
REVIEW

The latest research progress on spectral clustering

Hongjie Jia • Shifei Ding • Xinzheng Xu •

Ru Nie

Received: 3 January 2013 / Accepted: 23 May 2013 / Published online: 14 June 2013

� Springer-Verlag London 2013

Abstract Spectral clustering is a clustering method based

on algebraic graph theory. It has aroused extensive atten-

tion of academia in recent years, due to its solid theoretical

foundation, as well as the good performance of clustering.

This paper introduces the basic concepts of graph theory

and reviews main matrix representations of the graph, then

compares the objective functions of typical graph cut

methods and explores the nature of spectral clustering

algorithm. We also summarize the latest research

achievements of spectral clustering and discuss several key

issues in spectral clustering, such as how to construct

similarity matrix and Laplacian matrix, how to select

eigenvectors, how to determine cluster number, and the

applications of spectral clustering. At last, we propose

several valuable research directions in light of the defi-

ciencies of spectral clustering algorithms.

Keywords Spectral clustering � Graph theory �
Graph cut � Laplacian matrix � Eigen-decomposition

1 Introduction

Clustering is an important research field in data mining.

The purpose of clustering is to divide a dataset into natural

groups so that data points in the same group are similar

while data points in different groups are dissimilar to each

other [56]. Traditional clustering methods, such as k-means

algorithm [30, 41], FCM algorithm [21], and EM algorithm

[13], are simple, but lack the ability to handle complex data

structures. When the sample space is non-convex, these

algorithms are easy to fall into local optimum [29].

In recent years, spectral clustering has aroused more and

more attention of academia, due to its good clustering

performance and solid theoretical foundation [47]. Spectral

clustering does not make any assumptions on the global

structure of the data. It can converge to global optimum

and performs well for the sample space of arbitrary shape,

especially suitable for non-convex dataset [16]. The idea of

spectral clustering is based on spectral graph theory. It

treats data clustering problem as a graph partitioning

problem and constructs an undirected weighted graph with

each point in the dataset being a vertex and the similarity

value between any two points being the weight of the edge

connecting the two vertices [8]. Then, we can decompose

the graph into connected components by certain graph cut

method and call those components as clusters.

There are a variety of traditional graph cut methods,

such as minimum cut, ratio cut, normalized cut and min/

max cut. The optimal clustering results can be obtained by

minimizing or maximizing the objective function of the

graph cut methods. However, for various graph cut meth-

ods, seeking the optimal solution of the objective function

is often NP-hard. With the help of spectral method, the

original problem can be solved in polynomial time by

relaxing the original discrete optimization problem to the

real domain [17]. In graph partitioning, a point can be

considered part belonging to subset A and part belonging to

subset B, rather than strictly belonging to one cluster. It can

be proved that the classification information of vertices is

contained in the eigenvalues and eigenvectors of graph
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Laplacian matrix. And we can get good clustering results,

if we make full use of the classification information during

the clustering process [35]. Spectral clustering can get the

relaxation solution of graph cut objective function, which is

an approximate optimal solution.

The earliest study on spectral clustering began in 1973.

Donath and Hoffman put forward that graph partitioning

can be built based on the eigenvectors of adjacency matrix

[18]. In the same year, Fiedler proved that the bipartition of

a graph is closely related to the second eigenvector of

Laplacian matrix [23]. He suggested using this eigenvector

to conduct graph partitioning. Hagen and Kahng found the

relations among clustering, graph partitioning and the

eigenvectors of similarity matrix, and constructed a prac-

tical algorithm first [25]. They proposed ratio cut method in

1992. In 2000, Shi and Malik proposed normalized cut

[55]. This method not only considers the external con-

nections between clusters, but also considers the internal

connections within a cluster, so it can produce balanced

clustering results. Then, Ding et al. [14] proposed min/max

cut; Ng et al. [51] proposed classic NJW algorithm. These

algorithms are based on matrix spectral theory to classify

data points, so they are called spectral clustering. Since

2000, spectral clustering has gradually become a research

hotspot of data mining. At present, spectral clustering has

been successfully applied to many fields, such as computer

vision [42, 76], integrated circuit design [2], load balancing

[20, 27], biological information [33, 52], and text classifi-

cation [69], etc. Spectral clustering algorithms provide a

new idea to solve the problem of clustering and can

effectively deal with many practical problems, so their

research has great scientific value and application potential.

This paper is organized as follows: Sect. 2 introduces

the basic concepts of algebraic graph theory, compares the

objective functions of typical graph cut methods, and

explores the nature of spectral clustering algorithm; Sect. 3

summarizes the latest research achievements of spectral

clustering and discusses several key issues in spectral

clustering, such as how to construct similarity matrix and

Laplacian matrix, how to select eigenvectors, how to

determine cluster number, and the applications of spectral

clustering; finally, several valuable research directions are

proposed, in light of the deficiencies of spectral clustering

algorithms.

2 Basic concepts of spectral clustering

2.1 Algebraic graph theory

Graph theory originated in the famous problem of Ko-

nigsberg Seven Bridges, which is an important branch of

mathematics. It is the study of theories and methods about

graphs. Algebraic graph theory is a cross-field combining

graph theory, linear algebra, and matrix computation the-

ory. As one of the branches of the graph theory, the

research of algebraic graph theory began in the 1850s,

aiming to use algebraic methods to study the graph, convert

graph characteristics into algebraic characteristics, and

then use the algebraic characteristics and algebraic meth-

ods to deduce the theorems about graphs [19]. In fact, the

main content of algebraic graph theory is spectrum. Here,

spectrum represents the eigenvalues and their multiplicities

of matrix. The earliest research on algebraic graph theory is

made by Fiedler [23]. He derived the algebraic criterion

about the connectivity of graph. Whether a graph is con-

nected or not can be judged by the second smallest

eigenvalue of Laplacian matrix. Later, the eigenvector

corresponding to the second smallest eigenvalue is named

Fiedler vector, which contains the instruction information

about dividing a graph into two parts.

Adjacency matrix (denoted as A) and Laplacian matrix

(denoted as L) are commonly used representations for

graph. The adjacency matrix of weighted graph uses real

numbers to reflect the different relations between vertices.

Laplacian matrix L = D - A, where D is a diagonal

matrix, the diagonal values equal to the absolute row sums

of A, and the non-diagonal elements are 0. Most spectral

clustering algorithms are based on the spectrum of Lapla-

cian matrix to split graphs. There are two kinds of Lapla-

cian matrixes: un-normalized Laplacian matrix (L) and

normalized Laplacian matrix. Normalized Laplacian

matrix includes symmetric form (denoted as Ls) and ran-

dom walk form (denoted as Lr). Their expressions are

shown in Table 1.

Mohar introduced some characteristics of un-normalized

Laplacian matrix [46]. Shi and Malik studied the charac-

teristics of normalized Laplacian matrix [55]. The spec-

trum of Laplacian matrix provides very useful information

for graph partitioning. Based on Fiedler vector, we can

Table 1 Graph matrix for spectral clustering

Graph

matrix

Expression Bipartition of a graph Multi-partition

of a graph

Laplacian

matrix

L = D - A Based on fielder vector Based on

multiple

main

eigenvectors

Lr = D-1�L
Ls = D-1/2�

LD-1/2

Probability

transition

matrix

P = D-1�A Based on the

eigenvector of the

second largest

eigenvalue

Modularity

matrix
B ¼ A� ddT

2m
Based on the

eigenvector of the

largest eigenvalue
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divide a graph into two parts; based on multiple main

eigenvectors, we can divide a graph into k parts. Luxburg

made a comprehensive summary about the characteristics

of Laplacian matrix [60]. Whether we should use un-nor-

malized Laplacian matrix or normalized Laplacian matrix

is still under discussion. Ng et al. [51] provided the evi-

dence that normalized Laplacian matrix is more suitable for

spectral clustering, which means that the performance of

normalized spectral clustering is better than un-normalized

spectral clustering. Higham Kibble pointed out that under

certain conditions, un-normalized spectral clustering can

produce better clustering results [28]. While, Luxburg et al.

[40] proved that from the view of statistical consistency

theory, normalized Laplacian matrix is superior to un-

normalized Laplacian matrix.

Table 1 also shows the expression of probability tran-

sition matrix (denoted as P). Probability transition matrix is

essentially the normalized form of similarity matrix. Since

the row sum of normalized similarity matrix is 1, the ele-

ments in P can be understood as the Markov transition

probability. The larger the transition probability between

two nodes, the possibility that they belong to the same

cluster is greater. The spectrum of probability transition

matrix also contains the necessary information to split a

graph, but it is slightly different from the spectrum of

Laplacian matrix. In probability transition matrix, the

eigenvector corresponding to the second largest eigenvalue

can indicate the bipartition of a graph, and multiple

eigenvectors corresponding to the main eigenvalues can

indicate the multi-partition of a graph [43].

Another novel matrix is modularity matrix (denoted as

B), which comes from the study of community structure in

complex networks [48, 49, 34]. It has a clear physical

meaning, and its expression is shown in Table 1. In the

expression, d represents the column vector, whose ele-

ments are the degree of nodes; m represents the total

weight of graph edges; the elements of B is the difference

between the actual edge number and the desired edge

number of pairwise nodes, which also represents the

extent that actual edge number beyond desired edge

number. Therefore, this matrix leads directly to an

objective function that the optimal partition should make

the edges of communities (corresponding to ‘‘clusters’’) as

dense as possible, preferably beyond expected. As for

matrix characteristics, modularity matrix and Laplacian

matrix have some similarities, such as row sum (column

sum) is 0 and 0 is the eigenvalue. But they also have an

obvious difference that modularity matrix is not a positive

semi-definite matrix, so, some of its eigenvalues may be

negative. As for graph partitioning, the bipartition of a

network is based on the eigenvector of the largest eigen-

value, and the multi-partition of a network is based on

multiple main eigenvectors.

2.2 Graph cut methods

Spectral clustering uses the similarity graph to deal with

the problem of clustering. Its final purpose is to find a

partition of the graph such that the edges between different

groups have very low weights, which means that points in

different clusters are dissimilar from each other; and the

edges within a group have high weights, which means that

points within the same cluster are similar to each other. The

prototype of graph cut clustering is minimum spanning tree

(MST) method [59, 72]. MST clustering method is pro-

posed by Zahn [72]. This algorithm builds the minimum

spanning tree by the adjacency matrix of graph, and then

removes the edges with large weights from the minimum

spanning tree to get a set of connected components. This

method is successful in detecting clearly separated clusters,

but if the density of nodes is changed, its performance will

deteriorate. Another disadvantage is Zahn’s research is

under the circumstance that the cluster structure (such as

separating cluster, contact cluster, density cluster, etc.) is

known in advance.

Cutting a graph means to divide a graph into multiple

connected components by removing certain edges, and the

sum of weight of the removed edges is called cut. Bames

first proposed minimum cut clustering criteria [6]. Its basic

idea is seeking the minimum cut while dividing a graph

into k connected sub-graphs. Then Alpert and Yao put

forward the spectral method to solve the minimum cut

criteria, which laid an important foundation for the later

development of spectral clustering [3]. Wu and Leahy

applied minimum cut to image segmentation and based on

the maximum network flow theory to calculate the mini-

mum cut [66]. Minimum cut clustering is successful in

some applications of image segmentation, but the biggest

problem is it may lead to serious uneven split, such as

‘‘solitary point’’ or ‘‘small cluster’’. In order to solve this

problem, Wei and Cheng proposed ratio cut [65], Sarkar

and Soundararajan proposed average cut [54], Shi and

Malik proposed normalized cut [55], Ding et al. [14] pro-

posed Min/Max cut. The expressions of their objective

functions are shown in Table 2. These optimization

objectives are able to produce more balanced split.

Take graph bipartition for example. Assume V is a given

set of data points. A represents a subset of V, and B repre-

sents V/A. For illustrative purposes, we define the following

four terms:

1. CutðA;BÞ ¼
P

i2A;j2B wij denotes the sum of connec-

tion weights between cluster A and B.

2. CutðA;AÞ ¼
P

i2A;j2A wij denotes the sum of connec-

tion weights within cluster A.

3. VolðAÞ ¼
P

i2A di denotes the total degrees of the

vertices in cluster A.
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4. Aj j ¼ nA denotes the number of vertices in cluster A,

which is used to describe the size of cluster A.

The study of complex networks has caused great atten-

tion in the past decade. Complex networks possess a rich,

multi-scale structure reflecting the dynamical and func-

tional organization of the systems they model [44]. New-

man systematically studied the spectral algorithm for

community structure in non-weighted network, weighted

network, as well as directed network [34, 48, 50]. He uses

modularity function to detect communities. Modularity

criterion is a novel idea. Take non-weighted graph for

example: only if the real proportion of edges in commu-

nities is greater than the ‘‘expected’’ proportion, the split is

considered to be reasonable. The ‘‘expected’’ edge number

is derived from a random graph model, which is based on

the configuration model. This is obviously different from

the starting point of traditional graph cut clustering meth-

ods. The modularity function is shown in Table 2, where

Q represents modularity, m represents the number of edges

contained in the graph, ki represents the degree of node i (kj

is similar), vi and vj is -1 or 1. vi = vj indicate node i and

j belong to different communities; vi = vj indicate node

i and j belong to the same community.

Minimizing ratio cut, average cut, normalized cut, and

maximizing modularity are all NP discrete optimization

problems. Fortunately, spectral method can provide a loose

solution within polynomial time for these optimization

problems. Here, ‘‘loose’’ means relax the discrete optimi-

zation problem to the real number field, and then using

some heuristic approach to re-convert it to a discrete

solution. The essence of graph partitioning can be sum-

marized as the minimization or maximization problem of

matrix trace. To complete the minimizing or maximizing

tasks need to rely on spectral clustering algorithm.

Usually most spectral clustering algorithms are formed

of the following three stages: preprocessing, spectral rep-

resentation and clustering [26]. First construct the graph

and similarity matrix to represent the dataset; then form the

associated Laplacian matrix, compute eigenvalues and

eigenvectors of the Laplacian matrix, and map each point

to a lower-dimensional representation, based on one or

more eigenvectors; at last, assign points to two or more

classes, based on the new representation. In order to par-

tition a dataset or graph into k (k [ 2) clusters, there are

two basic approaches: recursive 2-way partitioning and k-

way partitioning. The comparison of these two methods is

shown in Table 3.

3 The latest development of spectral clustering

Spectral clustering is a large family of grouping methods,

and its research is very active in machine learning and data

mining, because of the universality, efficiency, and theo-

retical support of spectral analysis. Next, we will discuss

the latest development of spectral clustering from the fol-

lowing aspects: ‘‘construct similarity matrix’’, ‘‘form La-

placian matrix’’, ‘‘select eigenvectors’’, ‘‘the number of

clusters’’ and ‘‘the applications of spectral clustering’’.

3.1 Construct similarity matrix

The key to spectral clustering is to select a good distance

measurement, which can well describe the intrinsic

Table 2 Comparison of graph cut methods

References Graph cut Objective function Advantage Disadvantage

Bames [6] Minimum

cut

Mcut(A, B) = Cut (A, B) The algorithm is simple and easy

to implement

Does not consider the cluster size;

may lead to serious uneven split

Wei and Cheng

[65]

Ratio cut RcutðA;BÞ ¼ CutðA;BÞ
Aj j� Bj j

Introduces the size of clusters,

which reduces the possibility of

over-split

Only focus on the reducing the

similarity between clusters

Sarkar and

Soundararajan

[54]

Average cut AcutðA;BÞ ¼ CutðA;BÞ
Aj j þ

CutðA;BÞ
Bj j

Can produce more accurate

classification

Only take into account the

connections between clusters, while

ignore the connections within a

cluster

Shi and Malik

[55]

Normalized

cut
NcutðA;BÞ ¼ CutðA;BÞ

Vol(AÞ þ
CutðA;BÞ
Vol(BÞ

Take into account both inter-

cluster connections and intra-

cluster connections

The algorithm efficiency is low and

unable to deal with the clustering

problem of big data

Ding et al. [14] Min/Max

cut
MmcutðA;BÞ ¼ CutðA;BÞ

Cut(A;AÞ þ
CutðA;BÞ
Cut(B;BÞ

Tend to produce balanced

clusters and can avoid the

clusters containing only a few

vertices

The algorithm complexity is

relatively high with slow running

speed

Newman [50] Modularity Q ¼ 1
2m

P
i;j Ai;j � kikj

2m

� �
vivjþ1

2

� �
Suitable for the partition of

complex networks, and can

efficiently find communities

Does not perform well when there is

serious overlap between clusters

1480 Neural Comput & Applic (2014) 24:1477–1486

123



structure of data points. Data in the same groups should

have high similarity and follow space consistency. Simi-

larity measurement is crucial to the performance of spectral

clustering [62]. The Gaussian kernel function is usually

adopted as the similarity measure. However, with a fixed

scaling parameter r, the similarity between two data points

is only determined by their Euclidean distance and is not

adaptive to their surroundings. While dealing with complex

dataset, the similarity simply based on Euclidean distance

cannot reflect the data distribution accurately and in turn

resulting in the poor performance of spectral clustering.

Zhang et al. [74] propose a local density adaptive sim-

ilarity measure—CNN (Common-Near-Neighbor), which

uses the local density between two data points to scale the

Gaussian kernel function. CNN method is based on the

following observation: if two points are distributed in the

same cluster, they are in the same region which has a

relatively high density. It has an effect of amplifying intra-

cluster similarity thus making the affinity matrix clearly

block diagonal. Experimental results show that the spectral

clustering algorithm with local density adaptive similarity

measure outperforms the traditional spectral clustering

algorithm, the path-based spectral clustering algorithm and

the self-tuning spectral clustering algorithm.

Yang et al. [70] develop a density sensitive distance

measure. This measure defines the adjustable line segment

length, which can adjust the distance in regions with

different density. It squeezes the distances in high density

regions while widen them in low density regions. By the

distance measure, they design a new similarity function

for spectral clustering. Compared with the spectral clus-

tering based on conventional Euclidean distance or

Gaussian kernel function, the proposed algorithm with

density sensitive similarity measure can obtain desirable

clusters with high performance on both synthetic and real

life datasets.

Wang et al. [64] present spectral multi-manifold clus-

tering (SMMC), based on the analysis that spectral clus-

tering is able to work well when the similarity values of the

points belonging to different clusters are relatively low. In

their model, the data are assumed to lie on or close to

multiple smooth low-dimensional manifolds, where some

data manifolds are separated but some are intersecting.

Then, local geometric information of the sampled data is

incorporated to construct a suitable similarity matrix.

Finally, spectral method is applied to this similarity matrix

to group the data. SMMC achieves good performance over

a broad range of parameter settings and is able to handle

intersections, but its robustness remains to be improved.

In order to better describe the data distribution, Zhang

and You propose a random walk based approach to process

the Gaussian kernel similarity matrix [75]. In this method,

the pairwise similarity between two data points is not only

related to the two points, but also related to their neighbors.

Li and Guo develop a new affinity matrix generation

method using neighbor relation propagation principle [36].

The affinity matrix generated can increase the similarity of

point pairs that should be in same cluster and can well

detect the structure of data. Blekas and Lagaris introduce

Newtonian spectral clustering based on Newton’s equa-

tions of motion [7]. They build an underlying interaction

model for trajectory analysis and employ Newtonian pre-

processing to gain valuable affinity information, which can

be used to enrich the affinity matrix.

3.2 Form Laplacian matrix

After the similarity matrix is constructed, the next step is

forming the corresponding Laplacian matrix according to

different graph cut methods. There are three forms of tra-

ditional Laplacian matrix, which are, respectively, suitable

for different clustering conditions. The selection of graph

Table 3 Comparison of recursive 2-way partitioning and k-way partitioning

Partition

method

Basic idea Advantage Disadvantage

Recursive

2-way

partitioning

Divide the graph into two parts by a

certain 2-way partitioning algorithm,

and then recursively apply the same

procedure to the sub-graphs in a

hierarchical way, until the number of

clusters is enough or the recursive

conditions are violated

The idea of this algorithm is simple and

easy to realize by programming

This method is unstable, and costs a large

computation with low efficiency; it

only utilizes the information of single

eigenvector (such as Fiedler vector)

k-way

partitioning

First select several main eigenvectors of

Laplacian matrix that contain

classification information in a heuristic

way, and then use these eigenvectors to

map the original data points to a

spectral space to conduct the clustering

Make full use of the information of

multiple eigenvectors; it has less

computational complexity and the

clustering results are quite satisfactory

The optimization of its objective

function is usually more difficult; not

easy to select the appropriate

eigenvectors
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cut methods and the establishment of Laplacian matrix

both have an important impact on the performance of

spectral clustering algorithms.

As a natural nonlinear generalization of graph Lapla-

cian, p-Laplacian has recently been applied to two-class

cases. Luo et al. [39] propose full eigenvector analysis of

p-Laplacian and obtain a natural global embedding for

multi-class clustering problems, instead of using greedy

search strategy implemented by previous researchers. An

efficient gradient descend optimization approach is intro-

duced to obtain the p-Laplacian embedding space, which is

guaranteed to converge to feasible local solutions. Empir-

ical results suggest that the greedy search method often

fails in many real-world applications with non-trivial data

structures, but this approach consistently gets robust clus-

tering results and preserves the local smooth manifold

structures of real-world data in the embedding space.

Yang et al. [71] propose a new image clustering algo-

rithm, referred to as clustering using local discriminant

models and global integration (LDMGI). A new Laplacian

matrix is learnt in LDMGI by exploiting both manifold

structure and local discriminant information. This algo-

rithm constructs a local clique for each data point sampled

from a nonlinear manifold, and uses a local discriminant

model to evaluate the clustering performance of samples

within the local clique. Then a unified objective function is

proposed to globally integrate the local models of all the

local cliques. Compared with Normalized cut, LDMGI is

more robust to algorithmic parameter and is more appeal-

ing for the real image clustering applications, in which the

algorithmic parameters are generally not available for

tuning.

Most graph Laplacians are base on the Euclidean dis-

tance, which does not necessarily reflect the inherent dis-

tribution of the data. So Xie et al. [68] propose a method to

directly optimize the normalized graph Laplacian by using

pairwise constraints. The learned graph is consistent with

equivalence and non-equivalence pairwise relationships,

which can better represent the similarity between samples.

Meanwhile, this approach automatically determines the

scaling parameter during the optimization. The learned

normalized Laplacian matrix can be directly applied in

spectral clustering and semi-supervised learning

algorithms.

Frederix and Van Barel use linear algebra techniques to

solve the eigenvalue problem of a graph Laplacian and

propose a novel sparse spectral clustering method [24].

This method exploits the structure of the Laplacian to

construct an approximation, not in terms of a low-rank

approximation but in terms of capturing the structure of the

matrix. With this approximation, the size of the eigenvalue

problem can be reduced. Chen and Feng present a novel

k-way spectral clustering algorithm called discriminant cut

(Dcut) [10]. It normalizes the similarity matrix with the

corresponding regularized Laplacian matrix. Dcut can

reveal the internal relationships among data and produce

exciting clustering results.

3.3 Select eigenvectors

The eigenvalues and eigenvectors of Laplacian matrix can

be obtained by eigen-decomposition. An analysis of the

characteristics of eigenspace is carried out which shows

that: (a) not every eigenvector of a Laplacian matrix is

informative and relevant for clustering; (b) eigenvector

selection is critical because using uninformative/irrelevant

eigenvectors could lead to poor clustering results; (c) the

corresponding eigenvalues cannot be used to select rele-

vant eigenvectors given a realistic dataset. NJW algorithm

partitions data using the largest k eigenvectors of the nor-

malized Laplacian matrix derived from the dataset. How-

ever, some experiments demonstrate that the top k

eigenvectors cannot always detect the structure of the data

for real pattern recognition problems. So it is necessary to

find a better way to select eigenvectors for spectral

clustering.

Xiang and Gong propose the concept of ‘‘eigenvector

relevance’’, which differs from previous approaches in that

only informative/relevant eigenvectors are employed for

determining the number of clusters and performing clus-

tering [67]. The key element of their algorithm is a simple

but effective relevance learning method, which measures

the relevance of an eigenvector according to how well it

can separate the dataset into different clusters. Experi-

mental results show that this algorithm is able to estimate

the cluster number correctly and reveal natural grouping of

the input data/patterns even given sparse and noisy data.

Zhao et al. [77] propose an eigenvector selection method

based on entropy ranking for spectral clustering (ESBER).

In this method, first all the eigenvectors are ranked

according to their importance on clustering, and then a

suitable eigenvector combination is obtained from the

ranking list. There are two strategies to select eigenvectors

in the ranking list of eigenvectors: one is directly adopting

the first k eigenvectors in the ranking list, which are the

most important eigenvectors among all the eigenvectors,

different to the largest k eigenvectors of NJW method; the

other strategy is to search a suitable eigenvector combi-

nation among the first km (km [ k) eigenvectors in the

ranking list, which can reflect the structure of the original

data. ESBER method is more robust than NJW method and

can obtain satisfying clustering results in most cases.

Rebagliati and Verri find a fundamental working

hypothesis of NJW algorithm, that the optimal partition of

k clusters can be obtained from the largest k eigenvectors

of matrix Lsym, only if the gap between the k-th and the
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k ? 1-th eigenvalue of Lsym is sufficiently large. If the gap

is small, a perturbation may swap the corresponding

eigenvectors and the results can be very different from the

optimal ones. So they suggest a weaker working hypothe-

sis: the optimal partition of k clusters can be obtained from

a k-dimensional subspace of the first m (m [ k) eigenvec-

tors, where m is a parameter chosen by the user [53]. The

bound of m is based upon the gap between the m ? 1-th

and the k-th eigenvalue and ensures stability of the solu-

tion. This algorithm is robust to small changes of the

eigenvalues, and gives satisfying results on real-world

graphs by selecting correct k-dimensional subspaces of the

linear span of the first m eigenvectors.

3.4 The number of clusters

In most spectral clustering algorithms, the number of

clusters must be manually set and it is very sensitive to

initialization. How to accurately estimate the number of

clusters is one of the major challenges faced by spectral

clustering. Some existing approaches attempt to get the

optimal cluster number by minimizing some distance-

based dissimilarity measure within clusters.

Wang proposes a novel selection criterion, whose key

idea is to select the number of clusters as the one maxi-

mizing the clustering stability [61]. Since maximizing the

clustering stability is equivalent to minimizing the cluster-

ing instability, they develop an estimation scheme for the

clustering instability based on modified cross-validation.

The idea of this scheme is to split the data into two training

datasets and one validation dataset, where the two training

datasets are used to construct two clustering and the vali-

dation dataset is used to measure the clustering instability.

This selection criterion is applicable to all kinds of clus-

tering algorithms, including distance-based or non-dis-

tance-based algorithms. However, the data splitting reduces

the sizes of training datasets, so the effectiveness of the

cross-validation method is remained to be further studied.

The concept of clustering stability can measure the

robustness of any given clustering algorithm. Inspired by

Wang’s method [61], Fang and Wang develop a new

estimation scheme for clustering instability based on the

bootstrap, in which the number of clusters is selected so

that the corresponding estimated clustering instability is

minimized [22]. The implementation of the bootstrap

method is straightforward, and it has a number of advan-

tages. First, the bootstrap samples are of the same size as

that of the original data, so the bootstrap method is more

efficient. Second, the bootstrap estimate of the clustering

instability is the nonparametric maximum likelihood esti-

mate (MLE). Third, the bootstrap method can provide the

instability path of a clustering algorithm for any given

number of clusters.

Tepper et al. [57] introduce a perceptually driven clus-

tering method, in which the number of clusters is auto-

matically determined by setting parameter e that controls

the average number of false detections. The detection

thresholds are well adapted to accept/reject non-clustered

data and can help find the right number of clusters. This

method only takes into account inter-point distances and

has no random steps. Besides, it is independent from the

original data dimensionality, which means that its running

time is not affected by an increase in dimensionality. The

combination of this method with normalized cuts performs

well on both synthetic and real-world datasets and the

detected clusters are perceptually significant.

3.5 The applications of spectral clustering

Nowadays, spectral clustering has been successfully

applied to many areas, such as data analysis, speech sep-

aration, video indexing, character recognition, image pro-

cessing, etc. In such applications, the number of data points

to cluster can be enormous. Indeed, a small 256 9 256

gray level image leads to a dataset of 65,536 points, while

4 s of speech sampled at 5 kH leads to more than 20,000

spectrogram samples. In addition, real-world datasets often

contain a lot of outliers and noise points with complex data

structures [38]. All these issues should be carefully con-

sidered when dealing with the specific clustering problems.

Bach and Jordan use spectral clustering to solve the

problem of speech separation and present a blind separa-

tion algorithm, which separates speech mixtures from a

single microphone without requiring models of specific

speakers [5]. It works within a time–frequency represen-

tation (a spectrogram), and exploits the sparsity of speech

signals in this representation. That is, although two

speakers might speak simultaneously, there is relatively

little overlap in the time–frequency plane if the speakers

are different. Thus, speech separation can be formulated as

a problem in segmentation in the time–frequency plane.

Bach et al. have successfully demixed speech signals from

two speakers using this approach.

Video indexing requires the efficient segmentation of

video into scenes. A scene can be regarded as a series of

semantically correlated shots. The visual content of each

shot can be represented by one or multiple frames, called

key-frames. Chasanis et al. [9] develop a new approach for

video scene segmentation. To cluster the shots into groups,

they propose an improved spectral clustering method that

both estimates the number of clusters and employs the fast

global k-means algorithm in the clustering stage after the

eigenvector computation of the similarity matrix. The shot

similarity is computed based only on visual features and a

label is assigned to each shot according to the group that it

belongs to. Then, a sequence alignment algorithm is applied

Neural Comput & Applic (2014) 24:1477–1486 1483

123



to detect when the pattern of shot labels changes, providing

the final scene segmentation result. This scene detection

method can efficiently summarize the content of each shot

and detect most of the scene boundaries accurately, while

preserving a good tradeoff between recall and precision.

Zeng et al. [73] apply spectral clustering to recognize

handwritten numerals and obtain satisfying results. They

first select the Zernike moment features of handwritten

numerals based on the principles that the distinction degree

of inside-cluster features is small and the dividing of the

features between clusters is huge; then construct the simi-

larity matrix between handwritten numerals by the simi-

larity measure based on Grey relational analysis and make

transitivity transformation to the similarity matrix for better

block symmetry after reformation; finally make spectrum

decomposition to the Laplacian matrix derived from the

reformed similarity matrix, and recognize the handwritten

numerals with the eigenvectors corresponding to the sec-

ond minimal eigenvalue of Laplacian matrix as the spectral

features. This algorithm is robust to outliers and its rec-

ognition is also very effective.

Spectral clustering has been broadly used in image

segmentation. Liu et al. [37] take into account the spatial

information of the pixels in image and propose a novel

non-local spatial spectral clustering algorithm, which is

robust to noise and other imaging artifacts. Nowadays,

High-Definition (HD) images are widely used in television

broadcasting and movies. Segmenting these high resolution

images presents a grand challenge because of significant

computational demands. Wang and Dong develop a multi-

level low-rank approximation-based spectral clustering

method, which can effectively segment high resolution

images [63]. They also develop a fast sampling strategy to

select sufficient data samples, leading to accurate approx-

imation and segmentation. In order to deal with large

images, Tung et al. [58] propose an enabling scalable

spectral clustering algorithm, which combines a blockwise

segmentation strategy with stochastic ensemble consensus.

The purpose of using stochastic ensemble consensus is to

integrate both global and local image characteristics in

determining the pixel classifications.

Ding et al. [15] focus on controlled islanding problem and

use spectral clustering to find a suitable islanding solution for

preventing the initiation of wide area blackouts. The objec-

tive function used in this controlled islanding algorithm is the

minimal power-flow disruption. It is demonstrated that this

algorithm is computationally efficient when solving the

controlled islanding problem, particularly in the case of a

large power system. Adefioye et al. [1] develop a multi-view

spectral clustering algorithm for chemical compound clus-

tering. The tensor-based spectral methods provide chemi-

cally appropriate and statistically significant results when

attempting to cluster compounds from multiple data sources.

Experiments show that compounds of extremely different

chemotypes clustering together, which can help reveal the

internal relations of these compounds.

4 Conclusion and prospect

Spectral clustering is an elegant and powerful approach for

clustering, which has been widely used in many fields.

Especially in the graph and network areas, a lot of per-

sonalized improved algorithms have emerged. Why spec-

tral clustering attracts so many researchers, there are three

most important reasons: firstly, it has a solid theoretical

foundation—algebraic graph theory; secondly, for complex

cluster structure, it can get a global loose solution; thirdly,

it can solve the problem within a polynomial time. How-

ever, as a novel clustering method, spectral clustering is

still in the development stage, and there are many problems

worthy of further study.

1. Semi-supervised spectral clustering

Traditional spectral clustering is an unsupervised

learning that does not take into account the clustering

intention of the user. User intention is actually a priori

knowledge, also known as the supervised information. The

clustering algorithm guided by supervised information is

called semi-supervised clustering. Limited priori knowl-

edge can be easily obtained from samples in practice, such

as the pairwise constraints of samples. A large number of

studies have shown that making full use of priori knowl-

edge in the process of searching clusters can significantly

improve the performance of the clustering algorithm [11,

32]. Therefore, it will be very meaningful to combine priori

knowledge with spectral clustering and carry out the

research of semi-supervised spectral clustering.

2. Fuzzy spectral clustering

Most of the existing spectral clustering algorithms are

hard partition methods. They strictly divide each object

into a class and the class of an object is either this or that,

which belongs to the scope of classical set theory. In fact,

most objects do not have strict properties. These objects are

intermediary in forms and classes, suitable for soft division

[45]. The classical set theory often cannot completely solve

the classification problems of ambiguity. Fuzzy set theory

proposed by Zadeh, provides a powerful tool for this soft

division. Applying fuzzy set theory to spectral clustering

and studying effective fuzzy spectral clustering algorithms

are also very significant.

3. Kernel spectral clustering

Spectral clustering algorithms are mostly based on some

similarity measure to classify the samples, so that similar
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samples are gathered into the same cluster, while dissimilar

samples are separated into different clusters. Thus, the

clustering process is mainly dependent on the characteristic

difference between the samples. If the distribution of

samples is very complex, conventional methods may not be

able to get ideal clustering results. Using kernel methods

can enlarge the useful features of samples by mapping

them to a high dimensional feature space, so that the

samples are easier to clustering, and the convergence speed

of the algorithm will be accelerated [4]. Therefore, when

dealing with complex clustering problems, the combination

of kernel methods and spectral techniques can be consid-

ered as a valuable research direction.

4. Clustering of large datasets

Spectral clustering algorithms involve the calculation of

eigenvalues and eigenvectors. The underlying eigen-

decomposition takes cubic time and quadratic space with

regard to the dataset size [12]. These can be reduced by the

Nystrom method which samples only a subset of columns

from the matrix. However, the manipulation and storage of

these sampled columns can still be expensive when the

dataset is large. Time and space complexity has become an

obstacle for the generalization of spectral clustering in

practical applications. So, it is worthy of deep study to

explore an effective method to reduce the computation

complexity of spectral clustering algorithms, and make

them suitable for massive learning problems.

5. Spectral clustering ensemble

Traditional spectral clustering algorithms are sensitive to

the scaling parameter and have inherent randomness. In order

to overcome these problems, clustering ensemble strategy can

be introduced to spectral clustering [31]. Because it is pos-

sible to get better clusters by searching the combination of

multiple clustering results. Clustering ensemble can make full

use of the results of learning algorithms under different

conditions and find the cluster combinations that cannot be

obtained by a single clustering algorithm. Thus, the spectral

clustering ensemble algorithm is able to improve the quality

and stability of the clustering results, with strong robustness

to noise, outliers, and sample changes.
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