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Abstract A central task of Bayesian machine learning is

to infer the posterior distribution of hidden random vari-

ables given observations and calculate expectations with

respect to this distribution. However, this is often compu-

tationally intractable so that people have to seek approxi-

mation schemes. Deterministic approximate inference

techniques are an alternative of the stochastic approximate

inference methods based on numerical sampling, namely

Monte Carlo techniques, and during the last 15 years,

many advancements in this field have been made. This

paper reviews typical deterministic approximate inference

techniques, some of which are very recent and need further

explorations. With an aim to promote research in deter-

ministic approximate inference, we also attempt to identify

open problems that may be helpful for future investigations

in this field.

Keywords Uncertainty � Probabilistic models � Bayesian

machine learning � Posterior distribution � Deterministic
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1 Introduction

Uncertainty is one of the key concepts in modern artificial

intelligence and human decision making, which naturally

arises in situations where insufficient information is pro-

vided or some determining factors are not observed [5, 35,

40]. Probabilistic models, which represent a probability

distribution over random variables, provide a principled and

solid framework to resolve problems involving uncertainty.

A probabilistic model usually consists of three compo-

nents: deterministic parameters, hidden variables including

latent variables and stochastic parameters, and observable

variables, which jointly specify the probability distribution.

The hidden and observable variables are both random

variables, though the latter are usually clamped to their

observed values. The distinction between latent variables

and stochastic parameters lies in the fact that the number of

latent variables grows with the size of the observed data

set, while the number of stochastic parameters is fixed

independently of that size [6]. The existence of hidden

variables may correspond to missing data or may be

imaginary to allow complicated and powerful distributions

to be formed. Note that for easy visualization and inves-

tigation of properties, a probabilistic model is often rep-

resented as a graphical model.

Determining a sole value or a distribution of values for

parameters and latent variables in a probabilistic model

from experience (i.e., data) is one of the core missions of

machine learning. The determined value or distribution can

then be used for decision making such as classification and

regression. For this purpose, people have to resort to some

measure of model appropriateness for the data. For

example, one common principle for learning deterministic

parameters is maximum likelihood estimation, which

returns a parameter setting that maximizes the probability

distribution of observed data.

However, maximum likelihood estimation is not

appropriate for determining posterior distributions of hid-

den variables given observed data in which case the prin-

ciple of Bayesian machine learning should be used. Here,

we explicitly distinguish the meanings of estimation and

inference. The term estimation refers to determining an
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approximate value for a deterministic parameter, and in

contrast inference refers to the process to infer the proba-

bility distribution of a random variable. Given observed

data D, Bayesian machine learning obtains the posterior

distribution over all hidden variables denoted by H through

the use of the prior distribution p(H), the likelihood p(D|H),

and the model evidence p(D) by Bayes’ theorem:

pðHjDÞ ¼ pðH;DÞ
pðDÞ ¼

pðHÞpðDjHÞ
R

H
pðH;DÞdH

: ð1Þ

This process is called Bayesian inference [40, 45, 76]. If we

are only interested in some of the hidden variables, a fur-

ther marginalization of the above posterior over the other

hidden variables should be performed. Note that our

treatment applies to both discrete and continuous variables,

where probability density functions and integrations are

used for continuous variables and probability mass func-

tions and summations are used for discrete variables. Since

Bayesian machine learning employs a probability distri-

bution rather than a single parameter setting to represent

hidden variables, an appropriate mathematical expectation

with respect to this distribution is usually necessary at the

decision-making stage.

However, for many probabilistic models, an exact eval-

uation of the needed posterior distribution or the computa-

tion of expectations with respect to this distribution is

intractable. Therefore, approximate inference is needed.

Deterministic approximate inference is an important branch

of approximate inference methodologies, and it has been

actively studied, especially during the past 15 years. The

goal of this paper is to review key advancements and typical

techniques in the field of deterministic approximate infer-

ence some of which are quite latest, and give suggestions

for further research by providing open problems. This

review can be helpful for successful applications of deter-

ministic approximate inference techniques to complicated

probabilistic models and for the development of novel

deterministic approximate inference methods.

The remainder of this paper proceeds as follows. In Sect.

2, we summarize major places where inference is needed

and thus also deliver motivations for approximate inference.

A concise comparison of stochastic and deterministic

approximation inference is also provided. Section 3 surveys

representative methods for deterministic approximate

inference. Section 4 lists some open problems which may be

helpful for promoting research on deterministic approxi-

mate inference. Finally, Section 5 concludes this paper.

2 Motivations of approximate inference

In this section, we first summarize three types of compu-

tations that are often encountered in Bayesian machine

learning and need effective Bayesian inference. This leads

naturally to the motivations of approximate inference for

complicated probabilistic models. We also briefly compare

two different categories of approximation schemes.

2.1 Model selection

For model selection or learning deterministic parameters

from the data, one often needs to calculate the data like-

lihood function and then maximize it. However, for prob-

abilistic models involving hidden variables, these hidden

variables should be marginalized out by integration or

summation. For many probabilistic models, the integration

may not return analytically tractable formulations and the

summation may involve exponentially many operations

which are also intractable. This makes the exact compu-

tation of the likelihood function and thus direct maximum

likelihood estimation infeasible.

The expectation maximization (EM) algorithm is an

elegant substitution for parameter estimation in this case,

which iteratively maximizes the expectation of the com-

plete-data log likelihood [18]. In the E-step, inference is

performed, i.e., the posterior distribution of the hidden

variables is computed given a current estimate of the

parameters. Actually, here the posterior can be known with

respect to a multiplicative constant, i.e., we may use the

joint distribution of the data and hidden variables as a

surrogate without any influence on the final estimated

parameters of the EM algorithm. But if we would like to

estimate the value or a bound of the likelihood, the mul-

tiplicative constant cannot be omitted. In the M-step, the

expectation of the complete-data log likelihood is evalu-

ated with respect to this posterior and then maximized.

However, the same problem of computational intractability

can still exist for the evaluation of the expectation. By

resorting to approximate inference which provides a con-

venient surrogate for the posterior distribution, these

problems can be resolved.

Just a note that, for parameter estimation, alternative

objective functions (e.g., the pseudolikelihood objective)

rather than the current likelihood function can be adopted,

whose optimization will not require much inference [35].

2.2 Hidden structure discovery

Sometimes, we are interested in the posterior distribution

of hidden variables itself and the statistical information it

provides. For example, suppose we have one million

scanned books and would like to organize them by their

hidden subjects for user-friendly navigation [29]. If we

estimate the mode of the posterior distribution for this

purpose (i.e., maximum a posteriori estimation), it can be

computationally infeasible for complicated models, though
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the posterior distribution can just be known with respect to

a multiplicative constant. In other cases, we may be

interested in computing the posterior mean and variance of

some hidden variables, which requires their exact posterior

distributions. However, the posterior and the involved

expectation with integration or summation can be intrac-

table to compute.

All these difficulties can be eliminated if approximate

inference is adopted. For instance, an appropriate surrogate

distribution which decouples hidden variables or has an

analytically convenient form is used to replace the true

posterior, or Monte Carlo techniques are used to approxi-

mate the true posterior with random samples.

2.3 Bayesian model averaging

Decision making in Bayesian machine learning often

requires Bayesian model averaging. The intuition is that we

have a set of possible values of related hidden variables

including stochastic parameters, so that the final decision

should be the weighted average of the hidden variables

using their posterior distribution, that is, an evaluation of

expectation is needed.

Bayesian model averaging is a process involving inte-

gration or summation and thus can be intractable and needs

approximate inference. Of course, for simplicity, point

estimation of the hidden variables (even on the approxi-

mate posterior), e.g., the posterior mean values, may be

used to provide a single setup of the involved random

variables [70, 89]. In addition, if the integrand in Bayesian

model averaging includes multiple functions, any one of

them is appropriate to be approximated to make the com-

putation feasible, e.g., the method used in Bayesian logistic

regression [6].

2.4 Approximate inference

Now, it is clear that we need to resort to approximate

inference when it is intractable to infer posterior distribu-

tions or calculate expectations with respect to these dis-

tributions [6]. There are two broad categories of

approximation schemes: stochastic and deterministic

approximate inference techniques.

Stochastic approximation, also known as Monte Carlo

techniques, is based on numerical sampling methods.

Although they are guaranteed to give exact results with

enough samples, Monte Carlo techniques, especially Mar-

kov chain Monte Carlo, have two drawbacks: (1) the

sampling process can be computationally demanding and

thus impractical for large-scale problems; (2) it is hard to

assess convergence, namely deciding the burn-in stage and

when to stop sampling to get satisfying estimates [6, 22, 45,

78]. This paper will not address such methods. Interested

readers are referred to [1, 5, 24, 51].

The strengths and weaknesses of deterministic approxi-

mate inference are complementary to those of Monte Carlo

techniques. Deterministic approximation uses analytical

approximations to the posterior distributions, e.g., the

approximate distribution is factorized or has a convenient

formulation such as Gaussian, and thus almost never leads

to exact results [6]. Some deterministic approximate infer-

ence techniques are applicable to large-scale problems.

3 Methods for deterministic approximation inference

In this section, we survey representative methods for

deterministic approximate inference. They can be divided

into five large categories, with both classical and latest

methods included.

3.1 Laplace approximation

The Laplace approximation first finds a mode of the pos-

terior distribution and then construct an approximation

with a Gaussian distribution by the second-order Taylor

expansion about the mode [6, 35, 40]. A benefit of this

approximation is its relative simplicity compared to other

approximation techniques [5].

Suppose h denotes a set of continuous variables, and its

posterior distribution p(h) is given by

pðhÞ ¼ f ðhÞ
Z0

; ð2Þ

where Z0 is a normalization coefficient whose value is

probably unknown. At a typical mode h0 of f(h), which is

also a mode of ln f(h), the gradient r ln f(h) will vanish

and the Hessian matrix (i.e., second-order derivative

matrix) is negative definite. Using a second-order Taylor

expansion of ln f ðhÞ centered on h0, we have

ln f ðhÞ � ln f ðh0Þ �
1

2
ðh� h0Þ>Aðh� h0Þ; ð3Þ

where A is the negative of the Hessian matrix at h0 and thus

positive definite. Now, we have

f ðhÞ � f ðh0Þ exp � 1

2
ðh� h0Þ>Aðh� h0Þ

� �

: ð4Þ

Hence, the approximate distribution q(h), which is a

multivariate Gaussian, is given by

qðhÞ ¼ jAj
1=2

ð2pÞd=2
exp � 1

2
ðh� h0Þ>Aðh� h0Þ

� �

¼ Nðhjh0;A
�1Þ; ð5Þ
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where d is the dimensionality of h and A is called the

precision matrix of the Gaussian distribution [5, 6].

Note that optimization algorithms are usually needed to

find the mode h0 and for multimodal distributions, there

will be different choices for the mode which lead to dif-

ferent approximations [6]. In addition, since the Laplace

approximation only considers the properties of the true

distribution in the locality of a mode, it can fail to represent

the global properties.

Recently, Rue et al. [63] proposed an integrated nested

Laplace approximation to approximate posterior marginals

in latent Gaussian models. The main tool involves applying

the Laplace approximation more than once and using

numerical integration with respect to low-dimensional

random variables.

3.2 Variational inference

Variational inference itself constitutes a large family of

methods for deterministic approximate inference. Its idea is

to approximate the posterior distribution with a simpler

family of probability distributions and then seek the dis-

tribution from this family that is closest to the true posterior

[22, 31, 77]. The common measure for matching two

probability distributions is the Kullback–Leibler (KL)

divergence. The optimization of the KL divergence is often

transformed to optimize some related bounds on the log

data likelihood.

3.2.1 Mean field approximation

Suppose we are approximating the posterior distribution

p(H|D) in (1). One way to restrict the family of

approximate distributions is to use factorized distribu-

tions, i.e.,

qðHÞ ¼
YM

i¼1

qiðHiÞ; ð6Þ

where the elements of H are partitioned into M disjoint

groups fHigM
i¼1 and each factor qi(Hi) is a probability dis-

tribution with a free functional form. This leads to the

mean field approximation (a.k.a. variational Bayes

approximation) framework [6, 55]. Concretely, the naive

mean field approximation refers to the case that all hidden

variables of interest are forced to be independent, namely a

fully factorized form. The structured mean field approxi-

mation corresponds to posterior model structures more

complex than the fully factorized form [66].

A useful decomposition for the data likelihood is

ln pðDÞ ¼ LðqÞ þ KLðqkpÞ; ð7Þ

where

LðqÞ ¼
Z

qðHÞ ln pðH;DÞ
qðHÞ

� �

dH;

KLðqkpÞ ¼
Z

qðHÞ ln qðHÞ
pðHjDÞ

� �

dH: ð8Þ

The decomposition holds for any probability distribution

q(H). As the KL divergence KLðqkpÞ is nonnegative, it is

clear that LðqÞ is the lower bound of the log data likeli-

hood. Note that, in the variational inference literature,

� ln pðDÞ þ KLðqkpÞ is often called the variational free

energy and -ln p(D) is termed the free energy [82].

The mean field approximation maximizes the lower

bound LðqÞ, which is equivalent to minimizing the KL

divergence KLðqkpÞ, to find an approximate distribution

obeying the factorization requirement given in (6). An

iterative algorithm is usually used, which optimizes the

objective with respect to each qi in turn, holding other

factors fixed. Suppose we are solving qj. The lower bound

can be written as

LðqÞ ¼
Z Y

i

qi

( )

ln pðH;DÞ �
X

i

ln qi

( )

dH

¼
Z

qj

Z
ln pðH;DÞ

Y

fi 6¼jg
qidHi

8
<

:

9
=

;
dHj

�
Z

qj ln qjdHj þ const

¼
Z

qj ln ~pðHj;DÞdHj �
Z

qj ln qjdHj þ const;

ð9Þ

where const represents constants, and ~pðHj;DÞ [6] is a new

defined probability distribution

ln ~pðHj;DÞ ¼ Efi 6¼jg½ ln pðH;DÞ� þ const;

Efi 6¼jg½ ln pðH;DÞ� ¼
Z

ln pðH;DÞ
Y

fi 6¼jg
qidHi: ð10Þ

The last line of (9) includes a negative KL divergence,

which indicates that the optimal qj is equal to ~pðHj;DÞ.
Formally, the solution qj(Hj) is given by

ln qjðHjÞ ¼ Efi 6¼jg½ ln pðH;DÞ� þ const; ð11Þ

from which the normalization constant for the distribution

is easy to be obtained if necessary.

The above iterative procedure to seek q(H) is guaranteed

to converge to a local minimum, since the bound is convex

with respect to each factor [6, 10]. There are some potential

problems [63] for the mean field approximation: (1) the

dependence between some hidden variables is not
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captured; (2) the posterior variance can be underestimated;

(3) the integration computation involved may be intractable

for nonconjugate models. For the last point, one can use

parametric representations for the approximate distribution

or some of its factors, which may permit tractable opti-

mization algorithms to determine parameters.

The mean field approximation has been applied suc-

cessfully to various areas, e.g., infinite mixtures of

Gaussian processes [70], Gaussian process regression net-

works [84], the stick-breaking construction of beta pro-

cesses [54], multiple kernel learning [25], and probabilistic

matrix factorization [49, 50, 67]. Zhang and Schneider [90]

proposed to minimize the composite divergence instead of

the KL divergence to find factorized distributions in the

context of multi-label classification.

A recent research topic is online variational inference

which attempts to provide scalable algorithms that are

applicable to large and streaming data. The main technique

for reducing the computation time is to avoid an entire pass

through all the data at each iteration using stochastic opti-

mization which proceeds by iteratively subsampling the data

and adjusting variational parameters based only on the

obtained subset. Online mean field approximation algorithms

were introduced for latent Dirichlet allocation and the hier-

archical Dirichlet process topic model [29, 81]. Based on the

mean field approximation, Bryant and Sudderth [12] further

developed a split-merge online variational algorithm for

hierarchical Dirichlet processes, which allows the truncation

level to dynamically vary during learning.

The mean field approximation is not readily applicable to

some models (e.g., nonconjugate models [13]) for which the

integration computation does not return closed-form func-

tions. For a certain class of nonconjugate models, Wang and

Blei [80] developed two methods for variational mean field

approximation: Laplace variational inference and delta

method variational inference [11]. Laplace variational

inference uses Laplace approximations within the coordi-

nate ascent updates, while delta method variational infer-

ence applies Taylor expansions to approximate the lower

bound LðqÞ and then derives variational updates. As a

general algorithm implementation of the mean field

approximation, variational message passing [85] is mainly

applicable to conjugate-exponential models. Knowles and

Minka [34] proposed a variational message passing algo-

rithm for some nonconjugate models by deriving lower

bounds to approximate the required expectations. Paisley

et al. [53] proposed a method to learn variational parameters

using a stochastic approximation of the gradient of the

variational lower bound with respect to the parameters. The

stochastic approximation is given by the Monte Carlo inte-

gration, and a variance reduction method based on control

variates is further used to reduce the number of samples

required to construct the stochastic search direction.

3.2.2 Parametric distributions

The family of approximate distributions can also be

restricted by parametric distributions, that is,

qðHÞ ¼ qðHjxÞ; ð12Þ

where x denotes the parameters of the distribution. Then,

the variational lower bound LðqÞ can be optimized as a

function of x to determine the optimal parameter setting.

This kind of variational inference has the potential to

capture the dependence between hidden variables.

The variational Gaussian approximation adopts a

Gaussian distribution parameterized by the mean and

covariance as the approximate posterior, and then finds

these parameters through optimizing the variational lower

bound. Opper and Archambeau [52] showed that for

models with Gaussian priors and factorizing likelihoods,

the number of variational parameters in the variational

Gaussian approximation is actually very economical. Dif-

ferent from this type of approximation, Archambeau et al.

[2, 3] proposed the variational Gaussian process approxi-

mation for models with non-Gaussian stochastic process

priors and Gaussian likelihoods, where the Gaussian and

non-Gaussian processes are both represented by stochastic

differential equations.

Ding et al. [19] generalized the idea of variational

inference by using approximate distributions from the

t-exponential family [75] to improve the model robustness

over noise. They defined and adopted a new divergence

measure called the t-divergence, which is the Bregman

divergence based on the t-entropy and plays the same role

as the common KL divergence for variational inference.

Challis and Barber [14] proposed affine independent vari-

ational inference which optimizes the KL divergence over

a class of approximate distributions formed from an affine

transformation of independently distributed hidden vari-

ables. The resultant approximate distributions can have

skewness or other non-Gaussian properties.

3.2.3 Refined lower bounds

It is clear from (7) that LðqÞ is a lower bound of the log

data likelihood. However, the bound can be tightened for

specific models. To improve convergence and perfor-

mance, some refined lower bounds have been presented.

King and Lawrence [33] proposed to optimize the KL-

corrected bound, which is a lower bound of the log data

likelihood and an upper bound on the standard variational

lower bound LðqÞ, to find deterministic parameters in a

Gaussian process model and improved the speed of con-

vergence. This bound is obtained by lower bounding the

noise model involved in the data likelihood. They used the

mean field approximation for posterior inference and also
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discussed the possibility of using the KL-corrected bound

for posterior updates. This method was also used in Lázaro-

Gredilla et al. [44].

Lázaro-Gredilla and Titsias [43] proposed a marginal-

ized variational bound for posterior inference in the het-

eroscedastic Gaussian process model based on the mean

field approximation and the Gaussian parametric approxi-

mation. This bound is also a lower bound of the log data

likelihood, but tighter than the standard variational lower

bound. It holds for models whose approximate posterior

distributions are a product of two independent distributions

one of which can be optimally represented by the other.

3.2.4 Collapsed variational Bayesian inference

Teh et al. [72] proposed a collapsed variational Bayesian

inference algorithm for latent Dirichlet allocation, which

combines the mean field approximation and collapsed

Gibbs sampling [26]. They made reasonable assumptions,

namely the stochastic parameters depend on the latent

variables in an exact fashion and the latent variables are

assumed to be mutually independent. This algorithm is

equivalent to first marginalizing out the stochastic param-

eters and then approximating the posterior over the latent

variables with the mean field approximation. A Gaussian

approximation and second-order Taylor expansion are

further applied to compute the expectation terms involved

in the posterior for computational efficiency. To evaluate

test set probabilities, the stochastic parameters are fixed to

their mean values with respect to the posterior of the latent

variables.

Kurihara et al. [38] applied the collapsed variational

Bayesian inference to Dirichlet process mixture models

where only partial stochastic parameters are marginalized

out. Hensman et al. [27] discussed the difference between

the collapsed variational inference and the KL-corrected

bound approach where the order of the marginalization and

variational approximation is the key. Using the a-diver-

gence, Sato and Nakagawa [65] proposed an interpretation

of the collapsed variational Bayesian inference with a zero-

order Taylor expansion for latent Dirichlet allocation.

Wang and Blei [79] presented a locally collapsed varia-

tional inference algorithm, which enables truncation-free

variational inference for Bayesian nonparametric models.

They used a collapsed Gibbs sampler as a subroutine,

which can operate in an unbounded space and thus the

resultant algorithm is truncation-free.

3.2.5 Auxiliary-variable methods

By auxiliary-variable methods, we refer to the techniques

using auxiliary hidden variables which are not explicitly

included in the original models for variational inference.

Gaussian processes have a cubic time complexity with

respect to the size of the training set, which makes them

intractable for large data sets. To overcome this disad-

vantage, models for sparse Gaussian processes (e.g., [30,

91]) and mixtures of Gaussian processes (e.g., [68, 70])

have been proposed. Titsias [73] introduced a variational

method for sparse Gaussian process regression with

additive Gaussian noise that jointly learns the inducing

inputs (a.k.a. support inputs) and hyperparameters by

maximizing the variational lower bound of the log mar-

ginal likelihood. The inducing inputs can be selected from

the training data or considered as auxiliary pseudo inputs

and determined by applying continuous optimiza-

tion. Unlike previous sparse Gaussian process methods,

here the inducing inputs are defined to be variational

parameters.

The auxiliary hidden variables are fm evaluated at the

inducing inputs Xm [73]. They are function values drawn

from the same Gaussian process prior as the training

function values f whose corresponding observations are

y. fm is assumed to be a sufficient statistic in the sense that

z and f are independent given fm where z denotes any finite

set of function values. To determine the involved quanti-

ties, the KL divergence between the augmented variational

posterior q(f, fm) and the augmented true posterior p(f, fm| y)

is minimized, where q(f, fm) = p(f|fm) /(fm) and /(fm) is a

variational distribution [73].

This method was extended by Titsias and Lawrence [74]

to the Gaussian process latent variable model (GP-LVM).

The GP-LVM is an application of Gaussian process models

to nonlinear dimensionality reduction (e.g., [69]) and can

be regarded as a multivariate Gaussian process regression

model where the inputs are treated as latent variables. They

computed a closed-form variational lower bound of the

GP-LVM log marginal likelihood, which depends on a

lower bound on the log marginal likelihood of a Gaussian

process regression model where the auxiliary hidden vari-

ables appear to eliminate a cumbersome term. The full

variational distribution that results in the final lower bound

is given by

q ffd;udg
eD
d¼1;X

� �

¼
YeD

d¼1

pðfdjud;XÞ/ðudÞ

0

@

1

AqðXÞ; ð13Þ

where eD is the dimensionality of the observed data vector,

fd is the Gaussian process latent function values evaluated

at latent inputs X, ud is the auxiliary hidden variables, /
(ud) is an arbitrary variational distribution over ud, and

q(X) is a variational distribution which has a factorized

Gaussian form [74].

The GP-LVM framework was further extended to vari-

ational Gaussian process dynamical systems for modeling

time series data [16, 56]. The variational approximation
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approach in Titsias [73] was extended to the multiple-

output case by Álvarez et al. [4].

3.2.6 Mixtures of distributions

To enhance the representation capability of the family of

approximate distributions and capture multimodality in the

true posterior distribution, variational inference with mix-

tures of distributions has been presented. For example,

mixtures of factorized distributions and mixtures of

Gaussian distributions were used as variational distribu-

tions [7, 9, 40].

Gershman et al. [23] developed a variational inference

method that can capture multiple modes of the posterior

and is applicable to many nonconjugate models with con-

tinuous hidden variables. The family of approximate dis-

tributions is a uniform mixture of Gaussians whose means

and variances are variational parameters. They termed their

method nonparametric variational inference (NPV). To

approximate the variational lower bound, NPV employs the

Taylor series approximation of the log joint distribution

and a bound on the entropy term.

3.2.7 Convex relaxation

Variational inference in probabilistic models can be rep-

resented as a constrained optimization problem of a certain

functional. This motivates a class of deterministic

approximate inference methods known as convex relaxa-

tion [28, 77]. The essence of convex relaxation is to con-

struct an appropriate convex optimization problem that can

be conveniently handled by optimization tools.

There are two key ingredients in the convex relaxation

algorithms, a convex set as the constraint set and a convex

surrogate of the functional to be optimized [58]. Examples

of convex relaxation techniques include linear program-

ming relaxations (e.g., for maximum a posterior estima-

tion) [36, 37, 62, 71] and the more expressive conic

programming relaxations [58, 77].

3.3 Assumed-density filtering

Assumed-density filtering is a fast sequential method for

deterministic approximate inference, which minimizes the

KL divergence between the true posterior and the

approximate posterior (the reverse form of the KL diver-

gence used in the mean field approximation). It has been

independently developed in the control, statistics, and

artificial intelligence literature [45], and is often encoun-

tered in conjunction with other terms such as moment

matching and online Bayesian learning.

Suppose now we are minimizing KLðpkqÞ with respect

to an approximate distribution q(H), where p(H) is a fixed

distribution and q(H) is from the exponential family with

the following parametric form

qðHÞ ¼ hðHÞgðgÞ expfg>uðHÞg; ð14Þ

where g represents the natural parameters of the

distribution, and u(H) is the sufficient statistic function

[6, 35]. The specific type of the exponential family, e.g., a

Gaussian distribution or Dirichlet distribution, is usually

determined from the context. We only need to seek the

natural parameters g in order to determine q(H). The KL

divergence can be written as

KLðpkqÞ ¼ � ln gðgÞ � g>EpðHÞ½uðHÞ� þ const; ð15Þ

where const indicates terms independent of g. Setting the

gradient with respect to g to zero results in

�rg ln gðgÞ ¼ EpðHÞ½uðHÞ�: ð16Þ

Since �rg ln gðgÞ ¼ EqðHÞ½uðHÞ� for distributions from the

exponential family [6], we have

EqðHÞ½uðHÞ� ¼ EpðHÞ½uðHÞ�: ð17Þ

Therefore, the optimal parameters should match the

expected sufficient statistics. The optimization process is

actually moment matching [6].

Let the joint distribution over observed data D and

hidden variables H be p(H, D). Now, we show how to use

assumed-density filtering to approximate the posterior

p(H|D) by q(H) and estimate the model evidence p(D). For

specific illustrative examples, see [45].

First, decompose p(H, D) into a product of simple

factors

pðH;DÞ ¼
YL

i¼1

tiðHÞ: ð18Þ

Second, choose the proper parametric distribution for

q(H) from the exponential family.

Finally, incorporate the factors ti (H) sequentially into the

approximate posterior [45]. Initialize with q(H) = 1. When

incorporating the factor ti (H), calculate the exact posterior

piðHÞ ¼
qðHÞtiðHÞ

Zi

; ð19Þ

where Zi ¼
R

H
qðHÞtiðHÞdH. By minimizing the KL

divergence KLðpiðHÞkqðHÞÞ through (17) where p(H) is

replaced with pi(H), we can update q(H).

It is clear that the finally obtained q(H) is an approximation

of pL(H) in the sense of minimizing the KL divergence and is

also used as the approximate distribution for p(H|D). Using

the former relationship recursively, we get

pðHjDÞ �
QL

i¼1 tiðHÞ
QL

i¼1 Zi

¼ pðH;DÞ
QL

i¼1 Zi

: ð20Þ
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Therefore, the model evidence p(D) can be estimated by

accumulating the normalization factors Zi generated by

each update, i.e., pðDÞ �
QL

i¼1 Zi.

Note that assumed-density filtering performs worse than

some off-line deterministic approximate inference methods

due to its sequential nature [45]. Factors discarded early

can be useful later to return a better approximate posterior.

However, the online nature of assumed-density filtering

is indeed an appealing characteristic for some learning

scenarios. For example, assumed-density filtering was

successfully combined with an entropy-reduction based

point selection criterion to provide sparse Gaussian pro-

cesses [30, 41, 42, 91].

3.4 Expectation propagation

Expectation propagation [46] extends assumed-density fil-

tering to batch situations, by incorporating iterative refine-

ments of the approximate posterior. For some probabilistic

models, its performance is significantly superior to assumed-

density filtering and several other approximation methods

[39, 45]. Recent applications of expectation propagation

include approximate inference for sparse Gaussian processes

[59] and Gaussian process dynamical systems [17], and

marginal approximations in latent Gaussian models [15].

For the joint distribution p(H, D) given in (18), we now

show how to use expectation propagation [6, 45, 46] to get

the approximate posterior q(H) and the estimate of the

model evidence p(D). Expectation propagation assumes

that the approximate posterior is a member of the expo-

nential family and has the following factorized form

qðHÞ ¼ 1

Z

YL

i¼1

et iðHÞ; ð21Þ

where each factor et iðHÞ is approximation to ti(H), and Z is

the normalization constant to make q(H) be a probability

distribution.

In expectation propagation, each factor is optimized in

turn with the remaining factors fixed. First, initialize the

factorset iðHÞ properly, and accordingly q(H) is initialized by

qðHÞ ¼
QL

i¼1
et iðHÞR

H

QL
i¼1
et iðHÞdH

: ð22Þ

Then, cycle through the factors updating only one of

them at a time until all factors converge. Suppose we are

refining et jðHÞ from the current q(H). Define a function

q\j(H) which is an unnormalized distribution as

qnjðHÞ ¼ qðHÞ
et jðHÞ

; ð23Þ

and combine it with the true term tj (H) to induce a

distribution

1

Zj

qnjðHÞtjðHÞ; ð24Þ

where Zj ¼
R

H
qnjðHÞtjðHÞdH. By minimizing the KL

divergence

KL
1

Zj

qnjðHÞtjðHÞkqnewðHÞ
� �

ð25Þ

with moment matching, we can obtain the distribution

qnew(H). Therefore, we have

et
new

j ðHÞ ¼ K
qnewðHÞ
qnjðHÞ ; ð26Þ

which is determined up to a scale. Because et
new

j ðHÞ is an

approximation to the true factor tj (H), to fix K, we can

require
Z

qnjðHÞetnew

j ðHÞdH ¼
Z

qnjðHÞtjðHÞdH: ð27Þ

It follows that K = Zj. Hence, the refinement of et jðHÞ is

given by

et jðHÞ ¼ Zj

qnewðHÞ
qnjðHÞ : ð28Þ

Of course, the q(H) should also be updated to qnew(H).

The model evidence

pðDÞ ¼
Z YL

i¼1

tiðHÞdH ð29Þ

can be approximated by replacing the factors ti(H) with their

approximations et iðHÞ, that is, pðDÞ �
R QL

i¼1
et iðHÞdH,

where
R QL

i¼1
et iðHÞdH is also the normalization constant of

the final q(H) as indicated by (21).

One disadvantage of expectation propagation is that in

general, it is not guaranteed to converge. Moreover, since

moment matching requires the evaluation of expectations, it

is limited to the class of models for which this operation is

possible [85]. In addition, expectation propagation is likely to

find weak solutions when applied to multimodal distributions

such as mixtures of certain distributions [6, 85].

Recently, Riihimäki et al. [61] proposed a nested

expectation propagation algorithm for Gaussian process

multiclass classification with the multinomial probit like-

lihood. It applies inner expectation propagation approxi-

mations for each likelihood term within the outer

expectation propagation iterations.

3.5 Loopy belief propagation

Belief propagation [57] provides an efficient framework

for exact inference of marginal posterior distributions in

2046 Neural Comput & Applic (2013) 23:2039–2050

123



tree-structured probabilistic graphical models. It has dif-

ferent algorithmic formulations, and the most modern

treatment is the sum-product algorithm on the factor graph

representation [5, 6]. The use of the distributive law makes

message passing operations efficient.

Since the message passing rules in belief propagation

are regardless of the global structure of the graphs and thus

purely local, one can apply belief propagation to graphs

with loops though there is no guarantee that good results

will be obtained. This method is known as loopy belief

propagation [6, 48, 88]. Because messages can propagate

many times around the graphs, loopy belief propagation

can fail to converge. However, when it converges, the

approximations to the correct marginals can be surprisingly

accurate [5, 48].

To understand the success of loopy belief propagation,

people have provided some theoretical results. Yedidia

et al. [87] showed that the fixed points of loopy belief

propagation correspond to stationary points of a simple

approximation to the free energy, known as the Bethe free

energy in statistical physics. This result makes connections

with variational inference approaches. As a generalization

of the Bethe free energy, the Kikuchi free energy [32] can

give better approximations to the free energy. Inspired by

this, Yedidia et al. [87] proposed generalized belief prop-

agation whose fixed points can be shown to be equivalent

to the stationary points of the Kikuchi free energy [86]. By

establishing a connection between the Hessian of the Bethe

free energy and the edge zeta function, Watanabe and

Fukumizu [83] recently gave a new theoretical analysis of

loopy belief propagation.

A disadvantage of loopy and generalized belief

propagation is that they do not always converge to a

fixed point. Thereby, alternatively one can explicitly

minimize the Bethe or Kikuchi free energy to perform

approximate inference [28]. Note that, generally, the

Bethe free energy is not an upper or lower bound on the

true free energy. Ruozzi [64] showed that for graphical

models with binary variables and log-supermodular

potential functions, the Bethe partition function always

lower bounds the true partition function. In addition,

people have proposed another class of algorithms, called

loop corrections [47, 60], for approximate inference in

loopy graphical models, which are based on the concept

of cavity distributions.

4 Open problems

Now, we proceed to give open problems which can be

important for further developments of the field of deter-

ministic approximate inference for Bayesian machine

learning.

4.1 Nonconjugate models and complex approximate

distributions

To better explain the data, some highly flexible probabi-

listic models have to be adopted, which can be nonconju-

gate. This necessitates deterministic approximate inference

methods for nonconjugate models. As nonconjugate mod-

els can differ largely from one to another, we conjecture

that it is hard to give a generic deterministic approximate

inference method which is good to all nonconjugate mod-

els. However, for specific nonconjugate models, it is quite

possible to give proper deterministic approximate inference

methods. Therefore, providing a categorization of non-

conjugate models and identifying corresponding deter-

ministic approximate inference methods can be interesting

research topics. Moreover, for a specific nonconjugate

model or a specific class of nonconjugate models, deter-

mining the performance limit of deterministic approximate

inference is also of interest.

In addition, to enlarge the family of approximate dis-

tributions and capture some desirable posterior properties,

people have considered mixtures of distributions and

complex parametric distributions. Exploring more complex

approximate distributions to extend the scope of feasible

approximate distributions is worth studying.

4.2 Deterministic approximation inference for new

models

Stochastic and deterministic approximation inference are

two different kinds of approximation schemes. People may

adopt either of them for approximate inference, given their

personal expertise and like. Some recently proposed

probabilistic models such as HDP–HMM [21], BP–HMM

[20], distance-dependent Chinese restaurant processes [8],

and infinite mixtures of multiple-output Gaussian processes

[68] adopt stochastic approximation inference methods.

Given the richness and advantages of deterministic

approximate inference, it is therefore interesting to apply

deterministic approximation inference techniques to these

models and improve the efficiency and scalability. Fur-

thermore, to analyze massive and streaming data, one can

consider to use fast or online deterministic approximate

inference techniques.

4.3 Different measures for matching two distributions

For deterministic approximate inference, most methods use

the KL divergence as a measure to match two distributions.

The KL divergence appears naturally when we derive the

lower bound of the log data likelihood. But it should not be

the only choice. We have indeed mentioned a t-divergence

based variational inference method. Therefore, here we
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present two natural questions for deterministic approximate

inference, which are how many appropriate measures we

can choose and when we prefer one to another.

4.4 Prediction accuracy driven deterministic

approximate inference

Current deterministic approximate inference methods usu-

ally find an approximate distribution by optimizing a

likelihood or KL divergence related functional. However,

this kind of objective is not directly related to the final

prediction accuracies of the used probabilistic models.

Can we characterize the prediction accuracy of the true

probabilistic models and find approximate distributions by

optimizing some bound on the prediction accuracy? Can

we directly represent the prediction accuracy using the

approximate distribution and then determine a specific

distribution by maximizing the accuracy or some bound of

the accuracy? It would also be interesting to evaluate how

much approximation is induced in terms of the loss of the

prediction accuracies when the approximate posterior is

substituted for the true posterior.

5 Conclusion

In this paper, we have summarized motivations for approxi-

mate inference, reviewed the major classes of deterministic

approximate inference techniques, and presented open

problems which are probably useful to the advancement of

the research of deterministic approximate inference.

This paper can reflect the whole picture of the current

deterministic approximate inference methodologies in

Bayesian machine learning, although it is not possible and

necessary to enumerate every deterministic approximate

inference technique that has been used so far. We hope this

review could provide readers fundamental techniques to

implement approximate inference in their concrete proba-

bilistic models and even inspire them to propose new

deterministic approximate inference methods.
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