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Abstract In a CAD system for the detection of masses,

segmentation of mammograms yields regions of interest

(ROIs), which are not only true masses but also suspicious

normal tissues that result in false positives. We introduce a

new method for false-positive reduction in this paper. The

key idea of our approach is to exploit the textural properties

of mammograms and for texture description, to use Weber

law descriptor (WLD), which outperforms state-of-the-art

best texture descriptors. The basic WLD is a holistic

descriptor by its construction because it integrates the local

information content into a single histogram, which does not

take into account the spatial locality of micropatterns. We

extend it into a multiscale spatial WLD (MSWLD) that

better characterizes the texture micro structures of masses

by incorporating the spatial locality and scale of micro-

structures. The dimension of the feature space generated by

MSWLD becomes high; it is reduced by selecting features

based on their significance. Finally, support vector

machines are employed to classify ROIs as true masses or

normal parenchyma. The proposed approach is evaluated

using 1024 ROIs taken from digital database for screening

mammography and an accuracy of Az = 0.99 ± 0.003

(area under receiver operating characteristic curve) is

obtained. A comparison reveals that the proposed method

has significant improvement over the state-of-the-art best

methods for false-positive reduction problem.

Keywords WLD � Support vector machines � Mass

detection � Mammograms � False-positive reduction

1 Introduction

Breast cancer is one of the most common types of cancer

among women all over the world, and it is considered as

the second main cause of death among women [1].

According to a survey conducted by the American Cancer

Society, one out of 8–12 American women will suffer from

breast cancer during his lifetime [2]. Also, 19 % European

women out of those suffering from breast cancer die due to

this type of cancer [3]. Moreover, the World Health

Organization’s International Agency for Research on

Cancer (IARC) reported that 0.4 million women die every

year due to breast cancer out of more than one million

registered cases of breast cancer [4]. The detection of

breast cancer at an early stage can be effective in pre-

venting deaths due to breast cancer, but it is not an easy

task. Commonly used imaging modality for breast cancer is

mammogram, which has significantly enhanced the radi-

ologists’ ability to detect and diagnose cancer at an early

stage and take immediate precautions for its earliest pre-

vention [5].

The analysis of mammograms is a complicated task due

to its complex structure. The malignant abnormalities

found through mammogram screening are about 0.1–0.3 %

[6]. In addition, after follow-up mammograms, only

5–10 % of the suspected abnormalities are recommended

for surgical verification by biopsy [7] and about 60–80 %

biopsies result in false positives [8]. On the other hand,

retrospective analysis reveals false-negative rate of

10–20 % [8]. It follows that a significant number of

abnormalities is missed by expert radiologists. Given the
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number of mammograms screened every year, a small

decrease in false negatives can save many lives and a small

decrease in false positives can result in significant reduc-

tion in unnecessary follow-ups and mental trauma.

Mammography provided an opportunity to introduce

computer-aided detection (CAD) systems in order to help

the radiologists for detecting and diagnosing the breast

cancer at an early stage [9–11]. In 2001, Freer and Ulissey

[12] evaluated a CAD system for 12,860 patients and

concluded that CAD system can improve the detection of

malignant cases in their early stages. However, this fact

became controversial in 2005 when Khoo et al. [13] pub-

lished their results for a database of 6111 women. Nis-

hikawa and Kallergi [12] argued that CAD in its present

form does not have significant impact on the detection of

breast cancer. The main reason for the mistrust of radiol-

ogists on the role of CAD system in breast cancer detection

is due to large number of false positives [8, 14].

In a CAD system for masses, mammograms are seg-

mented to detect masses; the segmentation yields regions

of interest (ROIs), which are not only masses but suspi-

cious normal tissues as well, which result in false positives.

The performance of a CAD system depends on how much

accurately the false positives are reduced. The reduction in

false positives is dependent on the description of ROIs.

Various descriptors based on texture, gray level, ICA [15,

21], PCA [16], 2DPCA [17, 18], morphology [19], wave-

lets [20], and LBP [21] have been used. Lladó et al. [21]

used spatially enhanced local binary pattern (LBP)

descriptor, which is basically a texture descriptor, to rep-

resent textural properties of masses and to reduce false

positives; this method achieved an overall accuracy of

Az = 0.94 ± 0.02 (percentage area under receiver oper-

ating characteristic (ROC) curve) on digital database for

screening mammography (DDSM). This is the best of all

false-positive reduction methods published so far. But LBP

descriptor builds statistics on local micropatterns (dark/

bright spots, edges, and flat areas) without taking into

account the directional information of texture micropat-

terns; also, it is not robust against noise. Instead of LBP, we

use Weber law descriptor (WLD) [22] for representing the

textural properties of masses and to reduce the false posi-

tives. WLD builds statistics on salient micropatterns along

with gradient orientation of the current pixel and is robust

against noise and illumination changes. Chen et al. [22]

have shown that WLD outperforms LBP in texture recog-

nition. As such, WLD is a better choice for representing the

texture properties of masses and normal parenchyma.

The basic WLD is a histogram where differential exci-

tation values are integrated according to their gradient

orientations irrespective of their spatial location and so

WLD behaves like a holistic descriptor. We extend it to

enhance its discriminatory power by embedding the spatial

locality and the scale of micropatterns that better charac-

terize the spatial structures of masses; we call it multiscale

spatial WLD (MSWLD), initially employed in [30]. The

main contributions of the paper are as follows:

(i) Effective representation of mass and normal ROIs

using multiscale spatial WLD (MSWLD).

(ii) Finding the best set of the values of the parameters of

MSWLD that results in the best representation of

masses and normal ROIs.

(iii) Selection of the significant features in MSWLD.

(iv) A false-positive reduction method for a CAD system of

masses based on MSWLD and support vector machine

(SVM) that significantly reduces false positives.

The organization of the rest of the paper is as follows.

Section 2 illustrates the main algorithms for false-positive

reduction problem. Section 3 presents the architecture of

the system for false-positive reduction and the description

of the database used for the validation of the system.

Results have been reported and discussed in Sect. 4. Sec-

tion 5 concludes the paper.

2 Materials and methods

In this section, first we give an overview of the basic WLD

[22] and its multiscale version. Then, we describe its

extensions—spatial WLD (SWLD) and multiscale spatial

WLD (MSWLD). This descriptor represents an image as a

histogram of differential excitations, according to the cor-

responding gradient orientations, and has several interest-

ing properties like robustness to noise and illumination

changes, elegant detection of edges, and powerful image

representation. These characteristics have made it suitable

for detection tasks involving complex texture patterns with

varying conditions.

Weber law descriptor is based on Weber’s Law.

According to this law, the ratio of the increment threshold

to the background intensity is constant. Inspired by this

law, Chen et al. [22] proposed WLD for texture represen-

tation. The computation of WLD involves three compo-

nents: calculating differential excitations, gradient

orientations, and building the histogram. In the following

sections, first we give an overview of these components

and then the detail of MSWLD is presented.

2.1 Differential excitation (DE)

The first step for WLD is the computation of the differ-

ential excitation (DE) of each pixel. To compute DE e(xc)

of a pixel xc, first intensity differences of xc with its

neighbors xi, i = 0, 1, 2, …, p - 1 (see Fig. 1a for the case

p = 8) are calculated as follows [22]:
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DIi ¼ Ii � Ic: ð1Þ
Then, the ratio of the total intensity difference

PP�1
i¼0 DIi

to the intensity of xc is determined as follows:

fratio ¼
XP�1

i¼0

DIi

Ic

� �

: ð2Þ

Note that fratio is not robust against noise. Arctangent

function is applied on fratio to enhance the robustness of

WLD against noise, which finally gives the DE for pixel

xc:

e xcð Þ ¼ arctan
XP�1

i¼0

DIi

Ic

� �" #

: ð3Þ

The differential excitation e(xc) may be positive or

negative. If the current pixel is darker than its background,

then its gray scale value Ic is less than those (Ii, i = 0, 1, 2,

…, P-1) of its neighbors and each DIi is positive. As such,

the positive value of DE means that the current pixel is

darker than its background and the negative value of DE

indicates that the current pixel is lighter than its

background.

2.2 Gradient orientation (GO)

Next main component of WLD is gradient orientation. For

a pixel xc, the gradient orientation is calculated as follows

[22]:

h xcð Þ ¼ arctan
I73

I51

� �

ð4Þ

where I73 = I7 – I3 is the intensity difference of two pixels

on the left and right of the current pixel xc, and I51 ¼
I5 � I1 is the intensity difference of two pixels directly

below and above the current pixel, see Fig. 1a. Note that

h 2 � p
2
; p

2

� �
.

The gradient orientations are quantized into T dominant

orientations as:

/t ¼
2t

T
p where t ¼ mod

h0

2p=T
þ 1

2

� 	

; T

� �

ð5Þ

where h0 2 ½0; 2p� and is obtained using the mapping f:

h ? h0 defined in terms of gradient orientation computed

by the Eq. (4) as follows:

h0 ¼ arctan 2 I73; I51ð Þ þ p

where

arctan 2 I73; I51ð Þ ¼

h I73 [ 0 and I51 [ 0

pþ h I73 [ 0 and I51 [ 0

h� p I73\0 and I51\0

h I73\0 and I51\0

8
>><

>>:

In case T = 8, the dominant orientations are

/t ¼ tp
4
; t ¼ 0; 1; . . .; T � 1; all orientations located in the

interval /t � p
8


 �
;/t þ p

8


 �� �
are quantized as /t.

2.3 Basic WLD

The differential excitation and dominant orientation cal-

culated for each pixel form a WLD feature. Using these

features, WLD histogram is calculated, see Fig. 2a. First,

sub-histograms Ht: t = 0, 1, 2, …, T-1 of differential

excitations corresponding to each dominant orientation /t:

t = 0, 1, 2, …, T-1 are calculated; all pixels having

dominant direction, /t, contribute to sub-histogram Ht.

Then, each sub-histogram Ht: t = 0, 1, 2, …, T-1 is fur-

ther divided into M sub-histograms Hm,t: m = 0, 1, 2, …,

M-1, each with S bins. These sub-histograms form a

histogram matrix Hm,t: m = 0, 1, 2, …, M-1, t = 0, 1, 2,

…, T-1, where each column corresponds to a dominant

direction /t. Each row of this matrix is concatenated as a

sub-histogram Hm = {Hm,t: t = 0, 1, 2, …, T-1}.

Fig. 1 a Central pixel and its

neighbors in case P = 8. b (8,

1) neighborhood of the central

pixel, c and d (16, 2) and (24, 3)

neighborhoods, respectively, of

the central pixel [22]

ROI WLD 
Descriptor

DE 

GO

Partitioned 

Spatial WLD 

(a) 

(b) 

Fig. 2 a Basic WLDr, b spatial WLD
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Subsequently, sub-histograms Hm: m = 0, 1, 2, …, M-1

are concatenated into a histogram H = {Hm: m = 0, 1, 2,

…, M-1}. This histogram represents an image and is

referred to as WLD. This descriptor involves three free

parameters:

• T, the number of dominant orientations /t: t = 0, 1, 2,

…, T-1,

• M, the number of segments Hm,t of each sub-histogram

Ht corresponding to a dominant orientation /t, and

• S, the number of bins in each sub-histogram Hm,t.

We represent basic WLD operator by WLD (T, M, S).

2.4 Multiscale WLD

The WLD reviewed in the previous sections uses fixed size

3 9 3 neighborhood, see Fig. 1a and is unable in charac-

terizing local salient patterns in different granularities. For

representing local salient patterns at different scales, it is

extended to multiscale WLD, which is computed using a

symmetric square neighborhood (P, R) of side (2R ? 1)

centered at the current pixel and consisting of P pixels

along the sides of the square. The neighborhoods (P, R)—

R = 1, 2, 3 and P = 8, 16, 24—determine the scale of the

descriptor [22]. For multiscale analysis, histograms

obtained using WLD operators with varying (P, R) neigh-

borhoods are concatenated. We represent multiscale WLD

operator by MWLDP,R (T, M, S).

2.5 Spatial WLD

WLD feature is a local feature but WLD histogram is a

holistic descriptor that represents an image as a histo-

gram of differential excitations. In this histogram, dif-

ferential excitations are put into bins according to their

values and gradient orientations, irrespective of their

spatial location. In this way, locally salient patterns

might be lost when an image, such as a mammogram,

has different texture patterns at different locations. Spa-

tial location is also an important factor for better

description. For example, two similar structures occurring

in two different patterns having different spatial locations

will contribute to the same bins in the histogram and will

not be discriminated by WLD. To enhance the discrim-

inatory power of WLD, we incorporate spatial informa-

tion into the descriptor. Each image is divided into a

number of blocks B1, B2, …, Bn, WLD histogram HBi is

computed for each block and then these histograms are

concatenated to form a Spatial WLD (SWLD) H = {HBi:

i = 1, 2, …, n}. SWLD not only encode gradient ori-

entation information but also the spatial locality of sali-

ent micropatterns.

This descriptor has better discriminatory power because

it captures the spatial locality of micropatterns in a better

way, which is important for recognition purpose. This

extension introduces another parameter: the number of

blocks. The suitable choice of number of blocks can lead to

better recognition results. We specify SWLD operator by

SWLD (T, M, S, n), where n is the number of blocks.

2.6 Multiscale spatial WLD

Spatial WLD characterizes both directional and spatial

information at fixed granularity. For better representation

of an image, it is important to capture local micropatterns

at varying scales (P, R). To achieve this end, we introduce

MSWLD; in this case for each block of an image, a mul-

tiscale WLD histogram at a particular scale (P, R) is

computed and then these histograms are concatenated. The

final histogram is the MSWLD at scale (P, R). We repre-

sent multiscale spatial WLD operator by MSWLDP,R (T,

M, S, n).

Note that the multiscale WLD proposed in [22] is

realized with MWLDP,R (T, M, S) operator, whereas the

proposed MSWLD is computed using MSWLDP,R (T, M, S,

n) operator.

2.7 Significance of features

The dimension of the feature space generated by MSWLD

becomes excessively high. All features are not significant.

The redundant features not only increase the dimension of

the feature space—curse of dimensionality—but also cre-

ate confusion for the classifier and result in the decrease in

classification accuracy. There is the need to select the most

significant features. Different methods can be used to

identify irrelevant features and select only the most sig-

nificant ones. We employ the method proposed by Sun

et al. [23]. This method is simple, powerful, and robust; its

detail is given below.

Let D = {(xi, yi) : i = 1, 2, …, n} be a training dataset,

where xi e Rm and yi e {±1} are the feature descriptor and

class label of ith training sample. Let w be an m-dimen-

sional nonnegative weight vector whose components rep-

resent the relevance of the corresponding m features of xi.

The problem of feature subset selection is to compute w so

that a margin-based error function in the weighted feature

space parameterized by w is minimized, which is an arbi-

trary nonlinear problem. This problem is solved iteratively

in two stages. First, by local learning, this problem is

decomposed into locally linear problems of learning mar-

gins (Steps 3 and 4 in the following pseudocode). Then,

w is learned within large margin framework based on

logistic regression formulation (Step 5 in the following

pseudocode).
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The pseudocode of the algorithm is given below [23].

In this algorithm,

zi ¼
X

r2Mi

Pðxr ¼ NMðxiÞjwÞ xi � xrj j

�
X

r2Hi

Pðxr ¼ NHðxiÞjwÞ xi � xrj j

where Mi ¼ fr : 1� r� n; yr 6¼ yig, Hi ¼ fr : 1� r� n; yr

¼ yi; r 6¼ ig, P xr ¼ NM xið Þjwð Þ ¼ exp xi�xrk kw=rð ÞP
s2Mi

exp xi�xsk kw=rð Þ ; 8r

2 Mi, P xr ¼ NH xið Þjwð Þ ¼ exp xi�xrk kw=rð ÞP
s2Hi

exp xi�xsk kw=rð Þ ; 8r 2 Hi,

NM (xi) denotes the nearest neighbor of xi belonging to the

opposite class, NM(xi) represents the nearest neighbor of xi

belonging to its class, and the kernel width r is a free

parameter that determines the resolution at which the data

are locally analyzed. The regularization parameter k con-

trols the sparseness of the solution and g is the learning

rate. For further detail, a reader is referred to [23].

This method has two free parameters: kernel width r
and regularization parameter k. Though the authors claim

in [23] that the performance of the method does not depend

on a particular choice of the values of these parameters, our

experience is different, see Fig. 3; the proper choice of

these parameters is imperative for the best results. To find

the optimal values of r and k, which help to select the

minimum number of the most significant features giving

the best classification result, we applied grid search, as

described below.

Though Sun’s method is a filter method but we

employed it as a wrapper method for feature subset

selection.

2.8 Support vector machine (SVM)

For classification, support vector machines (SVM) [24] are

used; it is one of the most advanced classifier and outper-

forms other well-known classification methods in many

applications involving two-class problem, especially in

texture classification problem. The interesting aspect of

SVM is its better generalization ability that is achieved by

finding optimal hyperplane with maximum margin, see

Fig. 4. The optimal hyperplane is learned from training set.

More specifically, given the training samples {(xi, yi):

i = 1, 2, …, n}, where xi and yi e {-1, ?1} are the feature

descriptor and class label of ith training sample, the opti-

mal hyperplane is defined as follows:

f ðxÞ ¼ w:xþ b ¼ 0

where w and b are obtained by solving the following

optimization problem:

Maximum Margin  

Optimal Hyperplane

Fig. 4 SVM classifies by finding the optimal hyperplane that has

maximum margin

Fig. 3 Graph showing the effect of the parameters (r, k) on

classification accuracy
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Minimize 1
2

wk k2

Subject to the constraints yi w:xiþ bð Þ�1; i¼ 1;2; . . .;n
:

The solution of this problem ensures that the margin 2
wk k

of the hyperplane is maximum. The training samples that

are on the canonical hyperplanes (w.x ? b) = ±1 are

known as support vectors. Note that yi = 1 for a normal

ROI and yi = -1 for a mass ROI.

Support vector machines are basically a linear classifier

that classifies linearly separable data, but in general, the

feature vectors might not be linearly separable. To over-

come this issue, kernel trick is used. Using a kernel func-

tion that satisfies Mercer’s condition, the original input

space is mapped into a high-dimensional feature space

where it becomes linearly separable. Using kernel trick, the

general form of an SVM is

f ðxÞ ¼
X

i2X
aiyiKðx; xiÞ þ b

where a
0

is are Lagrange coefficients due to Lagrange for-

mulation of the optimization problem, X is the set of

indices of nonzero a
0
is, which corresponds to the support

vectors, x is a testing sample, and K (x, xi) is a kernel

function. Classification decision is taken based on whether

f(x) as a value above or below a threshold. Different kernel

functions have been employed for different classification

tasks. As radial basis function (RBF) gives the best results

in most of the applications, we employ RBF for false-

positive reduction problem. SVM with RBF kernel

involves two parameters: C, the penalty parameter of the

error term and c, the kernel parameter. For optimal clas-

sification results, these parameters must be properly tuned.

We select the optimal values of these parameters using first

coarse and then fine grid search. For implementation of

SVM, we used LIBSVM [25].

3 False-positive reduction system

The block diagram of the false-positive reduction system is

shown in Fig. 5. There are four main components of the

system: preprocessing, feature extraction, feature selection,

and classification. Various existing approaches differ in the

choice of techniques for these components. Note that WLD

is robust against noise and illumination changes [22], so in

our approach there is no need for preprocessing methods

for denoising and enhancement. For feature extraction, we

used MSWLD, which has been discussed in detail in Sect.

2. The method proposed by Sun et al. [23] is used for

selecting the most significant features, and SVM with RBF

is employed for classification. The novelty of the system is

to use a powerful discriminating MSWLD along with

feature selection for reducing the number of false positives.

3.1 Database

The proposed method is evaluated using DDSM [26]; this

database consists of more than 2000 cases and is commonly

used as a benchmark for testing new proposals dealing with

processing and analysis of mammograms for breast cancer

detection. The mammograms of the DDSM database were

digitized using different scanners: a DBA M2100 Image-

Clear (42 9 42 lm pixel resolution), a Howtek 960

(43.5 9 43.5 lm pixel resolution), a Lumisys 200 Laser

(50 9 50 lm pixel resolution), and a Howtek MultiRad850

(43.5 9 43.5 lm pixel resolution). All the images are 16

bits per pixel. Finally, we rescaled the images to have the

same resolution: 50 lm. Each case in this database is

annotated by expert radiologists; the complete information

is provided as an overlay file. The locations of masses in

mammograms specified by experts are encoded as code

chains; in Fig. 6, the contours drawn using code chains

enclose the true masses. We randomly selected 250 mam-

mograms of the patients, which contain proven true masses,

and extracted 1024 ROIs (normal and mass) from these

mammograms, see Fig. 6. We extracted 256 ROIs, which

contain true masses using code chains; the sizes of these

ROIs vary depending on the sizes of the mass regions from

267 9 274 to 1197 9 1301 pixels. In addition, suspicious

normal ROIs, which look like masses and result in false

positives, were extracted. Some sample ROIs are shown in

Fig. 7. These ROIs are uvnsed for training and testing. In an

automatic system, it is assumed that these ROIs are

extracted by some detection and segmentation algorithm.

The role of the proposed algorithm is to identify whether an

ROI is a true mass or a normal tissue.

4 Experiments and discussion

In this section, we report and discuss the results of the pro-

posed method. For validation, we used DDSM database and

directly compared the proposed method with state-of-the-art

best similar mass detection method proposed by Llado et al.

[21] using the same hardware and software environment and

the dataset. In the following subsections, first we describe

evaluation strategy, then discuss the impact of the parameters

of MSWLD, and finally give the comparison.

Pre-Processing
Feature Extraction 

using MSWLD 

Feature Subset 
Selection  

Classification using
SVM Normal / Mass 

Fig. 5 Mass detection system
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4.1 Evaluation strategy

For the evaluation of classification performance, we used

fivefold cross-validation. In particular, the dataset is ran-

domly partitioned into five nonoverlapping and mutually

exclusive subsets. For the experiment of fold i, subset i is

selected as testing set and the remaining four subsets are

used to train the classifier, i.e., 80 % of the dataset is used

for training the system and the remaining 20 % samples are

used to test the system. The experiments are repeated for

each fold and the mean performance is reported. Using

fivefold cross-validation, the performance of the method

can be confirmed against any kind of bias involved in the

selection of the samples for training and testing phases. It

also helps in determining the robustness of the method when

tested over different ratios of normal and abnormal ROIs

used as training and testing sets (due to random selection,

ratios will be different). To compute the best parameters (r,

k) of the Sun’s algorithm, we used fivefold cross-validation

and the wrapper approach described in Sect. 2.7.

Commonly used evaluation measures of the predictive

ability of a classification method are sensitivity (a measure

Fig. 7 Sample mass ROIs (top row) and suspicious normal ROIs (bottom row)

Fig. 6 Annotated mammogram images from DDSM database. Contours mark the boundaries of the mass regions. Squares represent the mass

and suspicious normal ROIs extracted for the validation of the proposed method
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of true-positive rate), specificity (a measure of true-nega-

tive rate), accuracy and area under ROC curve (AUC or

Az). The sensitivity is defined by

Sensitivity ¼ TP

TPþ FN

where TN is the number of ROIs correctly classified as true

masses and FN is the number of ROIs, which are wrongly

classified as masses. The specificity is defined by

Specificity ¼ TN

TNþ FP

where TN is the number of ROIs correctly classified as

normal and FP is the number of mass ROIs, which are

wrongly classified as normal ROIs. The accuracy is defined

by

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
;

it expresses the overall rate of correctly classified ROIs.

Another performance measure to evaluate the ability of a

classification system to differentiate normal ROIs from

mass ROIs is the area (Az) under the ROC curve. The ROC

curve describes the ability of the classifiers to correctly

differentiate the set of ROIs into two classes based on the

true-positive fraction (sensitivity) and false-positive frac-

tion (1 - specificity).

Accuracy is a function of sensitivity and specificity, and

it is common trend to use this measure for overall perfor-

mance of a mass classification method, but a study by

Huang and Ling [27] showed that Az is a better measure

than accuracy. In view of this, our analysis of performance

will mainly be based on Az.

4.2 Optimization of parameters

The MSWLD operator—MSWLDP,R (T, M, S, n)—

involves 6 parameters: T, M, S, the number of blocks n, and

the scale parameters (P, R). The recognition rate depends

on the proper tuning of these parameters. In this subsection,

we discuss the impact of these parameters and describe the

optimal combination that yield the best recognition accu-

racy in terms of Az.

4.2.1 Effect of T, M, and S

To assess the effect of T, M, S on the recognition accuracy,

we consider MSWLD operator—MSWLD24,3 (T, M, S, n),

apply it with different combinations (T, M, S) of T = 4, 6,

8, 12; M = 4, 8; and S = 5, 10, 15, 20 on ROIs with dif-

ferent numbers of blocks and extract MSWLD at scale (24,

3) and use them for mass detection; why we have chosen

the scale (24, 3) will be made clear under the discussion of

scale parameters. Among different combinations, here we

present the results only for two best combinations: (4, 4, 5)

and (12, 4, 20); the obtained recognition rates (in terms of

Az) in these two cases are shown in Fig. 8 and Table 1. It

is obvious that there are no significant differences between

Az values obtained for different numbers of blocks. The Az

values for the case (4, 4, 5) are bit higher than those for (12,

4, 20). In the first case, the dimension of the feature space

is much smaller than that in the second case, look at the

bars in Fig. 8. It means that (4, 4, 5) is the best choice. In

all our experiments, we will use this combination.

4.2.2 Effect of scales (P, R)

Three scales are used for experiments: scale-1: (8, 1),

scale-2: (16, 2), and scale-3: (27, 3). Figures 6 and 7 show

the recognition rates with these three scales and their

fusion.

Table 1 Effect of combinations of (T, M, S) and block sizes

Number blocks (T, M, S) Sensitivity Specificity Accuracy Az

4 9 4 (4, 4, 5) 98.45 – 1.33 97.56 – 1.23 98.00 – 0.56 0.98 – 0.006

(12, 4, 20) 98.02 ± 1.59 96.68 ± 0.66 97.36 ± 0.74 0.97 ± 0.009

5 9 5 (4, 4, 5) 98.25 ± 0.85 97.45 ± 0.83 97.85 ± 0.76 0.97 ± 0.008

(12, 4, 20) 97.88 ± 2.17 96.28 ± 2.24 97.07 ± 1.97 0.97 ± 0.02

Bold values indicate the best results
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different number of blocks with MSWLD24,3 (T, M, S, n) operator at

scale (24, 3). In each case, the dimension of the feature space is

shown on bars
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The bar graphs in these figures indicate that scale-3

gives the best recognition performance in terms of Az.

4.2.3 Effect of number of blocks and feature selection

To find the optimal number of blocks, we performed

experiments by dividing each ROI into 1 9 1 (full), 2 9 2,

3 9 3, 4 9 4, and 5 9 5 blocks, i.e., 1, 4, 9, 16, and 25

blocks. From Fig. 9, it is clear that 4 9 4 and 5 9 5 give

similar recognition rates, but in case of 5 9 5, the

dimension of the feature space becomes very big. It means

that the best choice is 4 9 4. It is also obvious from Fig. 9

and Table 2, the recognition rate is maximum (Az =

0.9827 ± 0.006) when 16 (4 9 4) blocks are used. This is

the conclusion before feature selection. But after feature

selection, the situation is different; the best result

(Az = 0.9901 – 0.003) is obtained when 25 (5 9 5)

blocks are used, see Fig. 10 and Table 2. In case of 4 9 4

blocks, the number of features before and after selection is

1280/220, whereas this number is 2000/261 when 5 9 5

blocks are used. Also compare the recognition rate before

and after feature selection; it is Az = 0.9827 ± 0.006/

Az = 0.9891 ± 0.002, and Az = 0.97678 ± 0.008/Az =

0.9901 ± 0.003 before/after feature selection in case of

4 9 4 and 5 9 5 blocks, respectively. It indicates that

there is a large number of irrelevant features in the

descriptor, which cause confusion for the classifier; when

these features are removed by the feature selection algo-

rithm by selecting significant features, the recognition rate

has improved significantly. It follows from the above dis-

cussion that the best results are obtained with MSWLD24,3

(4, 4, 5, 5 9 5) and MSWLD24,3 (4, 4, 5, 4 9 4) operators.

4.3 Discussion

The results reported in Table 2 indicate that the proposed

method for false-positive reduction problem achieved the

best recognition rate in terms of Az value, accuracy, and

specificity. This result was obtained using MSWLD24,3 (4,

4, 5, 5 9 5), SVM with RBF, and feature subset selection.

Different parameters involved in the computation of

MSWLD, SVM, and Sun’s method for feature selection

have significant impact on the recognition accuracy. We

performed experiments with different choices of these

parameters and found the best set of these parameters. The

best parameter values for SVM and Sun’s FSS algorithm

are reported in Table 2.

4.4 Comparison

Finally, we give a quantitative comparison with state-of-

the-art best method proposed by Lladó et al. [21] in addi-

tion to basic WLD. There are two reasons for comparison

with this method. First, this method outperforms the most

representative state-of-the-art methods (see the comparison

given in [21]). Second, LBP histogram used in this method
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and their fusion on the recognition rate after feature selection. The

numbers on two bars show the number of features (after/before)

selection

Table 2 Performance with 4 9 4 and 5 9 5 blocks before and after feature selection

Number blocks Number features Sensitivity Specificity Accuracy Az (C, c) (r, k)

4 9 4 1280 98.45 ± 1.33 97.56 ± 1.23 98.00 ± 0.56 0.98 ± 0.006 (29, 2-17)

220 (A. F. S.) 99.02 ± 0.47 98.14 ± 0.39 98.58 ± 0.26 0.98 ± 0.002 (29, 2-17) (0.3, 0.7)

5 9 5 2000 98.25 ± 0.85 97.45 ± 0.83 97.85 ± 0.76 0.97 ± 0.008 (29, 2-17)

261 (A. F. S.) 98.82 – 0.44 99.03 – 0.81 98.93 – 0.56 0.99 – 0.003 (29, 2-17) (0.1, 0.5)
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and their fusion on the recognition rate before feature selection
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is a texture descriptor like WLD. Table 3 shows the

comparison of three methods for false-positive reduction

based on MSWLD, LBP, and WLD. Each method was

implemented using the same hardware/software environ-

ment and was evaluated using the same database. Also note

that LBP method was implemented precisely using LBP

MATLAB code provided by Ojala et al. [28] and the

specifications given in [21], i.e., LBP feature descriptor,

were computed by applying LBPu2
8;1 operator on each of

5 9 5 blocks and LBPu2
8;Rsize operator on each of central

3 9 3 blocks; according to Lladó et al. [21], this configu-

ration gives the best performance. We used MSWLD24,3 (4,

4, 5, 5 9 5) operator for MSWLD feature descriptor and

WLD (12, 4, 20) operator for basic WLD feature descrip-

tor; WLD (12, 4, 20) gives the best performance among

different combinations of (T, M, S). This table indicates

that MSWLD-based method outperforms in the reduction

in false positives. Note that the difference between the

performance of LBP-based method (0.94 ± 0.02) reported

in the original work by Lladó et al., and the one

(0.92 ± 0.016) shown in Table 1 may be attributed to the

selection of ROIs and the evaluation technique; we have

used 256 ROIs of true masses and 256 ROIs of suspicious

normal tissues; Lladó et al. also used the same number but

surely the ROIs are different; it is hardly possible for two

different persons to choose the same 256 ? 256 cases from

a database consisting of more than 2000 cases. The com-

parison of our method with this method reveals that the

proposed method is a better choice for false-positive

reduction for a CAD system.

Now, the question is why MSWLD performs better. The

answer to this question is that it has better potential for

discrimination of texture microstructures occurring at dif-

ferent locations and with different orientations and scales

because it considers the locality, scale, and the orientation

of the texture microstructures. Though LBP descriptor

encodes the locality and scale of the micropatterns, it does

not take into account the orientation of micropatterns.

5 Conclusion

We addressed the problem of reducing the number of false

positives resulted from the segmentation of mammograms

in a CAD system for mass detection. As a solution to this

problem, a new method based on MSWLD is proposed;

this method recognizes with high accuracy mass and sus-

picious normal ROIs; in this way, it significantly reduces

the number of false positives. MSWLD involves a number

of parameters, which has significant impact on the recog-

nition accuracy; a suitable set of these parameters is nec-

essary for optimal recognition rate. We performed

experiments to analyze the effect of the parameters and to

find the best set of parameters. The best performance is

obtained using MSWLD24,3 (4, 4, 5, 5 9 5) operator and

feature selection. For classification, SVM with RBF was

employed, which gave very good detection accuracy. The

main credit of the success of the proposed system goes to

MSWLD because it encodes the locality, scale, and ori-

entation of texture micropatterns. The direct comparison

with a similar state-of-the-art best method based on LBP

[21] and indirect comparison with the methods compared

with LBP method in [21] show that the proposed method

outperforms for false-positive reduction problem. More

powerful classifiers like SEL weighted SVM [29] can

further improve the detection rate.
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