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Abstract Modeling and forecasting of time series data are

integral parts of many scientific and engineering applica-

tions. Increasing precision of the performed forecasts is

highly desirable but a difficult task, facing a number of

mathematical as well as decision-making challenges. This

paper presents a novel approach for linearly combining

multiple models in order to improve time series forecasting

accuracy. Our approach is based on the assumption that each

future observation of a time series is a linear combination of

the arithmetic mean and median of the forecasts from all

participated models together with a random noise. The

proposed ensemble is constructed with five different fore-

casting models and is tested on six real-world time series.

Obtained results demonstrate that the forecasting accuracies

are significantly improved through our combination mech-

anism. A nonparametric statistical analysis is also carried

out to show the superior forecasting performances of the

proposed ensemble scheme over the individual models as

well as a number of other forecast combination techniques.

Keywords Time series � Forecast combination �
Box-Jenkins models � Artificial neural networks �
Elman networks � Support vector machines

1 Introduction

Many natural as well as synthetic phenomena can be

expressed in terms of time series which are sequential

collections of observations measured over successive times.

Analysis and forecasting of time series data have funda-

mental importance in various scientific and engineering

applications. As such, improving forecasting accuracies is a

matter of constant attentions of researchers [1]. Various

linear and nonlinear forecasting models are the outcomes of

extensive works in this area during the past three decades

[1–3]. However, due to the stochastic nature of a time ser-

ies, it is evident that no single model alone can capture all

the intrinsic details of the associated data-generating pro-

cess [4]. Hence, it is quite risky and inappropriate to rely

upon only one of the available models for forecasting future

data. On the other hand, combining forecasts from con-

ceptually different models is a reliable approach of

decreasing the model selection risk while at the same time

improving overall forecasting precisions. Moreover, the

accuracies obtained through combining forecasts are often

better than any individual model in isolation [4–6].

Intrigued by their strengths and benefits, many forecast

combination algorithms have been developed during the

last two decades. At present, selection of the most prom-

ising combination scheme for a particular application is

itself a nontrivial task [5]. Here, it is worth mentioning that

a combination of multiple forecasts attempts to enhance the

forecasting precisions at the expense of increased compu-

tational complexity. Obviously, a balanced trade-off

between the accuracy improvement and associated com-

putational cost is highly desirable from an ideal combina-

tion scheme. An extensive body of the literature has shown

that simple methods for combining often provide much

better accuracies than more complicated and sophisticated

techniques [6, 7]. Thus, for combining forecasts, one

should use straightforward tools and avoid intricacies.

The simple average in which all component forecasts

are weighted equally is so far the most elementary, yet
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widely popular combination method. Together with

being easy to understand, implement, and interpret, it is

also computationally inexpensive. A well-known fact is

that unequal or judgmental weighting often suffers from

miscalculations, biasness, and estimation errors [8].

From this viewpoint, a simple average is quite robust as

it does not require any estimation of combining weights

or other parameters. Moreover, several research evi-

dences in the literature have shown that the naı̈ve simple

average in many occasions produced remarkably better

forecasting results than various other intricate combina-

tion tools [1, 6, 7]. Due to these salient features, simple

averages have been extensively used for combining time

series forecasts. However, they are highly sensitive to

extreme values, and so sometimes, there are considerable

extent of variation and instability among the obtained

forecasts [7, 8]. As a remedial measure, numerous

studies have suggested the use of the median which is

far less sensitive to extreme values than the simple

average. But there are varied results regarding forecast-

ing superiority of the simple average and median. The

former produced better accuracies in the work of Stock

and Watson [9], worse in the works of Larreche and

Moinpour [10] and Agnew [11], and about the same in

the work of McNees [12]. From these studies, it is not

possible to rationally differentiate between the perfor-

mances of these two statistical averages. But evidently,

both simple average and median can achieve signifi-

cantly improved forecasting accuracies that too at a very

few computational costs.

In this paper, we propose a novel linear ensemble

method that attempts to take advantage of the strengths of

both simple average and median for combining time

series forecasts. Our proposed method is based on the

assumption that each future observation of a time series is

a linear combination of the arithmetic mean and median

of the individual forecasts, together with a random noise.

Five different forecasting models are combined through

the proposed mechanism that is then tested on six real-

world time series datasets. A nonparametric statistical

analysis is also carried out to compare the accuracies of

our ensemble scheme with those of the individual models

as well as other benchmark forecast combination

techniques.

The rest of the paper is organized as follows. Section 2

describes the related works on combining time series

forecasts. The details of our proposed combination scheme

are described in Sect. 3. Section 4 presents a concise dis-

cussion on the five individual forecasting models, which

are used to build up the proposed ensemble. The empirical

results are reported in Sect. 5, and finally, Sect. 6 concludes

this paper.

2 Related works

Combining multiple methods in scientific applications has

a long history that dates back to early eighteenth century

[6]. The notable use of models combining for time series

forecasting started in late 1960s with important contribu-

tions from Crane and Crotty [13], Zarnowitz [14], and Reid

[15]. However, the seminal work of Bates and Granger [16]

was the first to introduce a general analytical model for

effectively combining multiple forecasts. Till then, several

forecast combination mechanisms have been developed in

the literature.

The constrained Ordinary Least Square (OLS) method is

one of the earlier tools for linear combination of forecasts.

It determines the combining weights through solving a

Quadratic Programming Problem (QPP) that minimizes

the Sum of Squared Error (SSE) error between the original

and forecasted datasets with the restriction that the weights

are nonnegative and unbiased [17–19]. An alternative is the

Least Square Regression (LSR) method [1, 4, 5, 19] that

does not impose any restriction on the combining weights

and often provides better forecasting accuracies than the

constrained OLS method.

A familiar fact is that the weights of a linear combina-

tion of forecasts can be optimized with the knowledge of

the covariance matrix of one-step-ahead forecast errors. As

the covariance matrix is unknown in advance, Newbold

and Granger [20] suggested five procedures for estimating

the weights from the known data and these are commonly

known as the differential weighting schemes. Winkler and

Makridakis [21] performed an extensive empirical analysis

of these five methods and found that two of them provided

better forecasting results than the others.

In order to cope with the dynamic nature of a time

series, a forecast combination algorithm should be able to

recursively update the weights with additions of new data

values. As such, a number of recursive combination

schemes have also been developed in the literature, which

include the Recursive Least Square (RLS) technique and its

variants, such as the Dynamic RLS, Covariance Addition

RLS (RLS-CA), Kalman filter (KF), etc. [22]. These algo-

rithms are often reported to be more efficient than the fixed

weighting methods [1, 6, 22].

The Outperformance method by Bunn [23] is another

effective linear combination technique that is based on the

Bayesian probabilistic approach. It determines how likely a

component model outperforms the others. This method

assigns subjective weight to a component model on the

basis of the number of times it performed best in the past

[5, 23].

Implicit combinations of two or more forecasting

models are also developed by time series researchers.
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One such benchmark technique, due to Zhang [24], adopts

a hybridization of autoregressive integrated moving aver-

age (ARIMA) [2, 3, 24] and artificial neural network

(ANN) models [2, 4, 24]. In this hybrid mechanism, the

linear correlation structure of the time series is modeled

through ARIMA, and then, the remaining residuals, which

contain only nonlinear part, are modeled through ANN.

With three real-world datasets, Zhang [24] showed that his

hybrid scheme provided reasonably improved accuracies

and also outperformed each component model. Recently,

Khashei and Bijari [25, 26] further explored this approach,

thereby suggesting a similar but slightly modified and more

robust combination method.

Forecast combinations through nonlinear techniques are

analyzed as well in the time series literature, but to a

limited extent. This is mainly due to the lack of recognized

studies which document success of such schemes [5].

Adhikari and Agrawal [27] recently developed a nonlinear-

weighted-ensemble technique that considers both the

individual forecasts as well as the correlation among pairs

of forecasts. Their scheme was able to provide reasonably

enhanced forecasting accuracies for three popular time

series datasets.

In spite of several improved techniques, the robustness

and efficiency of elementary statistical combination

methods are always appreciated in the literature [1]. Many

empirical evidences show that the naı̈ve simple average

notably outperformed more complex ensemble schemes

[7, 28]. A robust alternative to the simple average is the

trimmed mean in which forecasts are averaged by

excluding an equal percentage of highest and lowest fore-

casts [5, 7, 8]. In a recent comprehensive study, Jose and

Winkler [7] have found that trimmed means were able to

provide slightly more accurate results than the simple

averages and reduced the risk of high errors. But hitherto,

there is no rigorous method for selecting the exact amount

of trimming. The median (i.e., the ultimate trimming) has

also been studied as an alternative to the simple average

with varied results [7–12]. Thus, it seems to be advanta-

geous to adequately combine both simple average and

median.

3 The proposed combination method

3.1 Formulation of the proposed combination method

Let, Y ¼ ½y1; y2; . . .; yN �T 2 R
N be the actual testing dataset

of a time series, which is forecasted using n different

models, and Ŷ
ið Þ ¼ ŷ

ið Þ
1 ; ŷ

ið Þ
2 ; . . .; ŷ

ið Þ
N

h iT

be the ith forecast

of Y (i = 1, 2,…, n). Let, uj and vj, respectively, be the

mean and median of ŷ
1ð Þ

j ; ŷ
2ð Þ

j ; . . .; ŷ
nð Þ

j

n o
; j ¼ 1; 2; . . .;N.

Then, the proposed combined forecast of Y is defined as

Ŷ ¼ ½ŷ1; ŷ2; . . .; ŷN �
T
, where

ŷj ¼
vj; for a ¼ 0

uj; for a ¼ 1

auj þ ð1� aÞvj þ ej; for 0\a\1

8<
: ð1Þ

ej�Nð0; r2Þ 8j ¼ 1; 2; . . .;N:

In Eq. 1, fejjj ¼ 1; 2; . . .;Ng is assumed to be a white noise

process, i.e., a sequence of independent, identically

distributed (i.i.d.) random variables, which follow the

typical normal distribution with zero mean and a constant

variance r2. These white noise terms are introduced as the

trade-offs between the accuracy improvement and proper

combination of the two averages. The parameter a manages

the contributions of the two averages in the final combined

forecast. The median is more dominating for 0 B a\ 0.5,

whereas the simple average is more dominating for

0.5 \ a B 1. The proposed ensemble scheme can be

written in the vector form as follows:

Ŷ ¼ aUþ ð1� aÞVþ E

0� a� 1
ð2Þ

where U ¼ ½u1; u2; . . .; uN �T;V ¼ ½v1; v2; . . .; vN �T are,

respectively, the vectors of means and medians, and E ¼
½e1; e2; . . .; eN �T is the vector of the white noise terms.

3.2 Selections of the tuning parameters

Our proposed scheme combines the simple average and

median of individual forecasts in an unbiased manner. The

success of the scheme solely depends on the suitable

selection of the parameters a and r. Here, we suggest

effective techniques for selecting these parameters.

For selecting a, first, we consider one of the two ranges:

0 B a\ 0.5 (median dominating) and 0.5 \ a B 1 (mean

dominating). In either of these ranges, we vary a in an

arithmetic progression with a certain step size (i.e., com-

mon difference) s. The desired value of a is then taken to

be the mean of its values in this particular range and is

denoted as a*. The precise mathematical formulation of a*

is given as follows:

a� ¼ 1

Ns

XNs

i¼1

½lþ ði� 1Þs� ð3Þ

where Ns ¼ 0:5
s

� �
and l = 0, 0.5 in the ranges 0 B a\ 0.5

and 0.5 \ a B 1, respectively.

It is obvious that smaller values of the step size s ensure

better estimation of the final combined forecast. The value

s = 0.01 is used for all empirical works in this paper.
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The nature of the white noise terms has a crucial impact

on the success of our combination scheme, and so the noise

variance r2 must have to be chosen with utmost care. The

value of r2 is closely related to the deviation between the

simple average and median of the forecasts. Keeping this

fact in mind, we suggest choosing r2 as the variance of the

difference between the mean and median vectors, i.e.,

r2 ¼ var U� Vð Þ ð4Þ

Equation 4 provides a rational as well as robust method for

selecting the noise variance in our combination scheme.

After choosing the two tuning parameters a and r through

Eqs. 3 and 4, the combined forecast vector is given by

Ŷ ¼ a�Uþ ð1� a�ÞVþ E ð5Þ

The requisite steps of our combination method are con-

cisely summarized in Algorithm 1.

A schematic depiction of our proposed combination

method is presented in Fig. 1.

3.3 Salient features of our proposed combination

mechanism

1. The primary advantage of the proposed scheme is that

it reduces the overall forecasting error in more precise

manner than various other ensemble mechanisms. In

our method, a large extent of error is already reduced

through simple average and median of the individual

forecasts. Then, combining these averages results in

further reduction in the forecasting error. Hence, the

proposed methodology is evidently better than directly

combining the forecasts from the individual models.

2. The proposed method benefits from the forecasting

skills of diverse constituent models, unlike some

others, which combines only a few particular ones.

For example, Zhang [24] suggested a hybridization of

two models, viz. ARIMA and ANN. Similarly, Tseng

et al. [29] suggested the ensemble scheme SARIMABP

which combines seasonal ARIMA (SARIMA) and

backpropagation ANN (BP-ANN) models for seasonal

time series forecasting. However, in many situations,

our linear ensemble method can be apparently more

accurate as it combines a large number of competing

forecasting models.

3. Considering a wide pool of available forecast combi-

nation schemes, nowadays, a major challenge faced by

the time series research community is to select the

most appropriate method of combining forecasts. Our

proposed mechanism improves the forecasting accu-

racy as well as diminishes the model selection risk to a

great extent. The formulation of our method suggests

that it apparently performs much better than both

simple average and median. As such, the proposed

scheme provides a potentially good choice in the

domain of time series forecast combination.

4. Our proposed scheme is notably simple and much

more computationally efficient than various existing

combination methods. This is due to the fact that many

sophisticated methods, e.g., RLS, dynamic RLS,

NRLS, outperformance, etc., require repeated in-

sample applications of the constituent forecasting

models, thus entailing large amount of computational

times. On the contrary, our proposed method applies

the component models only once and, hence, saves a

lot of associated computations.

4 The component forecasting models

The effectiveness of a forecast combination mechanism

depends a lot on the constituent models. Several studies

document that for a good combination scheme, the com-

ponent forecasting models are essentially to be as diverse

and competent as possible [4, 8, 21]. Armstrong [8] in his

extensive study on combining forecasts further emphasized

on using four to five constituent models for achieving

maximum combined accuracy. Based on these studies and

recommendations, here, we use the following five diverse

forecasting models to build up our proposed ensemble:

• The Autoregressive Integrated Moving Average (AR-

IMA) [2, 3].

• The Support Vector Machine (SVM) [30].

• The iterated Feedforward Artificial Neural Network

(FANN) [2, 25, 32, 33].

• The iterated Elman ANN (EANN) [5, 34].

• The direct EANN [5, 34].

In the forthcoming subsections, we concisely describe

these five forecasting techniques.

Algorithm 1 The proposed linear combination of multiple forecasts

Inputs: The individual forecasts Ŷ
ið Þ

i ¼ 1; 2; . . .; nð Þ of Y

Output: The combined forecast Ŷ

1. Compute the mean vector U and median vector V from the

individual forecasts

2. Select a certain step size s and a range for a from either

0 B a\ 0.5 or 0.5 \ a B 1

3. Compute the values of the parameters a* and r2 through Eqs. 3

and 4, respectively

4. Generate N i.i.d. random variables ej * N(0,r2), (j = 1, 2,…, N)

and define the vector E ¼ e1; e2; . . .; eN½ �T

5. Finally, calculate the proposed combined forecast vector

through Eq. 5
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4.1 The ARIMA model

ARIMA models are the most extensively used statistical

techniques for time series forecasting. These are developed

in the benchmark work of Box and Jenkins [3] and are also

commonly known as the Box-Jenkins models. The under-

lying hypothesis of these models is that the associated time

series is generated from a linear combination of predefined

numbers of past observations and random error terms. A

typical ARIMA model is mathematically given by

/ðLÞð1� LÞdyt ¼ hðLÞet ð6Þ

where,

/ðLÞ ¼ 1�
Xp

i¼1

/iL
i; hðLÞ ¼ 1þ

Xq

j¼1

hjL
j; Lyt ¼ yt�1:

The parameters p, d, and q are, respectively, the number of

autoregressive, degree of differencing, and moving average

terms; yt is the actual time series observation, and et is a

white noise term. The white noise terms are basically i.i.d.

normal variables with zero mean and a constant variance. It

is customary to refer the model, represented through Eq. 6

as the ARIMA (p, d, q) model. This model effectively

converts a nonstationary time series to a stationary one

through a series of ordinary differencing processes. A

single differencing is enough for most applications. The

appropriate ARIMA model parameters are usually deter-

mined through the well-known Box-Jenkins three-step

iterative model building methodology [3, 24].

The ARIMA (0, 1, 0), i.e., yt - yt-1 = et is in particular

known as the random walk (RW) model and is commonly

used for modeling nonstationary data [24]. Box and Jenkins

[3] further generalized the basic ARIMA model to forecast

seasonal time series, as well, and this extended model is

referred as the seasonal ARIMA (SARIMA). A SARIMA

(p, d, q) 9 (P, D, Q)s model adopts an additional seasonal

differencing process to remove the effect of seasonality

from the dataset. Like ARIMA (p, d, q), the parameters

(p, P), (q, Q), and (d, D) of a SARIMA model represent the

autoregressive, moving average, and differencing terms,

respectively, and s denote the period of seasonality.

4.2 The SVM model

SVM is a relatively recent statistical learning theory,

originally developed by Vapnik [30]. It is based on the

principle of Structural Risk Minimization (SRM) whose

objective is to find a decision rule with good generalization

ability through selecting some special-training data points,

viz. the support vectors [30, 31]. Time series forecasting is

a branch of support vector regression (SVR) problems in

which an optimal separating hyperplane is constructed to

correctly classify real-valued outputs. But the explicit

knowledge of this mapping is avoided through the use of a

kernel function that satisfies the Mercer’s condition [31].

Given a training dataset of N points xi; yif gN
i¼1 with

xi 2 R
n; yi 2 R, the goal of SVM is to approximate the

unknown data-generating function in the following form:

f ðx;wÞ ¼ w � uðxÞ þ b ð7Þ

where w is the weight vector, x is the input vector, u is the

nonlinear mapping to a higher dimensional feature space,

and b is the bias term.

Using Vapnik’s e-insensitive loss function, given in

Eq. 8, the SVM regression is converted to a quadratic

programming problem (QPP) to minimize the empirical

risk, as defined in Eq. 9.

Le y; f x;wð Þð Þ ¼
0; if y� f x;wð Þj j � 2
y� f x;wð Þj j� 2; otherwise

(
ð8Þ

J w; ni; n
�
i

� �
¼ 1

2
wk k2þC

XN

i¼1

ni þ n�i
� �

: ð9Þ

In Eq. 9, C is the positive regularization constant that

assigns a penalty to misfit, and ni; n�i are the nonnegative

slack variables.

Fig. 1 The proposed forecast combination mechanism
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After solving the associated QPP, the optimal decision

hyperplane is given by

yðxÞ ¼
XNs

i¼1

ðai � a�i ÞKðx; xiÞ þ bopt: ð10Þ

where Ns is the number of support vectors, ai and a�i (i = 1,

2,…, Ns) are the Lagrange multipliers, bopt is the optimal

bias, and K(x, xi) is the kernel function.

From several choices for the SVM kernel function, the

Radial Basis Function (RBF) kernel [31], defined as

K(x, y) = exp(–||x–y||2/2r2), r being a tuning parameter is

used in this paper. While fitting the SVM models, the

associated hyperparameters C and r are determined

through precisely following the grid-search technique, as

recommended and utilized by Chapelle [35].

4.3 The FANN model

Initially inspired from the biological structure of human

brain, ANNs gradually achieved great success and recog-

nition in versatile domains, including time series fore-

casting. The major advantage of ANNs is their nonlinear,

flexible, and model-free nature [4, 25, 33]. ANNs have the

remarkable ability of adaptively recognizing relationship in

input data, learning from experience and then utilizing the

gained previous knowledge to predict unseen future patterns.

Unlike other nonlinear statistical models, ANNs do not

require any information about the intrinsic data-generating

process. Moreover, an ANN can always be designed that can

approximate any nonlinear continuous function as closely as

desired. Due to this reason, ANNs are referred to as the

universal function approximators [24, 33].

The most common ANN architecture, used in time

series forecasting, is the multilayer perceptron (MLP). An

MLP is a feedforward architecture of an input, one or more

hidden and an output layer in such a way that each layer

consists of several interconnecting nodes, which transmits

processed information to the next layer. It is also known as

an FANN model. An FANN with a single hidden layer is

often sufficient for practical time series forecasting appli-

cations, and so FANNs with single hidden layers are con-

sidered in this paper. There are two extensively popular

approaches for multi-periodic forecasts through FANNs,

viz. iterative and direct [5, 32]. An iterative approach

consists of one neuron in the output layer, and the value of

the next period is forecasted using the current predicted

value as one of the inputs. On the contrary, the number of

output neurons in a direct approach is precisely equal to the

forecasting horizon, i.e., the number of future observations

to be forecasted. In short-term forecasting, the direct

method is usually more accurate than its iterative coun-

terpart, but there is no firm conclusion in this regard [32].

The network structures for iterative and direct FANN

forecasting methods are shown in Fig. 2a, b respectively.

4.4 The EANN model

Relatively recently, EANNs attracted notable attention of

time series forecasting community. An EANN has a

recurrent network structure that differs from a common

feedforward ANN through inclusion of an extra context

layer and feedback connections [34]. The context layer is

continuously fed back by the outputs from the hidden layer,

and as such it acts as a reservoir of past information. This

recurrence imparts robustness and dynamism to the net-

work so that it can perform temporal nonlinear mappings.

The architecture of an EANN model is shown in Fig. 3.

EANNs generally provide better forecasting accuracies

than FANNs due to the introduction of additional memory

units. But they require more network weights, especially

the hidden nodes in order to properly model the associated

temporal relationship. However, there is no rigorous

(a)    (b)

Bias

yt-1 

yt-2 

yt-p

Bias 

yt

Input layer 

Hidden layer 

yt+1

yt+2

yt+q-1

Output layer 

Bias

yt-1 

yt-2 

yt-p

Bias

yt

Input layer 

Hidden layer 

Output layer 

Fig. 2 The FANN architectures

for the following: a iterative

forecasting, b direct forecasting
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guideline in the literature for selecting the optimal structure

of an EANN model [5]. In this paper, we set the number of

hidden nodes as 25 and the training algorithm as traingdx

[36] for all EANN models.

5 Empirical results and discussions

Six real-world time series from different domains are used

in order to empirically examine the performances of our

proposed ensemble scheme. These are collected from the

Time Series Data Library (TSDL) [37], a publicly available

online repository of a wide variety of time series datasets.

Table 1 presents the descriptions of these six time series,

and Fig. 4 depicts their corresponding time plots. The

horizontal and vertical axis of each time plot, respectively,

represents the indices and actual values of successive

observations. Here, we are considering short-term fore-

casting, and so the size of the testing dataset for each time

series is kept reasonably small.

All experiments are performed on MATLAB. The

default neural network toolbox [36] is used for the FANN

and EANN models. The forecasting accuracies are evalu-

ated through the mean-squared error (MSE) and the sym-

metric mean absolute percentage error (SMAPE), which

are defined as follows:

MSE =
1

N

XN

t¼1

ðyt � ŷtÞ
2 ð11Þ

SMAPE =
1

N

XN

t¼1

yt � ŷtj j
ðyt þ ŷtÞ=2

� 100 ð12Þ

where yt and ŷt are, respectively, the actual and forecasted

values, and N is size of the testing set.

MSE and SMAPE are relative error measures and both

provide a reasonably good idea about the forecasting

ability of a fitted model. For better forecasting perfor-

mance, the values of both these error statistics are desired

to be as small as possible. The information about the

determined optimal forecasting models for all the six

datasets is presented in Table 2.

Five other linear combination schemes are considered

for comparing with our proposed method. The obtained

forecasting results of the individual models and linear

combination methods for all six time series are, respec-

tively, presented in Tables 3 and 4. The best forecasting

accuracies, i.e., the least error measures in each of these

tables, are shown in bold. Following previous works [24],

the logarithms to the base 10 of the LYNX data are used in

the present analysis. Also, the MSE values for the AP

Bias Bias 

Output

In
pu

t n
od

es
 

C
on

te
xt

 n
od

es
 

Hidden nodes

Fig. 3 Architecture of an EANN model

Table 1 Descriptions of the time series datasets

Time series Description Type Total

size

Testing

size

Canadian Lynx (LYNX) Number of lynx trapped per year in the Mackenzie River

district of Northern Canada (1821–1934)

Stationary, nonseasonal 114 14

Sunspots (SNSPOT) The annual number of observed sunspots (1700–1987) Stationary, nonseasonal 288 67

USA Real GNP (RGNP) Real GNP of USA in billions of dollars (1890–1974) Nonstationary,

nonseasonal

85 15

Child Births (BIRTHS) Births per 10,000 of 23 year old women in USA

(1917–1975)

Nonstationary,

nonseasonal

59 10

Airline Passengers (AP) Monthly number of international airline passengers

(in thousands) (January 1949–December 1960)

Monthly, seasonal 144 12

USA expenditure (UE) Quarterly new plant/equipment expenditures in USA

(1964–1976)

Quarterly, seasonal 52 8
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Fig. 4 Time plots of the following: a LYNX, b SNSPOT, c RGNP, d BIRTHS, e AP, f UE

Table 2 The appropriate

forecasting models for the six

time series datasets

Time series ARIMA Iterated FANN Iterated EANN Direct EANN

LYNX ARIMA (12, 0, 0) 7 9 5 9 1 7 9 25 9 14 7 9 25 9 14

SNSPOT ARIMA (9, 0, 0) 11 9 9 9 1 11 9 25 9 1 11 9 25 9 67

RGNP Random walk 4 9 10 9 1 4 9 25 9 1 12 9 25 9 15

BIRTHS Random walk 6 9 6 9 1 6 9 25 9 1 8 9 25 9 10

AP SARIMA (0, 1, 1) 9 (0, 1, 1)12 12 9 3 9 1 12 9 25 9 1 12 9 25 9 12

UE SARIMA (0, 1, 1) 9 (0, 1, 1)4 4 9 4 9 1 4 9 25 9 1 4 9 25 9 8
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dataset are given in transformed scale (original

MSE = MSE 9 104).

The following important observations are evident from

Tables 3 and 4:

1. The obtained forecasting accuracies notably vary

among the individual models, and no single model

alone could achieve the best forecasting results for all

datasets.

2. In terms of MSE, the simple average and the median

outperformed the best individual models for three and

four datasets, respectively. In terms of SMAPE, both

of them outperformed the best individual model for

four datasets.

3. Our proposed schemes, viz. Proposed-I and Proposed-

II outperformed all individual forecasting models as

well as linear combination methods in terms of both

MSE and SMAPE.

4. Among themselves, the Proposed-I scheme achieved

least MSE and SMAPE values for three and five

datasets, respectively, whereas the Proposed-II scheme

achieved least MSE and SMAPE values for three and

one datasets, respectively.

We present the two bar diagrams in Fig. 5 for visual

depictions of the forecasting performances of different

methods for all six time series.

We have transformed the error measures for some

datasets in order to uniformly depict them in Fig. 5a, b. In

Fig. 5a, the MSE values for SNSPOT and RGNP are

divided by 10,000, and those for BIRTHS and UE are

divided by 1,000 and 100, respectively. Similarly, in

Fig. 5b, the SMAPE values for the SNSPOT data are

divided by 10. Figure 5a, b clearly show that the two

forms of our proposed scheme, viz. Proposed-I and

Proposed-II achieved least MSE and SMAPE values

throughout.

We further show the percentage reductions in MSE and

SMAPE of the best individual models through our pro-

posed schemes in Fig. 6a, b, respectively. From these fig-

ures, it can be seen that except SNSPOT, for all other

datasets, our proposed schemes reduced the forecasting

errors of the best individual models to considerably large

extents. Only for SNSPOT, the amounts of error reductions

are small, which can be credited to the reasonably good

performances of the corresponding best individual models

for this dataset.

The diagrams of the actual observations and their fore-

casts through the proposed combination scheme for all six

time series are shown in Fig. 7. The closeness among the

actual and forecasted observations for each dataset is

clearly visible in all the six plots of Fig. 7.

We have carried out the nonparametric Friedman test for

a statistical analysis of the obtained forecasting results.

This test evaluates the null hypothesis (H0) that all the

forecasting methods are equally effective in terms of MSE

or SMAPE against the alternative hypothesis (H1) that all

Table 3 Forecasting results of the individual models

Models LYNX SNSPOT RGNP BIRTHS AP UE

MSE SMAPE MSE SMAPE MSE SMAPE MSE SMAPE MSE SMAPE MSE SMAPE

ARIMA 0.0153 3.40 803.34 44.44 1,906.05 4.92 98.00 4.71 0.0291 2.48 1.88 4.01

SVM 0.0527 6.12 792.96 33.375 1,194.95 4.00 61.87 4.53 0.0177 2.35 1.61 3.51

Iterated FANN 0.0319 5.25 669.03 40.472 813.38 2.75 93.37 5.48 0.0378 3.39 2.76 4.71

Iterated EANN 0.0365 5.48 899.89 30.435 322.17 2.27 75.50 5.41 0.0333 3.32 2.58 3.94

Direct EANN 0.0189 3.80 1,479.64 53.616 1,772.28 5.12 124.8 5.66 0.0967 5.64 1.94 3.80

Table 4 Forecasting results of the combination methods

Models LYNX SNSPOT RGNP BIRTHS AP UE

MSE SMAPE MSE SMAPE MSE SMAPE MSE SMAPE MSE SMAPE MSE SMAPE

Simple average 0.0172 3.75 693.11 30.848 301.78 2.05 45.52 3.62 0.0189 2.23 0.91 2.28

Trimmed mean (40 %

trimming)

0.0222 4.21 743.97 31.633 301.22 1.96 39.74 3.33 0.0196 2.33 1.11 2.63

Median 0.0232 4.29 795.67 31.007 296.84 2.00 39.35 3.42 0.0176 2.25 1.28 2.67

LSR 0.0254 4.10 881.16 113.62 263.48 1.90 81.06 4.31 0.0188 2.27 1.70 3.84

Outperformance 0.0152 3.60 686.79 31.654 285.65 2.18 45.87 3.64 0.0143 2.16 1.19 2.72

Proposed-I (0 B a\ 0.5) 0.0146 3.33 664.21 29.802 174.64 1.56 26.51 2.81 0.0127 1.97 0.792 2.08

Proposed-II (0.5 B a \ 1) 0.0115 3.03 646.00 30.245 255.27 1.72 29.90 2.82 0.0139 2.03 0.725 2.36
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of them are not equally effective [38]. The obtained

Friedman test results are as follows:

• For forecasting MSE, the Friedman’s v2 statistic is

46.92 and p = 0.0000022.

• For forecasting SMAPE, the Friedman’s v2 statistic is

46.69 and p = 0.0000024.

Here, p represents the probability that the null hypoth-

esis is true. From the sufficiently small values of p, we

reject the null hypotheses with 95 % confidence level and

conclude that the forecasting methods differ significantly in

terms of both MSE and SMAPE.

The Friedman test results are depicted in Fig. 8a, b. In

these figures, the mean rank of a forecasting method is
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Fig. 5 Bar diagrams showing

the performances of all fitted

models on the basis of the

following: a MSE, b SMAPE

(a) (b)

0

10

20

30

40

50

60

70
Proposed-I
Proposed-II

0

5

10

15

20

25

30

35

40

45
Proposed-I
Proposed-II

Fig. 6 Percentage

improvements over the best

individual model in terms of the

following: a MSE, b SMAPE

278 Neural Comput & Applic (2014) 25:269–281

123



pointed by a circle, and the horizontal bar across each

circle is the critical difference. The performances of two

methods differ significantly if their mean ranks differ by at

least the critical difference, i.e., if their horizontal bars are

nonoverlapping.

From Fig. 8a, b, it can be seen that the individual

forecasting methods do not differ significantly among

themselves, but many of them are significantly outper-

formed by our combination schemes in terms of both

obtained MSE and SMAPE values.
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6 Conclusions

Time series analysis and forecasting have major applications

in various scientific and industrial domains. Improvement of

forecasting accuracy has been constantly drawing the

attentions of researchers during the last two decades.

Extensive works in this area have shown that combining

forecasts from multiple models substantially improves the

overall accuracies. Moreover, in many occasions, the simple

combinations performed considerably better than more

complicated and sophisticated methods. In this paper, we

propose a linear combination scheme that takes advantage of

the strengths of both simple average and median for com-

bining forecasts. The proposed method assumes that each

future observation of a time series is a linear combination of

arithmetic mean and median of the individual forecasts

together with a random noise. Two approaches are suggested

for estimating the tuning parameter a that manages the rel-

ative weights between simple average and median. Empiri-

cal analysis is conducted with six real-world time series

datasets and five forecasting models. The obtained results

clearly demonstrate that both forms of our proposed

ensemble scheme significantly outperformed each of the five

individual models and a number of other common linear

forecast combination techniques. These findings are further

justified through a nonparametric statistical test.
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