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Abstract This study was conducted by using autore-

gressive (AR) modeling and data-driven techniques which

include gene expression programming (GEP), radial basis

function network and feed-forward neural networks, and

adaptive neural-based fuzzy inference system (ANFIS)

techniques to forecast monthly mean flow for Kızılırmak

River in Turkey. The lagged monthly river flow measure-

ments from 1955 to 1995 were taken into consideration for

development of the models. The correlation coefficient and

root-mean-square error performance criteria were used for

evaluating the accuracy of the developed models. When the

results of developed models were compared with flow

measurements using these criteria, it was shown that the

AR(2) model gave the best performance among all devel-

oped models and the GEP and ANFIS models had good

performance in data-driven techniques.

Keywords Autoregressive modeling � Data-driven

techniques � Kızılırmak River � River flow

1 Introduction

The determination of flow by using the past measurements

is required in design, plan, project, construction, mainte-

nance, especially management of water resources, and

determination of natural disasters such as flood and

drought. So the studies of hydrological modeling based on

the flow data measured in the past are becoming

increasingly important. The completion of missing flow

data is important in case if there is a degradation of the

measurement device and the land conditions are not

established at the measurement station. The forecasting of

the missing flow measurements with appropriate models,

improving of the model performance, and obtaining of the

better forecasting results provide convenience in terms of

both economically and usage. Therefore, the hydrological

time series models are commonly used for flow forecasting

in recent years such as stochastic models and data-driven

techniques. The stochastic models firstly proposed by Box

and Jenkins [1] have been preferred in especially fore-

casting of stream flow [6]. Kişi [20] used artificial neural

networks (ANN) to predict monthly flow and compared

with autoregressive models (AR). He stated the ANN

predictions in general are better than those found with

AR(4). Yürekli and Öztürk [41] determined alternative

autoregressive moving average process (ARMA) models

by using the graphs of autocorrelation function (ACF) and

partial autocorrelation function (PACF) for streamflow of

Kelkit Stream. The plots of the ACF show that ARMA

(1,0) with a constant is the best model by considering

Schwarz Bayesian criterion (SBC) and error estimates. Wu

and Chau [40] investigated ARMA, K-nearest neighbors

(KNN), and ANN and phase space reconstruction-based

artificial neural networks (ANN–PSR) models to determine

the optimal approach of predicting monthly streamflow

time series. They compared these models by 1-month-

ahead forecast. They determined that the KNN model

performs the best among the four models, but only exhibits

weak superiority to ARMA.

The data-driven techniques having capability of ana-

lyzing long-time series have been preferred by many

researchers in hydrology. Of data-driven techniques, arti-

ficial neural networks and the adaptive neural-based fuzzy
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inference system which are computer systems developed

with the aim of automatically performing capabilities have

been investigated for problems in the water researches and

meteorology studies such as solar radiation [9, 29], evap-

oration [19, 35], wind speed [28] and rainfall estimation [5,

26, 31], and river flow [8, 16, 22]. Lin and Chen [25] used

the radial basis function network (RBFN) to construct a

rainfall–runoff model for the parametric estimation of the

network. The result shows that the RBFN can be success-

fully applied to build the relation of rainfall and runoff.

Keskin and Taylan [18] developed flow prediction model,

based on the adaptive neural-based fuzzy inference system

(ANFIS) and ANN. The results show the ANFIS model is

better than ANN model. The ANFIS model and its prin-

ciples first proposed by Jang [17] have been successfully

applied to many problems [30]. Chang and Chang [3]

studied the intelligent control of a real-time reservoir

operation model and found that given sufficient informa-

tion to construct the fuzzy rules, the ANFIS helps to ensure

more efficient reservoir operation than the classical models

based on rule curve. Terzi et al. [37] proposed an alterna-

tive model for Penman evaporation estimation from a water

surface by using ANFIS and showed that the ANFIS model

can be used to estimate daily Penman evaporation for Lake

Eğirdir.

Gene expression programming (GEP) was invented by

Ferreira [10] and is the natural development of genetic

algorithms and genetic programming. The researchers have

investigated the applicability of GEP to problems in the

field of water resources engineering [4, 13, 36]. Makk-

easorn et al. [27] applied genetic programming (GP) and

artificial neural networks (ANNs) to short-term streamflow

forecasting with global climate change implications. Savic

et al. [34] developed rainfall–runoff model using GP and

ANNs. Güven and Aytek [15] presented GEP to the

modeling stage–discharge relationship. Whigham and

Crapper [39] described the application of a grammatically

based GP system to discover rainfall–runoff relationships

for two vastly different catchments. Chang et al. [2] applied

fuzzy theory and genetic algorithm (GA) to interpolate

precipitation. Zhang et al. [42] investigated the use of GA

in a sediment transport model. Reddy and Ghimire [32]

used M5 model tree (MT) and GEP to predict suspended

sediment loads. They stated that MT gives good perfor-

mance as compared the model results to sediment rating

curve and multiple linear regression.

The objectives of this study are to investigate data-dri-

ven techniques for forecasting monthly flow which include

GEP, ANN (RBFN and FFNN), and ANFIS techniques and

to compare their performances with AR modeling which is

one of the traditional time series modeling techniques. This

task is intended to be accomplished in Kızılırmak River,

Turkey. These techniques are tried to forecast monthly flow

values (Ft) using the previous 1-month (Ft-1), 2-month

(Ft-2), and 3-month (Ft-3) flow values. The correlation

coefficient (R) and the root-mean-square error (RMSE)

performance criteria are employed to validate all developed

models.

2 The modeling techniques

A brief overview of the GEP, ANN, ANFIS, and AR

modeling techniques used in forecasting monthly flow was

presented here.

2.1 Gene expression programming (GEP)

Gene expression programming (GEP) is, like genetic

algorithms (GAs) and genetic programming (GP), a genetic

algorithm as it uses populations of individuals, selects them

according to fitness, and introduces genetic variation using

one or more genetic operators. The fundamental difference

between the three algorithms resides in the nature of the

individuals: In GAs, the individuals are linear strings of

fixed length (chromosomes); in GP, the individuals are

nonlinear entities of different sizes and shapes (parse

trees); and in GEP, the individuals are encoded as linear

strings of fixed length (the genome or chromosomes) which

are afterward expressed as nonlinear entities of different

sizes and shapes (i.e., simple diagram representations or

expression trees) [10].

There are five major preparatory steps of genetic pro-

gramming paradigm to solve a problem.

1. To identify the set of terminals to be used in the

individual computer programs in the population, the

terminals can be viewed as the input to the computer

program being sought by GP. In turn, the output of the

computer program consists of the value(s) returned by

the program.

2. To determine a set of functions. The function set is

arithmetic operators (*, /, -, ?), mathematical func-

tions (sin, cos, log), logical expressions (IF–THEN–

ELSEs), and Boolean operators (AND, OR, NOT) or

any other user-defined function. The terminals and the

functions are the ingredients from which the individual

computer programs in the population are composed.

3. To identify a way of evaluating how good a given

computer program is at solving the problem at hand.

4. To select the values of certain parameters to control

the runs. This step involves control parameters which

are the values of the numerical parameters and

qualitative variables for controlling the run.

5. To specify the criterion for designating a result and the

criterion for terminating a run [21].
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The fundamental steps of the gene expression pro-

gramming are schematically represented in Fig. 1. The

process begins with the random generation of the chro-

mosomes of a certain number of individuals. Then, these

chromosomes are expressed, and the fitness of each indi-

vidual is evaluated against a set of fitness cases. The

individuals are then selected according to their fitness to

reproduce with modification, leaving progeny with new

traits. These new individuals are, in their turn, subjected to

the same developmental process: expression of the gen-

omes, confrontation of the selection environment, selec-

tion, and reproduction with modification. The process is

repeated for a certain number of generations or until a good

solution has been found [12].

The individuals of gene expression programming are

encoded in linear chromosomes which are expressed or

translated into expression trees (branched entities). Thus, in

GEP, the genotype (the linear chromosomes) and the

phenotype (the expression trees) are different entities (both

structurally and functionally) that, nevertheless, work

together forming an indivisible whole. In contrast to its

analogous cellular gene expression, GEP is rather simple.

The main players in GEP are only two: the chromosomes

and the expression trees (ETs), being the latter the

expression of the genetic information encoded in the

chromosomes [14].

In nature, the phenotype has multiple levels of com-

plexity, the most complex being the organism itself. But

tRNAs, proteins, ribosomes, cells, and so forth are also

products of expression, and all of them are ultimately

encoded in the genome. In all cases, however, the

expression of the genetic information starts with tran-

scription (the synthesis of RNA) and, for protein genes,

proceeds with translation (the synthesis of proteins). In

GEP, from the simplest individual to the most complex, the

expression of genetic information starts with translation,

the transfer of information from a gene into an ET. In

contrast to nature, the expression of the genetic information

in GEP is very simple. Worth emphasizing is the fact that

in GEP, there is no need for transcription: The message in

the gene is directly translated into an ET [10]. As the

translation which is the process of information decoding

(from the chromosomes to the expression trees), it includes

code and rules. The genetic code of GEP is very simple: a

one-to-one relationship between the symbols of the chro-

mosome and the functions or terminals they represent in

the trees. The rules are also very simple: They determine

the spatial organization of the functions and terminals in

the expression trees and the type of interaction between

sub-expression trees. Therefore, there are two languages in

GEP: the language of the genes and the language of

expression trees. However, thanks to the simple rules that

determine the structure of expression trees and their

interactions, it is possible to infer immediately the

expression tree given the sequence of a gene and vice

versa. This bilingual and unequivocal system is called

Karva language. For example, the mathematical

expression:

a � b

c
þ

ffiffiffiffiffiffiffiffiffiffiffi

d � e
p

ð1Þ

It can also be represented as an expression tree in Fig. 2

where Q represents the square root function.

Fig. 1 The flowchart of gene expression programming [12] Fig. 2 An example of expression trees
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This kind of diagram representation is what is called the

phenotype of GEP chromosomes, and the genotype can be

easily inferred from the phenotype as follows:

0123456789

þ =Q � c� abde
ð2Þ

which is the straightforward reading of the expression tree

from left to right and from top to bottom. The expression 2

is an open reading frames, starting at ‘?’ (position 0) and

terminating at ‘e’ (position 9). This expression is from

Karva notation [11].

2.2 Artificial neural networks (ANN)

Neural networks are composed of simple elements operating

in parallel. These elements are inspired by biological ner-

vous systems. As in nature, the network function is deter-

mined largely by the connections between elements. A

neural network can be trained to perform a particular func-

tion by adjusting the values of the connections (weights)

between the elements. Commonly neural networks are

adjusted, or trained, so that a particular input leads to a

specific target output. Such a situation is shown in Fig. 3.

Here, the network is adjusted, based on a comparison of the

output and the target, until the sum of square differences

between the target and output values becomes the minimum.

Typically, many such input/target output pairs are used to

train a network. Batch training of a network proceeds by

making weight and bias changes based on an entire set

(batch) of input vectors. Incremental training changes the

weights and biases of a network as needed after presentation

of each individual input vector. Neural networks have been

trained to perform complex functions in various fields of

application including pattern recognition, identification,

classification, speech, vision, and control systems. Today,

neural networks can be trained to solve problems that are

difficult for conventional computers or human beings [7].

2.2.1 Feed-forward neural networks (FFNN)

Feed-forward ANNs comprise a system of neurons, which

are arranged in layers. Between the input and output layers,

there may be one or more hidden layers. The neurons in

each layer are connected to the neurons in a subsequent

layer by a weight w, which may be adjusted during train-

ing. A data pattern comprising the values xi presented at the

input layer i is propagated forward through the network

toward the first hidden layer j. Each hidden neuron receives

the weighted outputs wijxij from the neurons in the previous

layer. These are summed to produce a net value, which is

then transformed to an output value upon the application of

an activation function [16].

2.2.2 Radial basis function networks (RBFN)

A radial basis function network is a two-layer network

whose output neurons form a linear combination of the

basis functions computed by the hidden neurons. The basis

functions in the hidden layer produce a localized response

to the input. That is, each hidden neuron has a localized

receptive field. The basis function can be viewed as the

activation function in the hidden layer. The network

employs a radial basis function such as the Gaussian

function, which is the most popular hidden layer function.

The others are thin-plate-spline, multiquadric, inverse

quadratic, inverse multiquadric function, and polyharmonic

spline. The basis function used in this study is a Gaussian

function [23].

2.3 Adaptive neural-based fuzzy inference system

(ANFIS)

Various fuzzy inference system (FIS) types are studied in

the literature, and each one is characterized by consequent

parameters. In this section, a brief description of ANFIS

model principles is presented. The reader is referred to

Chang and Chang [3] for more detail.

Fundamentally, ANFIS is a graphical network repre-

sentation of Sugeno-type fuzzy systems, endowed by

neural learning capabilities. The network is comprised of

nodes and with specific functions, or duties, collected in

layers with specific functions [38].

In order to illustrate ANFIS’s representational strength,

the neural fuzzy control systems are considered based on

the Tagaki–Sugeno–Kang (TSK) fuzzy rules, whose con-

sequent parts are linear combinations of their precondi-

tions. The TSK fuzzy rules are in the following forms:

R j : IF x1 is A
j
1 AND x2 is A

j
2 AND � � �AND xn is A j

n;

THEN y ¼ fj ¼ a
j
0 þ a

j
1x1 þ a

j
2x2 þ � � � þ a j

nxn ð3Þ

where xi’s (i = 1, 2, …, n) are input variables, y is the

output variable (solar radiation measurements), Ai
j are lin-

guistic terms of the precondition part with membership

functions lA1
j (xi) (j = 1, 2, …, n), and a1

j ”

R areFig. 3 Basic principle of artificial neural networks
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coefficients of linear equations fi (x1, x2, …, xn). To sim-

plify the discussion, it is necessary to focus on a specific

neuro-fuzzy Controller (NFC) of the type called an adap-

tive neural-based fuzzy inference system (ANFIS).

Let us assume that the fuzzy control system under

consideration consists of two inputs x1 and x2 and one

output y and that the rule base contains two TSK fuzzy

rules as follows:

R1 : IF x1 is A1
1 AND x2 is A1

2 ;

THEN y ¼ f1 ¼ a1
0 þ a1

1x1 þ a1
2x2

ð4Þ

R2 : IF x1 is A2
1 AND x2 is A2

2 ;

THEN y ¼ f2 ¼ a2
0 þ a2

1x1 þ a2
2x2

ð5Þ

In TSK fuzzy system, for given input values x1 and x2,

the inferred output y* is calculated by the following

formula [24]:

y� ¼ l1f1 þ l2fð Þ2= l1 þ l2ð Þ ð6Þ

where lj are firing strengths of Rj, j = 1, 2, given by the

equation below,

lj ¼ lA
j

1
ðx1Þ þ lA

j

2
ðx2Þ; j ¼ 1; 2 ð7Þ

2.4 Autoregressive modeling (AR)

Time series models have been extensively used in

hydrology and water resources since the early 1960’s, for

modeling annual and periodic hydrologic time series. The

application of these models has been attractive in hydrol-

ogy mainly because the autoregressive form has an intui-

tive type of time dependence (the value of variable at the

present time depends on the values at previous times), and

they are the simplest models to use [33].

The autoregressive model (AR) may be generally writ-

ten as

yt ¼ lþ u1 yt�1 � lð Þ þ � � � þ up yt�p � l
� �

þ et ð8Þ

where yt is the time-dependent series (variable) and et is the

time-independent (uncorrelated) series which is indepen-

dent of yt, and it is also normally distributed with mean

zero and r2
e . The coefficients u1, …, up are called the

autoregression coefficients. The parameter set of the model

of Eq. (8) is l; r2;u1; . . .;up; r
2
e

� �

, and it must be speci-

fied or estimated from data.

Autoregressive models with periodic parameters are

those models in which part or all of their parameters vary

within the year or they are periodic. These models are

often referred to as periodic AR models. The time series

used in hydrological studies are generally annual or

monthly [33].

It is assumed that AR models are stationary and follow

the normal distribution. However, it is possible to eliminate

such assumptions with the data-driven models. Also, the

use of data-driven methods can be easier in terms of the

processing time according to the AR modeling.

Fig. 4 The location of the Yamula (1501) station
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3 Study region and data

The length of the Kızılırmak River which is the longest

river in Turkey is 1,355 km. The area of the watershed is

78,646 km2. The yearly average flow and rainfall are about

184 m3/s and 446.1 mm, respectively. The data used to

develop model include the monthly mean flow observa-

tions between 1955 and 1995, i.e., a total of 480 months in

this study. The monthly mean flow data were obtained for

Yamula (1501) station of the Kızılırmak River from the

General Directorate of Electrical Power Resources Survey

and Development Administration. The location of the sta-

tion is shown in Fig. 4. In the modeling, the training data

set consisted of the years 1955–1987. The trained models

were used to run a set of test data for year 1988–1995.

4 Application and results

In this study, the previous 1-month (F(t-1)), 2-month

(F(t-2)), and 3-month (F(t-3)) mean flow values of Kızı-
lırmak River were used in developing models. The models

were developed by using AR, GEP, FFNN, RBFN, and

ANFIS techniques.

In AR modeling, monthly mean flow data set is periodic

series due to shorter time interval than annual data set.

Internal dependence increases because statistical charac-

teristics in periodic series are different for another day of

same process. First, the series must be fitted to normal

distribution and then standardized for removing periodicity

of monthly mean flow data set. It was controlled according

to skewness whether or not flow values are fit to normal

distribution. It was seen that flow values are not fit to

normal distribution. Then, the logarithmic transformation

function was applied to flow values. The transformed flow

values were given in Fig. 5. As shown in Fig. 5, there is a

periodicity for logarithmic flow values. The moment values

(periodic mean (ls), periodic standard deviation (rs) and

skewness) of flow data and transform function were

determined and given in Table 1.

The standard normal series was obtained by applying

standardization process to historical time series. The

autocorrelation function (ACF) and partial autocorrelation

function (PACF) of standard normal series were obtained.

The upper and lower limits were determined for 95 %

confidence interval (Fig. 6). It was shown that yt series is a

dependent series according to autocorrelation values.

Then, autocorrelation coefficient (dk) was calculated,

and residual series was determined according to this value

(Table 2). AR(1), AR(2), and AR(3) models were tested,

and it was concluded that AR(2) is most appropriate model

for autocorrelation values. The autocorrelation values of

models were given in Fig. 7. As shown in Fig. 7, there is

an agreement between autocorrelation values of AR(2)

model and historical series. It was controlled that the

AR(2) model provided stationarity condition in using Eq.

(9).

up � u1up�1 � u2up�2 � � � � � up ¼ 0 ð9Þ

Variance of residual series r2
e was obtained according to

Eq. (10),

r2
e ¼

Nr2

ðN � pÞ ð1�
X

p

j¼1

ujrjÞ ð10Þ

where N is number of data; p is model parameter; and u is

autoregression coefficient. The Akaike’s information cri-

terion (AIC) was used to investigate fitness of the selected

model degree. AICs of AR(1), AR(2), and AR(3) models

were calculated as 0.624, 0.623, and 0.705, respectively. It

was confirmed that the AR(2) model having the smallest

AIC is appropriate.

The synthetic series was generated for AR(2) model.

Initially, the 25 random series were produced. The syn-

thetic series were obtained by using AR(2) model and

residual of the historical data. Hence, the mean, standard

deviation, and ACF of the synthetic series with in 95 %

confidence interval were calculated and compared with

historical series (Figs. 8, 9, 10). As shown these figures,

there is agreement between the historical and synthetic

series. It was observed that the statistics of the synthetic

series is within 95 % confidence interval for the selected

AR(2) model. This situation indicates suitability of AR(2)

model for predicting flow.
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Fig. 5 Transformed flow values

Table 1 The moment values of the flow data

Basin Flow Periodic mean (ls) Periodic SD (rs) Transformation function (Yv,s) Average skewness (!)

Kızılırmak Kızılırmak River 68.73 78.86 Log (Zv,s) 0.41
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In GEP, there are five major steps, and the first is to

choose the fitness function. For this study, the R-square-

based fitness function was selected. This kind of fitness

function is very useful as it is usually interested in finding a

model with a high value of R-square. The second step is to

choose the set of terminals T and the set of functions F. The

terminal set consisted, obviously, of the independent vari-

able, giving T = {F(t-1), F(t-2), F(t-3), where F is the

monthly mean flow data of Kızılırmak River}. The various

arithmetic operators were used, F = {?, -, *, /, power, H,

ex, ln(x), log(x), 10x} in this study. The third step is to

choose the structural organization of chromosomes, namely

the length of the head and the number of genes: The length

of the head equals to 8, and the number of genes per

chromosome equals to 3 in this study. The fourth step is to

choose the kind of linking function. In this problem, the

sub-expression trees were linked by addition. And finally,

the fifth major step in preparing to use gene expression

programming is to choose the set of genetic operators and

their rates. The genetic operators developed to introduce

genetic diversity in GP populations always produce valid
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Table 2 Autocorrelation coefficients of AR models

AR(1) AR(2) AR(3)

/1 /1 /2 /1 /2 /3
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expression trees. Variation in the population is introduced

by applying one or more genetic operators, i.e., crossover,

mutation, and rotation to selected chromosomes. The

genetic operators used in this study were given in Table 3.

In ANN modeling, feed-forward neural networks

(FFNN) and radial basis function network (RBFN) were

used for forecasting monthly flow. Prior to execution of the

model, standardization was done according to the follow-

ing expression such that all data values fall between 0 and

1.

F ¼ ðFi � FminÞ=ðFmax � FminÞ ð11Þ

where F is the standardized value of the Fi, Fmax, and Fmin

are the maximum and minimum values in all observation

sequence [35]. In RBFN, the models were developed to

forecast monthly flow using the same input combinations.

The various spread constants were tested for each RBFN

model. In FFNN, FFNN(i, j, k) indicates a network archi-

tecture with i, j, and k neurons in input, hidden, and output

layers, respectively. Herein, i runs 1, 2, and 3; j assume

values of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12, whereas k = 1

is adopted in order to decide about the best FFNN model

alternative. The numbers of neuron in hidden layer were

determined using a trial-and error-method by considering

the performance criteria for testing data set. The hyperbolic

tangent sigmoid, logarithmic sigmoid, and linear activation

functions were tried for hidden and output layers in mod-

eling. The appropriate activation function was determined

as the tangent sigmoid function after trial-and-error. The

stopping criterion was employed 1,000 epochs for training,

because the variation of error was too small after this

epoch. The learning rate and momentum are the parameters

that affect the speed of the convergence of the back-

propagation algorithm. A learning rate of 0.001 and

momentum 0.1 were fixed for selected network after

training, and the model selection was completed for

training set. The trained networks were used to run testing

set.

In ANFIS modeling, each variable may have several

values (in terms of rules), and each rule includes several

parameters of membership functions. For instance, if each

variable has three rules and each rule includes three

parameters, then there are 45 [5 (variables) 9 3

(rules) 9 3 (parameters)] parameters needed to be deter-

mined in layer 2. The sole reason for having three mem-

berships for each variable is due to the reduction in the

number of rule base alternatives. Also, the ANFIS trains

these membership functions according to data in layer 3,

these rules will generate 35 nodes, and there are 1,458

(35 9 6) parameters undetermined within the defuzzifica-

tion process in layer 5. In this study, to establish the rule

base relationship between the input and output variables,

subtractive fuzzy clustering was used. In this study, hybrid

and back-propagation optimization methods were tested,

and the highest R and the lowest RMSE values were

obtained by using back-propagation method.

Table 3 Parameters of the GEP models

Number of chromosomes 50

Number of genes 3

Linking function ?

Head size 8

Mutation rate 0.044

One-point recombination rate 0.3

Two-point recombination rate 0.3

Gene recombination rate 0.1

Gene transposition rate 0.1

Table 4 The R and RMSE values of the developed models using

F(t-1) parameter

Model Training set Testing set

RMSE (m3/sn) R RMSE (m3/sn) R

AR(1) 41.595 0.838 39.330 0.813

GEP 56.742 0.668 49.952 0.671

FFNN 57.098 0.663 50.937 0.665

RBFN 56.268 0.675 51.085 0.652

ANFIS 56.740 0.668 49.968 0.666

Table 5 The R and RMSE values of the developed models using

F(t-1) and F(t-2) parameters

Model Training set Testing set

RMSE (m3/sn) R RMSE (m3/sn) R

AR(2) 41.644 0.837 34.601 0.842

GEP 47.887 0.777 62.164 0.721

FFNN 48.402 0.772 64.341 0.695

RBFN 51.733 0.733 67.296 0.661

ANFIS 46.534 0.791 62.331 0.717

Table 6 The R and RMSE values of the developed models using

F(t-1), F(t-2), and F(t-3) parameters

Model Training set Testing set

RMSE (m3/sn) R RMSE (m3/sn) R

AR(3) 42.627 0.829 55.243 0.793

GEP 47.337 0.785 62.344 0.722

FFNN 48.439 0.773 64.475 0.695

RBFN 50.038 0.756 66.216 0.676

ANFIS 45.528 0.803 62.821 0.713

186 Neural Comput & Applic (2014) 25:179–188

123



In this paper, the same training and testing sets are used

for comparing of all the above-developed models. The

correlation coefficient (R) and the root-mean-square error

(RMSE) performance criteria are employed to evaluate the

performances of the developed models. These criteria are

given for three input combinations (1) F(t-1), (2) F(t-1),

F(t-2), and (3) F(t-1), F(t-2), F(t-3) in Tables 4, 5, and 6,

respectively.

It can be observed from Tables 4, 5, and 6 that AR

modeling performed the best R values within AR, GEP,

FFNN, RBFN, and ANFIS techniques for training and

testing sets. The GEP and ANFIS models have higher

performance than other data-driven models developed in

this study. In processing of AR modeling given above,

there is not good agreement between the AR(3) model and

historical flow series, and it was shown that RMSE crite-

rion of AR(3) model is 55.243 for testing set. The AR(2)

model has the best agreement with historical series com-

pared to AR(1) and AR(3) models, and the highest

R (0.842) and lowest RMSE (34.601) criteria for testing

set. Also, this situation was generally supported by GEP,

FFNN, RBFN, and ANFIS models developed by using

F(t-1) and F(t-2) parameters. The results of the AR(2)

model were plotted against monthly flow measurements for

training and testing sets in Fig. 11. The results of the all

models developed by using F(t-1), F(t-2) parameters toge-

ther with the monthly flow measurements for testing set

were presented in Fig. 12. As seen from Fig. 12, the AR(2)

model provided much closer values to the observed flow

values than the other models.

5 Conclusions

This study investigated the ability of AR modeling and

GEP, FFNN, RBFN, and ANFIS data-driven techniques to

forecast monthly mean flow values. The proposed methods

were applied to Kızılırmak River, in Turkey which is used

in irrigation, in power generation, and as drinking water.

The various models were developed by using lagged

monthly mean flow values obtained from Yamula (1501)

station of Kızılırmak River. The comparison results indi-

cated that AR models gave better performance than the

data-driven models. This is because the AR model is a

(a) (b)
Fig. 11 The scatter diagrams

between the AR(2) model

versus monthly flow

measurements for a training set

and b testing set

Fig. 12 Time series of

forecasted and measured

monthly flow values for

testing set
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univariate model. It was shown that the AR(2) model had

the best correlation coefficient in the AR models. The GEP

and ANFIS models obtained better results than the other

data-driven models except AR(2). The performance of the

developed models suggested that the flow could be fore-

casted using AR approaches. Finally, AR(2) model can be

used for forecasting flow in which measurement system has

failed or to forecast missing monthly flow data in hydro-

logical modeling studies. Also, it is important to underline

the high computing speed gained by data-driven approa-

ches in comparison with stochastic models. The perfor-

mance of the data-driven models can be improved by using

flow data of another station and rainfall data as input

parameters in future studies.
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15. Güven A, Aytek A (2009) New approach for stage–discharge

relationship: gene-expression programming. J Hydrol Eng 14(8):

812–820

16. Imrie CE, Durucan S, Korre A (2000) River flow prediction using

artificial neural networks: generalization beyond the calibration

range. J Hydrol 233:138–153

17. Jang JSR (1992) Self-learning fuzzy controllers based on temporal

back propagation. IEEE Trans Neural Networks 3(5):714–723

18. Keskin ME, Taylan ED (2009) Artificial models for inter-basin

flow prediction in southern Turkey. J Hydrol Eng 14(7):752–758
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41. Yürekli K, Öztürk F (2003) Stochastic modeling of annual

maximum and minimum streamflow of Kelkit stream. Water Int

28(4):433–441

42. Zhang FX, Wai WHO, Jiang YW (2010) Jiang Prediction of

sediment transportation in deep bay (Hong Kong) using genetic

algorithm. J Hydrodynam 22(5):599–604

188 Neural Comput & Applic (2014) 25:179–188

123


	Forecasting of monthly river flow with autoregressive modeling and data-driven techniques
	Abstract
	Introduction
	The modeling techniques
	Gene expression programming (GEP)
	Artificial neural networks (ANN)
	Feed-forward neural networks (FFNN)
	Radial basis function networks (RBFN)

	Adaptive neural-based fuzzy inference system (ANFIS)
	Autoregressive modeling (AR)

	Study region and data
	Application and results
	Conclusions
	References


