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Abstract Finding the location of a mobile source from a

number of separated sensors is an important problem in

global positioning systems and wireless sensor networks.

This problem can be achieved by making use of the time-of-

arrival (TOA) measurements. However, solving this prob-

lem is not a trivial task because the TOA measurements have

nonlinear relationships with the source location. This paper

adopts an analog neural network technique, namely

Lagrange programming neural network, to locate a mobile

source. We also investigate the stability of the proposed

neural model. Simulation results demonstrate that the mean-

square error performance of our devised location estimator

approaches the Cramér–Rao lower bound in the presence of

uncorrelated Gaussian measurement noise.

Keywords Source localization � Stability �
Neural dynamics

1 Introduction

Finding the coordinates of a mobile source is an interesting

research topics in many areas, such as wireless sensor

networks [1, 2], telecommunications [3], and mobile

communications [4, 5]. For example, after the Federal

Communications Commission (FCC) of the United States

proposed to improve the emergency service [6], a lot of

attention has been paid to mobile handheld device

localization.

The coordinates of a mobile source can be estimated by

utilizing its emitted signal measured from a number of

separated sensors with known coordinates. Time-of-arrival

(TOA) is a commonly used approach [7] to estimate the

position of a mobile device. When there are no noise in the

TOA measurements, the exact coordinates of the mobile

source can be obtained. In the real situation, those TOA

measurements are contaminated by noise. When the noise

is Gaussian, we can use the maximum likelihood (ML)

approach to estimate the coordinates of the mobile source.

However, the ML function for finding the position of using

the TOA measurements is highly nonlinear. Hence, finding

out the global solution is not guaranteed. On the other

hand, the TOA-based source localization can be formulated

as least squares (LS) [8, 9] problems via linearization.

Several numerical methods [8, 9] run at digital computers

have been proposed for TOA-based mobile localization.

Since the pioneering results from Hopfield [10] and

Chua [11] in the 1980s, analog neural circuits for solving

optimization problems have attracted much attention.

Hopfield [10] investigated an analog neural circuit for

solving quadratic optimization problems. In [11], a

canonical nonlinear programming circuit was proposed to

solve nonlinear programming problems with inequality

constraints. In [12, 13], a number of projection neural

models have been proposed to solve constrained optimi-

zation problems. Apart from optimization, neural circuits

can also be used for searching the maximum of a set of

numbers [14–16]. In [17], the Lagrange programming

neural network (LPNN) model is proposed to solve general
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nonlinear constrained optimization problems. A LPNN

consists of two types of neurons: variable and Lagrangian

neurons. The variable neurons seek for a state with the

minimum objective value in a system, while the Lagrang-

ian neurons are trying to constrain the system state into the

feasible region. Compared with traditional numerical

methods run at digital computers, solving optimization

problem by neural circuit has several advantages. For

instance, neural circuits can be realized by the VLSI or

optical technologies that are able to achieve real-time

computation. For many years, although many neural net-

work models for engineering problems have been addres-

sed, little attention has been paid to analog neural circuits

for source localization.

This paper proposes an analog neural network technique

based on LPNNs for TOA-based source localization. We

first formulate the source localization problem as a con-

strained optimization problem. However, in this initial

formulation, the stability at equilibrium points is not

guaranteed. Hence, we introduce an augmented term in the

objective function. Simulations demonstrate that the mean-

square error (MSE) performance of our analog approach is

close to the Cramér–Rao lower bound (CRLB).

This paper is organized as follows. Section 2 presents

the backgrounds of LPNNs and source localization. In Sect.

3, we formulate the source localization problem as a con-

strained optimization problem. Then, we discuss the way to

solve this problem based on LPNNs. Theoretical analysis

on the stability of the neural model is also discussed.

Section 4 presents our simulation results. As a comparison,

MSEs of linear least squares (LLS) [8], two-step weighted

least squares (TSWLS) [9], as well as CRLB are also

included. We then conclude the paper in Sect. 5.

2 Background

2.1 Lagrange programming neural networks

In LPNNs, we consider a nonlinear optimization problem

with equality constraints, given by

EP: min f ðxÞ; subject to hðxÞ ¼ 0; ð1Þ

where x 2 R
n is the variable vector being optimized, and

f : Rn ! R (called objective function) is a scalar function.

The vector valued function h : Rn ! R
mðm\nÞ describes

the m equality constraints. In the LPNN approach, we

assume that f and h are twice differentiable.

The LPNN approach considers the Lagrangian function,

given by

Lðx; kÞ ¼ f ðxÞ þ kThðxÞ; ð2Þ

where k ¼ ½k1; . . .; km�T is the Lagrangian multiplier

vector.

A LPNN consists of two types of neurons, namely

variable and Lagrangian neurons. The variable neurons

hold the state variables x: The Lagrangian neurons holds

the Lagrange multipliers k: A LPNN searches an equilib-

rium point of (1) based on the dynamics, given by

dx

dt
¼ �rxLðx; kÞ; and

dk

dt
¼ rkðx; kÞ: ð3Þ

In (3), the dynamics of state variables is used for mini-

mizing the Lagrangian function, while the dynamics of

Lagrangian multipliers is employed for constraining x in

the feasible region.

2.2 TOA-based source localization

In the TOA-based source localization problem shown in

Fig. 1, there is a mobile source with unknown coordinates.

The unknown source coordinates are denoted as c ¼
½c1; c2�T : We use m (C3) sensors for locating the mobile

source. Let ui ¼ ½ui;1ui;2�T be the coordinate vector of the

ith sensor. The distance between the source and the ith

receiver is denoted as

di ¼ kc� uik2 ð4Þ

where k � k2 stands for the 2-norm. Assume that there are

only line-of-sight propagations from the mobile source to

the sensors. The distances di’s can be determined from the

d
2

d 1

d3

d
4

Fig. 1 The source localization problem. There are four sensors. If

there are line-of-sight propagations from the mobile source to the

sensors, the distances di’s can be determined from the one-way signal

propagation times between the mobile source and sensors
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one-way signal propagation times. Let d ¼ ½d1; . . .; dm�T be

the true distances between the mobile source and sensors.

Assuming that there are additive noise in the observed

process, the measurement distances d̂; can be modeled as

d̂ ¼ d þ � ð5Þ

where � is the noise vector.

2.3 ML estimation

In general, it is difficult to determine the probability model

of � because the probability model depends on several

complicated factors such as the nonlinear structure of the

TOA estimator [18]. Hence, it is common to assume [19]

that � follows a Gaussian distribution with zero mean. Also,

each component of �i is independent of one other. Then, the

covariance matrix is given by U ¼ diagðr2
1; . . .; r2

mÞ:
In the ML estimator [20], we would like to find out an

estimate of the mobile source position such that the

objective function

1

2
ðd̂ � gÞTU�1ðd̂ � gÞ ð6Þ

is minimized, where g : R2 ! R
m has its ith element, given

by

gi ¼ kc� uik2: ð7Þ

It should be noticed that the objective function in (6) is a

nonlinear function of the mobile source’s coordinates c:

Hence, finding the optimal solution may not be easy. A

number of numerical methods have been proposed in [21,

22].

3 LPNN for ML estimation

The ML location estimation problem in (6) can be rewritten

as a constrained optimization problem, given by

min
c;g

1

2
ðd̂ � gÞTU�1ðd̂ � gÞ ð8aÞ

s.t. g2
i ¼ kc� uik2; i ¼ 1; . . .;m ð8bÞ

gi� 0; i ¼ 1; . . .;m ð8cÞ

Since there are m equality constraints and m inequality

constraints in (8c), the problem may not be solved by the

LPNN approach directly. As the distance vector d̂ contains

only nonnegative elements, we can remove the

m inequality constraints in (8c). Therefore, we have the

following theorem.

Theorem 1 The optimization problem in (8) is equiva-

lent to

min
c;g

1

2
ðd̂ � gÞTU�1ðd̂ � gÞ ð9aÞ

s.t. g2
i ¼ kc� uik2

2; i ¼ 1; . . .;m; ð9bÞ

where the m inequality constraint in (8c) is removed.

Proof We will show that if ðc�; g�Þ is an optimal solution

of (9), then gH

i � 0 for all i. Note that if the above statement

is true, then the m inequality constraints in (8c) can be

removed. Let ðc�; g�Þ be the optimal solution of (9). From

the definition, the minimal objective function value in (9) is

given by

ðd̂ � g�ÞTU�1ðd̂ � g�Þ ¼
Xm

i¼1

1

r2
i

ðd̂i � g�i Þ
2: ð10Þ

From basic algebra, we have

Xm

i¼1

1

r2
i

ðd̂i � g�i Þ
2�

Xm

i¼1

1

r2
i

ðjd̂ij � jg�i jÞ
2: ð11Þ

Since the measurement distances d̂i’s are greater than or

equal to zero, we have

Xm

i¼1

1

r2
i

ðjd̂ij � jg�i jÞ
2 ¼

Xm

i¼1

1

r2
i

ðd̂i � jg�i jÞ
2: ð12Þ

From (11) and (12), we have

Xm

i¼1

1

r2
i

ðd̂i � g�i Þ
2�

Xm

i¼1

1

r2
i

ðd̂i � jg�i jÞ
2: ð13Þ

Inequality (13) implies that the minimal objective function

value
Pm

i¼1
1
r2

i

ðd̂i � g�i Þ
2

is greater than or equal to the

function value achieved by the feasible point ðc�; absðg�ÞÞ:
Since ðc�; g�Þ is the optimal solution, the equality in (13)

must hold. Furthermore, the equality in (13) holds if and

only if g� ¼ absðg�Þ: Hence, the global optimal solution

must satisfy gi
* C 0 for all i. Hence, the m inequality

constraint in (8c) can be removed and the proof is com-

plete. h

With Theorem 1, the constrained optimization problem

for TOA-based source localization can be rewritten as

min
c;g

1

2
ðd̂ � gÞTU�1ðd̂ � gÞ ð14aÞ

s.t. g2
i ¼ kc� uik2

2; i ¼ 1; . . .;m: ð14bÞ

From (14), one may suggest that we can construct the

following Lagrangian function:
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Lðc; g; kÞ ¼ 1

2
ðd̂ � gÞTU�1ðd̂ � gÞ

þ
Xm

i¼1

kiðg2
i � kc� uik2

2Þ;
ð15Þ

where k ¼ ½k1; . . .; km�T is the Lagrangian multiplier

vector. Afterward, we can use (15) to drive the neural

dynamics for solving the ML location estimation prob-

lem defined by (14). However, our preliminary experi-

ment finds that the second-order gradient of the

Lagrangian function at an equilibrium point may not be

positive. Hence, the neural dynamics may not be stable.

As a result, an equilibrium point ðx�; k�Þ may not be

stable.

To improve the convexity and the stability [17], we

introduce an augmented term Co=2
Pm

i¼1ðg2
i ¼ kc� uik2

2Þ
2

into the objective function, where Co is a large positive

constant. With the augmented term, the optimization

problem (14) can be modified as

min
c;g

1

2
ðd̂ � gÞTU�1ðd̂ � gÞ þ Co

2

Xm

i¼1

ðg2
i � kc� uik2

2Þ
2

ð16aÞ

s.t. g2
i ¼ kc� uik2

2; i ¼ 1; . . .;m ð16bÞ

In (16), we have an additional term in the objective

function. However, at an equilibrium point ðg�; c�Þ; the

constraints are satisfied, i.e., g�i
2 ¼ kc� � uik2

2; i ¼
1; . . .;m: That means, at an equilibrium point, the

additional term Co=2
Pm

i¼1ðg�2i ¼ kc� � uik2
2Þ

2
is equal

to zero. So, adding this augmented term does not change

the objective function value at the equilibrium point.

Let x ¼ ½cT gT �T : From (16) and the concept of LPNNs,

we can set up the Lagrangian function for source locali-

zation, given by

Lmlðc; g; kÞ ¼
1

2
ðd̂ � gÞTU�1ðd̂ � gÞ

þ Co

2

Xm

i¼1

ðg2
i � kc� uik2

2Þ
2

þ
Xm

i¼1

kiðg2
i � kc� uik2

2Þ:

ð17Þ

In (17), c and g are state variables, while ki’s are

Lagrangian variables. That means, there are m ? 2 state

variable neurons to hold state variables c and g, and m ? 2

state Lagrangian neurons to hold the Lagrangian variables

ki’s.

With (17), from (3), the dynamics of the network is

given by

dc

dt
¼� oLmlðc; g; kÞ

oc

¼2
Xm

i¼1

ðki � Coðg2
i � kc� uik2

2ÞÞðc� uiÞ;
ð18Þ

dgi

dt
¼� oLmlðc; g; kÞ

i

¼ 1

r2
i

ðd̂i�giÞ � 2Cogiðg2
i � kc� uik2

2Þ � 2kigi;

ð19Þ

dki

dt
¼ oLmlðc; g; kÞ

oki

¼g2
i � kc� uik2

2:

ð20Þ

A realization of this LPNN is shown Fig. 2. There are

2m ? 2 function blocks to calculate the inputs of the

neurons. Also, there are 2m ? 2 integrators to update the

states of the neurons.

In LPNNs [17], apart from the convexity, another

requirement for the local stability is that the gradient

vectors frxh1ðx�Þ; . . .;rxhmðx�Þg of the constraints at an

equilibrium point x�; frxh1ðx�Þ; . . .;rxhmðx�Þg; should be

linearly independent.

In our case, we let

x ¼ c
g

� �
; ð21aÞ

x� ¼ c�

g�

� �
; ð21bÞ

hiðxÞ ¼ hiðc; gÞ ¼ g2
i � kc� uik2

2; ð21cÞ

for i ¼ 1; . . .;m: In our approach, the gradient vectors at the

equilibrium point x� are given by

�2ðc� � u1Þ
2g�1
0

..

.

0

2
66664

3
77775
; � � � � � � ;

�2ðc� � umÞ
0

..

.

0

2g�m

2
66664

3
77775

8
>>>><

>>>>:

9
>>>>=

>>>>;

: ð22Þ

That means, if gi
*
= 0 for all i, the equilibrium point is a

stable point. At the equilibrium point g�i
2 ¼ kc� � uik2

2:

Hence, if the estimated coordinates are not equal to one of

sensor’ coordinates, the dynamics around the equilibrium

point is stable.

4 Simulation results

We conduct several computer simulations to evaluate the

accuracy of the proposed analog neural model.
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4.1 Neural dynamics

In this example, there are six sensors, i.e., m = 6, shown in

Fig. 3. Their coordinates are ð10; 0Þ; ð5; 5
ffiffiffi
3
p
Þ; ð�5; 5

ffiffiffi
3
p
Þ;

ð�10; 0Þ; ð�5;�5
ffiffiffi
3
p
Þ and ð5;�5

ffiffiffi
3
p
Þ: The coordinates of

the mobile source are (-4,4). The TOA measurement

errors are uncorrelated zero-mean Gaussian random vari-

ables with identical variances, i.e., r2 ¼ r2
1 ¼ r2

2 ¼ � � � ¼
r2

m: Figure 4 shows the dynamics of the estimated source

coordinates under three noise levels for a single trial. For

small noise levels, say, r2 = 0.1, the network settles down

in less than one characteristic time. When we increase the

noise level to r2 = 1, the network is still able to settle

down within 10 characteristic times.

4.2 Fixed source location

In this section, we study the effectiveness of our analog

network model. Three sets of sensor positions with m = 4,

6 and 8, shown in Fig. 5, are considered. The mobile

source is at (-4,4). The TOA measurement errors are

uncorrelated zero-mean Gaussian random variables with

identical variances, i.e., r2 ¼ r2
1 ¼ r2

2 ¼ � � � ¼ r2
m: As a

comparison, we also consider two benchmark location

estimators: the LLS [8] and TSWLS [9]. They are con-

ventional numerical methods for TOA-based source

localization. In the simulation, we include the CRLB. It is

well known [9] that the performance of the TSWLS is close

to the CRLB for sufficiently small noise conditions.

For each set of sensor positions and each noise level, the

experiment is repeated 1,000 times. Figure 6 plots MSEs of

estimated mobile source coordinates under various settings.

From the figure, we observe that as we increase the number

of sensors, the performance of various algorithms becomes

better. The performance of the proposed analog neural

model is better than of the LLS algorithm over a wide

range of measurement noise levels. Also, the performance

of the proposed analog neural model is comparable with

Fig. 2 Realization of a LPNN

for TOA-based source

localization
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Fig. 3 Coordinates of six sensors and mobile device in Sect. 4.1
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that of the TSWLS and is close to the CRLB. For instance,

for the case of four sensors, when the noise level is equal to

-5 dB, the MSE of using the LLS algorithm is equal to
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o
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Fig. 4 Dynamics of estimated source coordinates
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Fig. 5 Three sets of sensors used in Sects. 4.2 and 4.3
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Fig. 6 The performance of various algorithms under different

settings. The mobile source is fixed at (-4,4). The coordinates of

the sensors are shown in Fig. 3
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Fig. 7 The performance of various algorithms under different

settings. The source location is uniformly distributed on a circle

centered at the origin with radius 15. The sensors are shown in Fig. 3
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-3.91 dB. Using the TSWLS or our analog neural

approach, we can reduce the MSE value to -4.87 dB. Note

that the CRLB value is equal to -5.78 dB when the noise

level is equal to -5 dB.

4.3 Random source location

In this section, the sensor positions are identical to those of

Sect. 4.2. However, the source position is randomly chosen

at each of the 1,000 independent runs. The location is

uniformly distributed on a circle centered at the origin with

radius 15. Figure 7 shows the corresponding MSE

performance.

From the figure, we also observe that as we increase the

number of sensors, the performance of various algorithms

becomes better. The performance of the proposed analog

neural model is better than of the LLS algorithm. Also, the

performance of the proposed analog neural model is

comparable with that of the TSWLS. For instance, for the

case of six sensors, when the noise level is equal to -5 dB,

the MSE of using the LLS algorithm is equal to -4.21 dB.

Using the TSWLS approach, the MSE is reduced to

-6.44 dB. Using our analog neural approach, we can also

get a similar MSE value. Note that the CRLB value is equal

to -7.10 dB when the noise level is equal to -5 dB.

5 Conclusion

In this paper, we have showed that the TOA-based locali-

zation can be formulated as a constrained optimization

problem. We then propose an analog neural network

model, based on LPNNs, to solve this problem. To improve

the stability at equilibrium points, we add an augmented

term in the objective function. Simulations demonstrate

that in terms of MSE, there is no significant difference

between our analog approach and the traditional TSWLS

numerical method. Also, the MSE performance of our

analog approach is close to CRLB. This paper assumes that

line-of-sight propagation holds. One of the future direc-

tions is to extend our approach to handle nonline-of-sight

cases. Note that the conventional LS methods or TSWLS

are not effective for such scenarios.
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