonal matrices Ji, Zi with compatible

dimensions

0� � eðtÞTRCJieðtÞ þ eðtÞT JiðRþ CÞf ðeðtÞÞ
� f ðeðtÞÞT Jif ðeðtÞÞ; ð22Þ

0� � eðt � sðtÞÞTRCZieðt � siðtÞÞ
þ eðt � siðtÞÞTZiðRþ CÞf ðeðt � siðtÞÞÞ
� f ðeðt � siðtÞÞÞT Zif ðeðt � siðtÞÞÞ:

ð23Þ

According to Assumption 1 and Lemma 1, for any

positive scalar ei we have that

1

2
trace qiðtÞT

o2

oe2
V1ðt; et; iÞqiðtÞ


 �

¼ CieðtÞ þ Dieðt � siðtÞÞ þ EiUiðtÞðH3ieðtÞ þ H4ieðt � siðtÞÞÞ½ �T

� �Pi CieðtÞ þ Dieðt � siðtÞÞ þ EiUiðtÞðH3ieðtÞ þ H4ieðt � siðtÞÞÞ½ �

� e�1
i ðH3ieðtÞ þ H4ieðt � siðtÞÞÞTðH3ieðtÞ þ H4ieðt � siðtÞÞÞ

þ ðCieðtÞ þ Dieðt � siðtÞÞÞT �Pi
�1 � eiEiE

T
i

� ��1ðCieðtÞ

þ Dieðt � siðtÞÞÞ:

ð24Þ

From (5), the following inequalities hold for any

positive diagonal matrix Mi with compatible dimension

0� 2feðtÞT MibðeðtÞÞ � eðtÞT MiCeðtÞg: ð25Þ

From (18–25), we obtain that

£V1ðt; et; iÞ� niðtÞT �XiðtÞniðtÞ þ eðt � siðtÞÞT Kieðt � siðtÞÞ
þ f ðeðt � siðtÞÞÞT Lif ðeðt � siðtÞÞÞ:

ð26Þ

where

with

w7i ¼ CT
i

�P�1
i � eiEiE

T
i

� ��1
Ci þ e�1

i HT
3iH3i;

w8i ¼ CT
i

�P�1
i � eiEiE

T
i

� ��1
Di þ e�1

i HT
3iH4i;

w9i ¼ DT
i

�P�1
i � eiEiE

T
i

� ��1
Di þ e�1

i HT
4iH4i:

Now, by (14), it is easy to see that there exists a scalar

a[ 1 such that

~Wi AiEi Bi Ci 0

� ��iI 0 0 0

� � �eiFiF
T
i 0 I

� � � �eiI 0

� � � � � �Pi

2
66666664

3
77777775
\0; ð27Þ

�XiðtÞ ¼

w1i þ w7i w2i w3i þ ePiAiðtÞ ePiY2i þ w8i
ePiBiðtÞ

� �2Qi Ri � Si þ QiAiðtÞ QiY2i QiBiðtÞ
� � W � Ji þ sym ðSi � RiÞAiðtÞð Þ ðSi � RiÞY2i ðSi � RiÞBiðtÞ
� � � w5i þ w9i

1
2

ZiðRþ CÞ
� � � � w6i

2
66664

3
77775;
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where

~Wi ¼

aFi þ w1i w2i w3i þ ePiAi
ePiY2i þ w8i

ePiBi

� �2Qi Ri � Si þ QiAi QiY2i QiBi

� � W � Ji þ symððSi � RiÞAiÞ ðSi � RiÞY2i ðSi � RiÞBi

� � � w5i þ w9i
1
2

ZiðRþ CÞ
� � � � w6i

2
66664

3
77775:

Applying Schur complements to (27) results in

aFi þ w1i þ w7i w2i w3i þ ePiAi
ePiY2i þ w8i

ePiBi

� �2Qi Ri � Si þ QiAi QiY2i QiBi

� � W � Ji þ symððSi � RiÞAiÞ ðSi � RiÞY2i ðSi � RiÞBi

� � � w5i þ w9i
1
2

ZiðRþ CÞ
� � � � w6i

2
6666664

3
7777775

þ ��1
i

ePiEi

QiEi

ðSi � RiÞEi

0

0

2
6666664

3
7777775

ePiEi

QiEi

ðSi � RiÞEi

0

0

2
6666664

3
7777775

T

þ�i

0

0

HT
1i

0

HT
2i

2
6666664

3
7777775

0

0

HT
1i

0

HT
2i

2
6666664

3
7777775

T

\0: ð28Þ

Using Assumption 1 and Lemma 1, for any positive

scalar �i we have that

0 0 ePiDAiðtÞ 0 ePiDBiðtÞ
� 0 QiDAiðtÞ 0 QiDBiðtÞ
� � symððSi � RiÞDAiðtÞÞ 0 ðSi � RiÞDBiðtÞ
� � � 0 0

� � � � 0

2
6666664

3
7777775

¼

ePiEi

QiEi

ðSi � RiÞEi

0

0

2
6666664

3
7777775
UiðtÞ

0

0

HT
1i

0

HT
2i

2
666664

3
777775

T

þ

0

0

HT
1i

0

HT
2i

2
666664

3
777775UiðtÞT

ePiEi

QiEi

ðSi � RiÞEi

0

0

2
6666664

3
7777775

T

� ��1
i

ePiEi

QiEi

ðSi � RiÞEi

0

0

2
6666664

3
7777775

ePiEi

QiEi

ðSi � RiÞEi

0

0

2
6666664

3
7777775

T

þ�i

0

0

HT
1i

0

HT
2i

2
666664

3
777775

0

0

HT
1i

0

HT
2i

2
666664

3
777775

T

:

This together with (28) provides that

�XiðtÞ þ diag faFi 0 0 0 0g\0 :

By this inequality and (26), it is easy to see that

£V1ðt; et; iÞ\� aeðtÞT FieðtÞ þ eðt � siðtÞÞT Kieðt � siðtÞÞ
þ f ðeðt � siðtÞÞÞT Lif ðeðt � siðtÞÞÞ:

Taking the mathematical expectations on both sides of

(17), from above inequality we have that

dEfV1ðt; et; iÞg ¼ E£V1ðt; et; iÞdt

þ E
o

oe
V1ðt; et; iÞqiðtÞdxðtÞ

� �

\ �aeðtÞT FieðtÞdt þ eðt � siðtÞÞT Kieðt � siðtÞÞdt
�

þf ðeðt � siðtÞÞÞT Lif ðeðt � siðtÞÞÞ�dt:

By integrating above inequality from t - s(t) to t, we

obtain that

EfV1ðt; et; iÞg � EfV1ðt; et�siðtÞ; iÞg ¼
Z t

t�siðtÞ

EfV1ðs; es; iÞgds

\� a
Z t

t�siðtÞ

eðsÞT FieðsÞdsþ
Z t

t�siðtÞ

eðs� siðsÞÞT Kieðs� siðsÞÞ
�

þf ðeðs� siðsÞÞÞT Lif ðeðs� siðsÞÞÞ
	
ds:

It follows that

E
dV1ðt; et; iÞ

dt


 �
þ iE V1ðt; et; iÞ � V1ðt; et�siðtÞ; iÞ

� 	
\� aeðtÞT FieðtÞ þ eðt � siðtÞÞT Kieðt � siðtÞÞ

þ f ðeðt � siðtÞÞÞT Lif ðeðt � siðtÞÞÞ � ia
Z t

t�siðtÞ

eðsÞT FieðsÞds

þ i
Z t

t�sðtÞ

eðs� siðsÞÞTKeðs� siðsÞÞ
�

þf ðeðs� siðsÞÞÞT Lif ðeðs� siðsÞÞÞ�ds:

ð29Þ

In view of (10) and (11), we have that

�eðtÞT FieðtÞ� � meðtÞT �PieðtÞ; ð30Þ

� i
Z t

t�siðtÞ

eðsÞT FieðsÞds

��m
Z t

t�siðtÞ

f ðeðsÞÞT Wf ðeðsÞÞþeðsÞT UeðsÞ
� 	

ds: ð31Þ

Noticing that

2
Xn

j¼1

qji

ZejðtÞ

0

bjðsÞ � kjs
� 	

ds� 2
Xn

j¼1

qji

ZejðtÞ

0

ðdj � cjÞsds ¼ eðtÞTQiðD� KÞeðtÞ;

2
Xn

j¼1

rji

ZejðtÞ

0

rjs� f jðsÞ
� 	

ds� 2
Xn

j¼1

rji

ZejðtÞ

0

ðrj � cjÞsds ¼ eðtÞTRiðR� CÞeðtÞ;

2
Xn

j¼1

sji

ZejðtÞ

0

fjðsÞ � cjs
� 	

ds� 2
Xn

j¼1

sji

ZejðtÞ

0

ðrj � cjÞsds ¼ eðtÞTSiðR� CÞeðtÞ:
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Therefore, from (16) we have that

EfV1ðt; et; iÞg� eðtÞT �PieðtÞ

þ
Z t

t�siðtÞ

eðsÞT UeðsÞ þ f ðeðsÞÞT Wf ðeðsÞÞ
� 	

ds:

This together with (30–31) yields that

�eðtÞT FieðtÞ � i
Z t

t�siðtÞ

eðsÞT FieðsÞ
� 	

ds�

� mEfV1ðt; et; iÞg: ð32Þ

Moreover, EfV1ðt; et; iÞg� eðtÞTPieðtÞ, therefore, it

follows from (5) and (12) that

eðt � siðtÞÞT Kieðt � siðtÞÞ þ f ðeðt � siðtÞÞÞT Lif ðeðt � siðtÞÞÞ
� eðt � siðtÞÞT Ki þHLiHð Þeðt � siðtÞÞ

� m
1þ i�si

eðt � siðtÞÞT Pieðt � siðtÞÞ

� m
1þ i�si

EfV1ðt; et�siðtÞ; iÞg:

ð33Þ

Thus, we obtain that

Z t

t�siðtÞ

eðs� siðsÞÞT Kieðs� siðsÞÞ
�

þ f ðeðs� siðsÞÞÞT Lif ðeðs� siðsÞÞÞ�ds

� m
1þ i�si

Z t

t�siðtÞ

EfV1ðs; es�siðsÞ; iÞgds:

ð34Þ

Substituting (32–34) into (29) derives that

dEfV1ðt; et; iÞg
dt

\� ðiþ amÞEfV1ðt; et; iÞg þ iEfV1ðt; et�siðtÞ; iÞg

þ m
1þ i�si

EfV1ðt; et�siðtÞ; iÞg þ i
Z t

t�siðtÞ

EfV1ðs; es�siðsÞÞgds

2
64

3
75

� � ðiþ amÞEfV1ðt; et; iÞg þ iEfV1ðt; et�siðtÞ; iÞg

þ m
1þ i�si

EfV1ðt; et�siðtÞ; iÞg þ isiðtÞ sup
½t�2�s;t�

EfV1ðs; es�siðsÞÞg
" #

� � ðiþ amÞEfV1ðt; et; iÞg þ ðiþ mÞ sup
½t�2�s;t�

EfV1ðs; es; iÞg:

Noting that a[ 1, applying Lemma 5 to above

inequality results in

EfV1ðt; et; iÞg� sup
½�2�s;0�

EfV1ðs; es; iÞge�jt;

where j is the unique positive solution of the following

equation:

j ¼ iþ am� ðmþ iÞe2j�s:

Therefore, we arrive at the conclusion that

EfjjeðtÞjj2g� e�jt
EfjjuðtÞjj2g:

The proof is completed.

Appendix 2

Proof of Theorem 2

Define the following Lyapunov-Krasovskii functional:

Vðt; et; iÞ ¼
X2

j¼1

Vjðt; et; iÞ;

where V1(t, et, i) ie defined in (16) and

V2ðt; et; iÞ ¼ �si

Z t

t��si

Z t

v

viðsÞT T1viðsÞdsdv

þ �.i

Z t

t��.i

Z t

v

f ðeðsÞÞT T2f ðeðsÞÞdsdv

þ
Z t

t��si

Z t

v

qðsÞT T3qðsÞdsdv:

It can be easily verified that V(t, et, i) is a nonnegative

function over ½�ŝ;þ1Þ. Evaluating the time derivative of

V(t, et, i) along the trajectory of system (3), we have that

dVðt; et; iÞ ¼ £Vðt; et; iÞdt þ o

oe
Vðt; et; iÞqiðtÞdxðtÞ; ð35Þ

where

£V1ðt; et; iÞ� 2 eðtÞT Pi þ ½bðtÞ � KeðtÞ�T Qi

�
þ ½ReðtÞ � f ðeðtÞÞ�T Ri þ ½f ðeðtÞÞ � CeðtÞ�T Sig

� � bðtÞ þ AiðtÞf ðeðtÞÞ þ BiðtÞf ðeðt � siðtÞÞÞ þ GiðtÞ

2
64

Z t

t�.iðtÞ

f ðeðsÞÞdsþ Y1ieðtÞ þ Y2ieðt � siðtÞÞ

3
75

þ eðtÞT
XN

k¼1

p0jk½QkðD� KÞ þ ðRk þ SkÞðR� CÞ�eðtÞ

þ eðtÞT
XN

j¼1

pijPj þ U

 !
eðtÞ � ð1� _siðtÞÞeðt � siðtÞÞT

Ueðt � siðtÞÞ þ
XN

j¼1

p0ij�sj eðt � siðtÞÞT Ueðt � siðtÞÞ
�

þf ðeðt � siðtÞÞÞT Wf ðeðt � siðtÞÞÞ
	
þ f ðeðtÞÞT Wf ðeðtÞÞ

� ð1� _siðtÞÞf ðeðt � siðtÞÞÞT Wf ðeðt � siðtÞÞÞ þ qiðtÞT ePiqiðtÞ;
ð36Þ
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£V2ðt; et; iÞ ¼ �s2
i viðtÞ

T
T1viðtÞ � �si 1�

XN

j¼1

pij�sj

 !
Z t

t��si

viðsÞT T1viðsÞds

þ �.2
i f ðeðtÞÞT T2f ðeðtÞÞ � �.i 1�

XN

j¼1

pij �.j

 !
Z t

t��.i

f ðeðsÞÞT T2f ðeðsÞÞds

þ �siqiðtÞT T3qiðtÞ � 1�
XN

j¼1

pij�sj

 !
Z t

t��si

qiðsÞT T3qiðsÞds:

ð37Þ

For any t with 0\siðtÞ\�si and 0\.iðtÞ\�.i, from

Lemma 2 we have the following inequalities

� �si 1�
XN

j¼1

pij�sj

 ! Z t

t��si

viðsÞ
T
T1viðsÞds

¼ ��si

Z t

t�siðtÞ

viðsÞT �T1viðsÞds� �si

Zt�siðtÞ

t��si

viðsÞT �T1viðsÞds

� � �si

siðtÞ

Z t

t�siðtÞ

viðsÞds

0
B@

1
CA

T

�T1

Z t

t�siðtÞ

viðsÞds

0
B@

1
CA

� �si

�si � siðtÞ

Zt�siðtÞ

t��si

viðsÞds

0
B@

1
CA

T

�T1

Zt�siðtÞ

t��si

viðsÞds

0
B@

1
CA;
ð38Þ

� �.i 1�
XN

j¼1

pij �.j

 ! Z t

t��.i

f ðeðsÞÞTT2f ðeðsÞÞds

¼ ��.i

Z t

t�.iðtÞ

f ðeðsÞÞT �T2f ðeðsÞÞds� �.i

Zt�.iðtÞ

t��.i

f ðeðsÞÞT �T2f ðeðsÞÞds

� � �.i

.iðtÞ

Z t

t�.iðtÞ

f ðeðsÞÞds

0
B@

1
CA

T

�T2

Z t

t�.iðtÞ

f ðeðsÞÞds

0
B@

1
CA

� �.i

�.i � .iðtÞ

Zt�.iðtÞ

t��.i

f ðeðsÞÞds

0
B@

1
CA

T

�T2

Zt�.iðtÞ

t��.i

f ðeðsÞÞds

0
B@

1
CA:
ð39Þ

Set kj = 1, lj = 3, based on Lemma 2 we get from (38–

39) that

� �si

Z t

t��si

viðsÞT �T1viðsÞds� �.i

Z t

t��.i

f ðeðsÞÞT �T2f ðeðsÞÞds

� max �1T
7

�T117 � 31T
8

�T118 � 1T
6

�T216 � 31T
11

�T2111;
�

� 1T
7

�T117 � 31T
8

�T118 � 31T
6

�T216 � 1T
11

�T2111; :

�31T
7

�T117 � 1T
8

�T118 � 31T
6

�T216 � 1T
11

�T2111;

� 31T
7

�T117 � 1T
8

�T118 � 1T
6

�T216 � 31T
11

�T2111g:
ð40Þ

It is easy to verify that Eq. (40) holds for any t with

0� siðtÞ� �si and 0� .iðtÞ� �.i:

From [4, 17], we have that

E

Z t

t�siðtÞ

qiðsÞT T3qiðsÞds

0
B@

1
CA

¼ E

Z t

t�siðtÞ

qiðsÞdxðsÞ

0
B@

1
CA

T

T3

Z t

t�siðtÞ

qiðsÞdxðsÞ

0
B@

1
CA

8><
>:

9>=
>;; ð41Þ

E

Zt�siðtÞ

t��si

qiðsÞT T3qiðsÞds

0
B@

1
CA

¼ E

Zt�siðtÞ

t��si

qiðsÞdxðsÞ

0
B@

1
CA

T

T3

Zt�siðtÞ

t��si

qiðsÞdxðsÞ

0
B@

1
CA

8><
>:

9>=
>;: ð42Þ

On the other hand, by the Leibniz-Newton formula, we

get that

Z t

t�siðtÞ

viðsÞds ¼ eðtÞ � eðt � siðtÞÞ �
Z t

t�siðtÞ

qiðsÞdxðsÞ:

Therefore, the following equalities hold for any real

matrices Xji(j = 1, 2, 3) with compatible dimensions

2viðtÞT XT
1i � viðtÞ � bðeðtÞÞ þ AiðtÞf ðeðtÞÞ þ BiðtÞf ðeðt � siðtÞÞÞ

8><
>:
þGiðtÞ

Z t

t�.iðtÞ

f ðeðsÞÞdsþ Y1ieðtÞ þ Y2ieðt � siðtÞÞ

9>=
>; ¼ 0;

ð43Þ

2 X2ieðtÞ þ X3ieðt � siðtÞÞð ÞT

eðtÞ � eðt � siðtÞÞ �
Z t

t�siðtÞ

qiðsÞdxðsÞ �
Z t

t�siðtÞ

viðsÞds

8><
>:

9>=
>; ¼ 0:

ð44Þ

From Lemma 1, the following matrix inequalities hold

for any positive scalar �i
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2fiðtÞTwT
aiðDAiðtÞ13 þ DBiðtÞ15 þ DGiðtÞ16ÞfiðtÞ

¼ 2fiðtÞTwT
aiEiUiðtÞðH1i13 þ H2i15 þ H3i16ÞfiðtÞ

� fiðtÞT ��1
i wT

aiEiE
T
i wT

ai þ �iðH1i13 þ H2i15 þ H3i16ÞT
�

ðH1i13 þ H2i15 þ H3i16ÞgfiðtÞ:
ð45Þ

By (22–25), (36–37) and (40–45), and taking the

mathematical expectations on both sides of (35), we

obtain that

dEfVðt; et; iÞg ¼ E£Vðt; et; iÞdt þ E
o

oe
Vðt; et; iÞqiðtÞdxðtÞ

� �

� fiðtÞT eXi þ 2 max �1T
8

�T118 � 1T
11

�T2111;�1T
8

�T118 � 1T
6

�T216;
��

�1T
7

�T117 � 1T
6

�T216;�1T
7

�T117 � 1T
11

�T2111

��
fiðtÞ:

From (15), there exists a positive scalar a0 such that

dEfVðt; et; iÞg\� a0EjjeðtÞjj2:

Similar to the proof of Theorem 1 in [27], it implies that

the error system (3) is globally exponentially stable. This

completes the proof.
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