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Abstract This paper proposes a novel artificial neural

network called fast learning network (FLN). In FLN, input

weights and hidden layer biases are randomly generated,

and the weight values of the connection between the output

layer and the input layer and the weight values connecting

the output node and the input nodes are analytically

determined based on least squares methods. In order to test

the FLN validity, it is applied to nine regression applica-

tions, and experimental results show that, compared with

support vector machine, back propagation, extreme learn-

ing machine, the FLN with much more compact networks

can achieve very good generalization performance and

stability at a very fast training speed and a quick reaction of

the trained network to new observations. In addition, in

order to further test the FLN validity, it is applied to model

the thermal efficiency and NOx emissions of a 330 WM

coal-fired boiler and achieves very good prediction preci-

sion and generalization ability at a high learning speed.

Keywords Artificial neural network � Fast learning

network � Extreme learning machine � Least squares

1 Introduction

The artificial neural networks (ANNs) have been frequently

used in a variety of applications with great success due to

their ability to approximate complex nonlinear mappings

directly from input patterns [1, 2]. Namely, ANNs do not

require a user-specified problem solving algorithm, but they

could learn from existing examples, much like human

beings. In addition, ANNs have inherent generalization

ability. This means that ANNs could identify and syn-

chronously respond to the patterns that are similar with but

not identical to the ones that are employed to train ANNs.

However, the free parameters of ANNs would be defined by

learning from the given training samples according to gra-

dient descent algorithms, which makes the learning process

relatively slow and brings some issues related to its local

minima. Owing to these shortages, it could take much more

time to train ANNs and have a suboptimal solution [3].

For these problems, a new artificial neural network,

extreme learning machine (ELM), is proposed by Huang

et al. [4]. Recently, ELM is a novel single hidden layer

feedforward neural network (SLFN) where the input

weights and the bias of hidden nodes are generated ran-

domly without tuning and the output weights are deter-

mined analytically. ELM owns an extremely fast learning

algorithm and good generalization capability. Up to now,

the ELM has been successfully applied in various areas

[5–7]. The ELM overcomes most issues encountered in

traditional learning methods, such as the stopping criterion,

number of epochs, learning rate and local minima. How-

ever, there are still some insufficiencies in ELM. ELM

tends more hidden neurons than conventional tuning-based

learning algorithms in many applications, which would

make a trained ELM need longer time for responding to

unknown testing samples [8, 9].
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This paper proposes a novel fast learning network

(FLN) based on the thought of ELM. The FLN is a double

parallel forward neural network (DPFNN) [10, 11], which

is a parallel connection of a multilayer feedforward neural

network and a single layer feedforward neural network,

and the DPFNN’s output nodes not only receive the

recodification of the external information through the

hidden nodes, but also receive the external information

itself directly through the input nodes. In FLN, the input

weights and hidden layer biases are randomly generated,

and the weight values of the connection between the

output layer and the input layer and the weight values

connecting the output node and the input nodes are ana-

lytically determined based on least squares methods.

Compared with other methods, FLN with a smaller

number of hidden units can achieve good generalization

performance and stability at a very fast speed on most

applications.

The paper is organized as follows: the proposed fast

learning network is given in Sect. 2. Section 3 shows the

performance evaluation of the FLN. Finally, Sect. 4 sum-

marizes the conclusions of this paper.

2 Fast learning network

In this section, a novel artificial neural network called fast

learning network, which is a double parallel forward neural

network, is proposed based on the least squares methods.

The fast learning network, as shown in Fig. 1, is described

as follows in detail.

2.1 Approximation problem

The fast learning network called FLN is a parallel connection

of a single layer feedforward neural network and a three layer

feedforward neural network: input layer, hidden layer

and output layer. Suppose, there are N arbitrary distinct

samples xi; yif g, in which xi ¼ xi1; xi2; . . .; xin½ �T2 Rn is the

n-dimensional feather vector of the ith sample, and yi ¼
yi1; yi2; . . .yil½ �T2 Rl is the corresponding l-dimensional out-

put vector. The FLN has m hidden layer nodes. Win is the

m 9 n input weight matrix, b ¼ b1; b2; . . .; bm½ � is the biases

of hidden layer nodes, and Woh is a l 9 m matrix which

consists of the weight values of the connection between the

output layer and the hidden layer. Woi is a l 9 n weight matrix

which contains weight values of the connection between the

output layer and the input layer. c ¼ c1; c2; � � � ; cl½ �T is the

biases of output layer nodes. g �ð Þ and f �ð Þ are the active

functions of hidden nodes and output nodes.

Then, the FLN is mathematically modeled as:

yj1 ¼ f
Xn

r¼1

Woi
1rxjr þ c1 þ

Xm

k¼1

Woh
1k g bk þ

Xn

t¼1

Win
kt xjt

 ! !

yj2 ¼ f
Xn

r¼1

Woi
2rxjr þ c2 þ

Xm

k¼1

Woh
2k g bk þ

Xn

t¼1

Win
kt xjt

 ! !
j ¼ 1; 2; � � � ;N

..

.

yjl ¼ f
Xn

r¼1

Woi
lr xjr þ cl þ

Xm

k¼1

Woh
lk g bk þ

Xn

t¼1

Win
kt xjt

 ! !

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

ð1Þ

Equation (1) could be transformed into the following

form:

yj ¼ f Woixj þ cþ
Xm

k¼1

Woh
k g Win

k xj þ bk

� �
 !

j ¼ 1; 2; � � � ;N
ð2Þ

where Woi ¼ Woi
1 ;W

oi
2 ; . . .;Woi

l

� �
is the weight vector

connecting the jth output node and the input nodes, Woh
k ¼

Woh
1k ;W

oh
2k ; . . .;Woh

lk

� �T
is the weight vector connecting the

kth hidden node and the output nodes, and

Win
k ¼ Win

k1;W
in
k2; . . .;Win

km

� �T
is the weight vector connect-

ing the kth hidden node and the input nodes.

Then, Eq. (2) can be rewritten compactly as Eq. (3)

Y ¼ f WoiXþWohGþ c
� �

¼ f WoiWohc
� � X

G

I

2
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Fig. 1 Structure of the fast learning network
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G Win
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� �

¼
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1 x1 þ b1

� �
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1 xN þ b1

� �

..

. . .
. ..

.

g Win
mx1 þ bm

� �
� � � g Win

mxN þ bm

� �

2
664

3
775

m�N

ð4Þ

W ¼ WoiWohc
� �

l� nþmþ1ð Þ ð5Þ

I ¼ 11 � � � 1½ �1�N ð6Þ

The matrix W ¼ WoiWohc
� �

could be called as output

weights. G is called the hidden layer output matrix of FLN;

the ith row of G is the ith hidden neuron’s output vector

with respect to inputs x1; x2; . . .; xN .

2.2 Minimum norm least squares solution

For the input weights and biases of the hidden layer, many

research results show that the input weights and hidden

biases need not be adjusted at all and can be arbitrarily

given [12–16]. Based on these researches, this proposed

FLN could randomly generate the input weights Win and

biases b ¼ b1; b2; . . .; bm½ � of the hidden layer. After that,

the FLN could be thought of a linear system, and the output

weights W could be analytically determined through the

following form:

f Ŵ

X

G

I

2
64

3
75

0
B@

1
CA� Y

�������

�������
¼ min

W
f W

X

G

I

2
64

3
75

0
B@

1
CA� Y

�������

�������
ð7Þ

For an invertible activation function f �ð Þ, the output

weights are also analytically determined by Eq. (8)

Ŵ

X

G

I

2
64

3
75� f�1 Yð Þ

�������

�������
¼ min

W
W

X

G

I

2
64

3
75� f�1 Yð Þ

�������

�������
ð8Þ

where f�1 �ð Þ is the invertible function of f �ð Þ.
According to the Moore–Penrose generalized inverse

[17, 18], the minimum norm least-squares solution of the

linear system could be written as:

Ŵ ¼ f�1 Yð Þ
X

G

I

2
64

3
75

þ

¼ f�1 Yð ÞHþ ð9Þ

where H ¼ X G I½ �T¼ XT GT IT
� �

.

Then

Woi ¼ Ŵ 1 : l; 1 : nð Þ
Woh ¼ Ŵ 1 : l; nþ 1 : nþ mð Þð Þ
c ¼ Ŵ 1 : l; nþ mþ 1ð Þ

8
>><

>>:
ð10Þ

If the rank Hð Þ ¼ N, Eq. (9) could be rewritten as

Ŵ ¼ f�1 Yð Þ
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If the rank Hð Þ ¼ mþ nþ 1, Eq. (9) could be rewritten as

Ŵ ¼ f�1 Yð Þ
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I
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2.3 Simplifying model

In general, the output neurons’ active function f �ð Þ is often

chosen linear, namely f xð Þ ¼ x, and the output biases c ¼
c1; c2; � � � ; cl½ �T are often set as zeros. Then, the FLN’s

mathematical model (Eq. (1)) could be rewritten as

yj1 ¼
Xn

r¼1

Woi
1rxjr þ

Xm

k¼1

Woh
1k g bk þ

Xn

t¼1

Win
kt xjt

 !

yj2 ¼
Xn

r¼1

Woi
2rxjr þ

Xm

k¼1

Woh
2k g bk þ

Xn

t¼1

Win
kt xjt

 !

..

.

yjl ¼
Xn

r¼1

Woi
lr xjr þ

Xm

k¼1

Woh
lk g bk þ

Xn

t¼1

Win
kt xjt

 !

8
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>>>>>>>>>>>>>>:

;

j ¼ 1; 2; � � � ;N

ð13Þ

And simultaneously, Eqs. (3) and (5) could be,

respectively, transformed into Eqs. (14) and (15)

Y ¼WoiXþWohG ¼ WoiWoh
� � X

G

" #
¼W

X

G

" #
ð14Þ

W ¼ WoiWoh
� �

l� nþmð Þ ð15Þ

The hidden layer’s output matrix G is still calculated by

Eq. (4). And Eq. (7) and Eq. (8) could be rewritten as

Eq. (15).

Ŵ
X

G

" #
� Y

�����

����� ¼ min
W

W
X

G

" #
� Y

�����

����� ð15Þ

The output weights W ¼ WoiWoh
� �

could be analytically

determined by the Moore–Penrose generalized inverse.
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Ŵ ¼ Y
X

G

" #þ
¼ YHþ ð16Þ

Woi ¼ Ŵ 1 : l; 1 : nð Þ
Woh ¼ Ŵ 1 : l; nþ 1 : nþ mð Þð Þ

(
ð17Þ

where H ¼
X

G

" #
.

And if the rank Hð Þ ¼ N, Eq. (16) could be rewritten as

Ŵ ¼ Y
X

G

" #T
X

G

" # !�1
X

G

" #T

¼ Y XT GT
� � X

G

" # !�1
X

G

" #T

¼ Y XT XþGTG
� ��1

HT

ð18Þ

And if the rank Hð Þ ¼ mþ n, Eq. (16) could be rewritten as

Ŵ ¼ Y
X

G

" #T
X

G

" #
X

G

" #T !�1

¼ YHT HHT
� ��1

ð19Þ

As seen from the above learning process, as the FLN is a

parallel connection of a single layer feedforward neural

network and a multilayer feedforward network, the output

layer nodes not only get the recodification of the external

information through the hidden layer nodes, but also get the

external information itself directly through the input layer

nodes. In addition, many literatures has shown that a single

layer feedforward neural network in solving the linear

problem with higher efficiency, a multilayer feedforward

network can very well realize the complex non-linear

mapping from the inputs to the outputs. Then, the FLN has

the advantages of the two neural networks, but the ELM

does not. So, the FLN with a same or a smaller number of

hidden units can achieve much better generalization

performance and stability than ELM. In addition, in FLN,

the input weights and hidden layer biases are randomly

assigned, and the other weights could be analytically

determined by least squares methods. So, the FLN could

overcome most issues encountered in traditional learning

methods and simultaneously own very fast learning speed.

2.4 Learning algorithm for FLN

Suppose, given a training set S ¼ xi; yið Þjxif 2 Rn; yi 2 Rlg,
hidden node number m and activation function g �ð Þ, then the

FLN could be summarized as follows:

1. Randomly generate the input weight matrix Win and

the bias matrix b.

2. Calculate the hidden output matrix G using Eq. (3).

3. Calculate the combination matrix W using Eq. (9) or

Eq. (16).

4. Determine FLN’s model parameters Eq. (10) or Eq.

(17).

3 Experimental study and discussion

In order to evaluate the proposed FLN algorithm, the FLN

is applied to the benchmark problems listed in Table 1,

which include 9 regression applications (Auto MPG, Servo,

California housing, Bank domains, Machine CPU, Aba-

lone, Delta ailerons, Delta elevators, Boston housing),

which are selected from the website: http://www.liaad.

up.pt/*ltorgo/Regression/DataSets.html and often adopted

to test various learning algorithms [18, 19]. In addition,

another three regression methods are employed for per-

formance comparisons.

All evaluations for back propagation (Bp), support

vector machine (SVM), ELM and FLN are carried out in

Windows XP and Matlab 7.1 environment running on a

desktop with AMD Phenom (tm) 9,650 processor

2.31 GHz and 2G RAM. For all data sets listed in Table 1,

their observations are randomly split into two parts

(training set and testing set) according to the number of

samples listed in Table 1.

In order to state the superiority of the FLN, another three

methods, SVM, Bp and ELM, are employed to compare the

regression accuracy and generalization performance.

Firstly, the number of hidden neurons is set as 30 for Bp,

ELM and FLN, and the sigmoid function Eq. (20) is chosen

as the activation function for the ELM and FLN

algorithms.

g xð Þ ¼ 1

1þ exp �xð Þ ð20Þ

Table 1 Specification of real-world regression data sets

Data sets Attributes Observations Training

set

Testing

set

Auto MPG 7 398 200 198

Servo 4 167 87 80

California

housing

8 20,460 8,000 12,460

Bank domains 8 8,192 4,500 3,692

Machine CPU 6 209 100 109

Abalone 8 4,177 2,000 2,177

Delta ailerons 6 7,129 3,000 4,129

Delta elevators 6 9,517 4,000 5,517

Boston housing 13 506 250 256
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In addition, for each problem, we estimate the regression

accuracy using different combination of cost parameters C

and the kernel parameters c, C ¼ 2�2; 2�1; . . .; 211; 212½ �
and c ¼ 2�10; 2�9; . . .; 23; 24½ �, so the SVM would be tried

15� 15 ¼ 225 parameter combinations C; cð Þ in order to

find one to make SVM show best performance. Here, the

search parameter combination process is thought of a part

of the training process.

Every experiment is repeated 30 times. The mean and its

standard deviations (SD) of root-mean-square error

(RMSE) for the four methods are given in Table 2 for

training samples and Table 3 for testing samples.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

yi � ŷið Þ2
s

ð21Þ

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 y
_

i � y
_

� 	2

n� 1

vuuut
ð22Þ

As seen from Table 2, for the training samples for data

sets, compare with Bp and ELM, the FLN shows better

regression accuracy on the all regression applications listed

in Table 1. In addition, for the standard deviations, the

FLN shows better performance on five applications (Auto

MPG, Servo, Bank domains, Machine CPU and Delta

ailerons), ELM on three applications (Abalone, Delta ele-

vators and Boston housing) and Bp on one (California

housing). Compared with SVM, for the regression accu-

racy, the FLN shows better superiority on five applications

(Auto MPG, Servo, Bank domains, Machine CPU and

Delta ailerons) and SVM on the other four applications. For

the learning time, the ELM needs the least one; the next is

FLN, then Bp, and the last SVM. In short, although the

SVM shows better regression performance on some

applications than FLN, it spends much more time to search

better parameter combination. Although the ELM needs

less learning time than ELM, the regression performance is

not better than the FLN.

As seen from Table 3, for testing samples for data sets,

compared with SVM, Bp and ELM, the FLN shows the

best generalization ability on seven applications (Auto

MPG, Servo, California housing, Bank domains, Abalone,

Delta ailerons and Delta elevators), and for the other two

data sets (Machine CPU and Boston housing), the SVM

Table 2 Comparison of the mean and its standard deviation of RMSE and the running time for SVM, BP, ELM and FLN using training samples

Data sets SVM Bp with 30 hidden nodes

RMSE Time (910-3s) RMSE Time (910-3s)

Mean SD Mean SD Mean SD Mean SD

Auto MPG 6.1892 9 10-2 1.9634 9 10-3 4,534.687 792.01 8.2505 9 10-2 8.5109 9 10-3 3,539.218 12.020

Servo 7.3628 9 10-2 2.4546 9 10-2 2,515.625 993.98 9.6938 9 10-2 1.3267 9 10-2 2,400.937 12.548

California housing 1.2753 9 10-1 3.2350 9 10-3 3.74 9 107 4.9 9 106 1.5593 9 10-1 1.4532 9 10-2 1.09 9 105 1,340.8

Bank domains 6.3281 9 10-2 7.6471 9 10-4 5.38 9 106 7.8 9 105 9.7356 9 10-2 1.0679 9 10-2 58,029.53 231.53

Machine CPU 4.3571 9 10-2 5.3401 9 10-3 395.937 311.21 4.6485 9 10-2 8.3280 9 10-3 2,706.406 67.298

Abalone 6.5659 9 10-2 6.2663 9 10-4 5.28 9 105 3.2 9 104 9.3611 9 10-2 8.0689 9 10-3 22,319.22 673.91

Delta ailerons 4.0522 9 10-2 5.5771 9 10-4 1.19 9 105 1.1 9 104 7.3916 9 10-2 1.1920 9 10-2 37,391.41 22.237

Delta elevators 5.2337 9 10-2 3.9344 9 10-4 1.47 9 106 8.6 9 104 8.4651 9 10-2 1.1434 9 10-2 50,125.31 343.56

Boston housing 6.3899 9 10-2 2.5548 9 10-3 4,403.12 473.23 9.6166 9 10-2 9.3308 9 10-3 4,207.031 19.598

Data sets ELM with 30 hidden nodes FLN with 30 hidden nodes

RMSE Time (910-3s) RMSE Time (910-3s)

Mean SD Mean SD Mean SD Mean SD

Auto MPG 6.9518 9 10-2 4.5487 9 10-3 3.1250 6.3568 6.0963 9 10-2 4.3071 9 10-3 4.5312 8.0976

Servo 6.8669 9 10-2 1.3864 9 10-2 2.0833 5.4023 6.2947 9 10-2 1.0714 9 10-2 2.0313 5.2812

California housing 1.3592 9 10-1 2.1420 9 10-3 104.1667 8.5418 1.3269 9 10-1 2.0771 9 10-2 145.7812 8.0242

Bank domains 5.7120 9 10-2 3.0826 9 10-3 53.1250 8.8006 4.7112 9 10-2 9.4812 9 10-4 77.1875 4.3405

Machine CPU 1.9435 9 10-2 2.8173 9 10-3 2.0833 5.4022 1.6634 9 10-2 2.0574 9 10-3 1.4062 5.0129

Abalone 7.4119 9 10-2 1.1956 9 10-3 19.2708 6.7216 7.4015 9 10-2 1.5086 9 10-3 31.4062 5.2059

Delta ailerons 3.8452 9 10-2 8.2847 9 10-4 32.2917 3.9642 3.8114 9 10-2 7.6419 9 10-4 42.6562 8.8430

Delta elevators 5.3109 9 10-2 4.3674 9 10-4 43.7500 6.3568 5.2822 9 10-2 6.2815 9 10-4 60.9375 5.6621

Boston housing 8.6356 9 10-2 6.0737 9 10-3 4.6875 7.2826 7.4124 9 10-2 6.6907 9 10-3 5.1562 8.0242
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shows best. For the stability, the SVM has best perfor-

mance on one application (Servo), ELM on two applica-

tions (Abalone and Boston housing) and FLN on the other

six ones. In short, the FLN has the better generalization

ability and stability on most applications.

In addition, in order to further state the FLN validity, the

hidden neurons of ELM and FLN are reset as 20, and the

sigmoid function is still adopted as the activation function.

The related results are reported in Table 4.

As seen from Table 4, we could know that, although

ELM needs a little less learning and responding time than

the FLN on most data sets, the FLN shows much better

regression accuracy on the all data sets and also has the

better generalization ability on 8 data sets. The ELM shows

better generalization ability on one application (Machine

CPU).

As seen from Tables 2, 3 and 4, with the hidden neurons

reducing, the regression accuracy of ELM and FLN would

reduce on all data sets, and the learning and responding

time is also reducing on most applications. However, the

generalization ability is increasing on 2 applications (Auto

MPG and Machine CPU) for ELM and on 4 applications

(Auto MPG, Servo, Machine CPU and Abalone) for FLN.

In addition, whatever the number of hidden neurons is 30

or 20, if only the number of hidden neurons is set as the

same number, the FLN could show better regression

accuracy and generalization ability on most applications

than ELM.

Compared with ELM with 30 hidden neurons, for the

training samples of all data sets, although the ELM shows

better regression accuracy than the FLN with 20 hidden

neurons on six regression applications (Auto MPG, Servo,

California housing, Machine CPU, Abalone and Delta

ailerons), the FLN with 20 hidden neurons could show

better superiority on only three applications (Bank

domains, Delta elevators and Boston housing). For testing

set for all applications, the FLN with 20 hidden neurons

could show better generalization ability than ELM with 30

hidden neurons on seven applications (Auto MPG, Servo,

Bank domains, Machine CPU, Abalone, Delta ailerons and

Boston housing). However, the ELM shows better perfor-

mance than the FLN on only two applications (California

Table 3 Comparison of the mean and standard deviation of RMSE and the running time for SVM, BP, ELM and FLN using testing samples

Data sets SVM Bp with 30 hidden nodes

RMSE Time (910-3s) RMSE Time (910-3s)

Mean SD Mean SD Mean SD Mean SD

Auto MPG 8.5228 9 10-2 9.1687 9 10-3 1.7187 4.9135 1.0368 9 10-1 1.5861 9 10-2 4.2187 6.9718

Servo 1.2330 9 10-1 1.6832 9 10-2 0 0 1.8380 9 10-1 3.8785 9 10-2 3.4375 6.5052

California housing 1.4107 9 10-1 4.6542 9 10-3 871.246 62.184 1.6065 9 10-1 2.8987 9 10-2 93.2812 4.1280

Bank domains 6.8617 9 10-2 5.7403 9 10-3 542.732 49.561 9.9465 9 10-2 1.1213 9 10-2 28.1250 6.2814

Machine CPU 6.5646 9 10-2 1.7430 9 10-2 0.6250 3.0772 3.1303 9 10-1 2.6623 9 10-1 4.0625 6.8882

Abalone 9.3852 9 10-2 2.7022 9 10-3 223.081 16.526 9.8343 9 10-2 1.3502 9 10-2 17.9687 5.6073

Delta ailerons 4.4745 9 10-2 2.5386 9 10-3 51.5625 10.546 7.5887 9 10-2 1.2511 9 10-2 30.6250 3.0773

Delta elevators 5.6289 9 10-2 1.0955 9 10-3 221.875 19.207 8.6147 9 10-2 1.1841 9 10-2 40.3125 7.7507

Boston housing 9.6235 9 10-2 9.4474 9 10-2 3.1250 6.5880 1.3635 9 10-1 3.3672 9 10-2 5.1562 7.3840

Data sets ELM with 30 hidden nodes FLN with 30 hidden nodes

RMSE Time (910-3s) RMSE Time (910-3s)

Mean SD Mean SD Mean SD Mean SD

Auto MPG 8.2210 9 10-2 5.3998 9 10-3 1.0417 3.9642 7.9443 9 10-2 5.2732 9 10-3 1.0937 4.0067

Servo 1.2592 9 10-1 2.1971 9 10-2 0 0 1.2113 9 10-1 3.8030 9 10-2 0.3125 2.1985

California housing 1.3635 9 10-1 2.2256 9 10-3 58.8541 6.7216 1.3445 9 10-1 1.8493 9 10-3 70.937 8.4333

Bank domains 5.7807 9 10-2 3.3830 9 10-3 16.6667 3.9642 4.7836 9 10-2 9.5635 9 10-4 18.5937 6.1605

Machine CPU 1.2887 9 10-1 7.5468 9 10-2 0.5208 2.8527 1.9366 9 10-1 1.3955 9 10-2 0.6250 3.0772

Abalone 7.7442 9 10-2 1.7851 9 10-3 10.4167 9.4762 7.7221 9 10-2 1.9985 9 10-3 10.3125 7.4389

Delta ailerons 3.9237 9 10-2 5.868 9 10-4 17.7083 5.4023 3.9314 9 10-2 5.7717 9 10-4 18.125 5.7571

Delta elevators 5.3443 9 10-2 3.6202 9 10-4 21.3542 7.6583 5.3551 9 10-2 4.7900 9 10-4 25.3125 7.6223

Boston housing 1.1078 9 10-1 1.1522 9 10-2 2.0833 6.7839 1.0209 9 10-1 1.0096 9 10-2 1.7188 5.3921
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housing and Delta elevators). In addition, the FLN could

have better stability than ELM on most regression appli-

cations according to the standard deviations, and a faster

speed for both learning and testing than ELM under the

assigned number of hidden neurons. Especially, the more

the data set contains samples, the less time FLN spends in

learning and testing than ELM. Therefore, the proposed

FLN with less hidden neurons could achieve good gener-

alization performance and stability with much more com-

pact networks and fast speed.

In addition, in order to state the validity of the sigmoid

function, another two activation functions: ‘Hardlim’ and

‘Sine,’ are employed to compare the performance of the

FLN. Here, the number of hidden neurons is still set as 20.

The related results are recorded in Table 5.

‘Hardlim’ : g xð Þ ¼
1 x� 0

0 x\0

(
ð23Þ

‘Sine’ : g xð Þ ¼ sinðxÞ ð24Þ
As seen from Table 5, for the training sample of all data

sets, the FLN with ‘Sigmoid’ has a better regression

accuracy on six applications (Auto MPG, Servo, Bank

domains Machine CPU, Delta ailerons and Delta elevators)

and the FLN with ‘Sine’ on three applications (California

housing, Abalone and Boston housing). For the testing

samples of data sets, the FLN with ‘Sigmoid’ has the better

generalization ability than the FLN with the other two

activation functions on seven applications, the FLN with

‘Hardlim’ on one application (Machine CPU) and the FLN

with ‘Sine’ on one application (Boston housing). Accord-

ing to the standard deviation of RMSE, the FLN with

‘Sigmoid’ has better stability for the training and testing

sample on most applications. So, the ‘Sigmoid’ as the

activation function of FLN makes the regression accuracy,

generalization ability and stability of FLN better.

As observed from Fig. 2, it shows the relationship

between the generalization performance of FLN and its

network size for the Bank domains. The testing RMSE

decreases with the increase in the number of hidden layer

neurons, so the generalization performance of FLN is more

and more stable with the increase in the number of hidden

layer neurons.

Table 4 Comparison of the mean and standard deviation of RMSE and the running time for ELM and FLN using training and testing samples

Data sets ELM (training samples) with 20 hidden nodes ELM (testing samples) with 20 hidden nodes

RMSE Time (910-3s) RMSE Time (910-3s)

Mean SD Mean SD Mean SD Mean SD

Auto MPG 6.9665 9 10-2 4.5038 9 10-3 1.7188 4.9135 8.0270 9 10-2 5.7331 9 10-3 1.0938 4.0068

Servo 9.2938 9 10-2 1.4568 9 10-2 0.7813 3.4225 1.2798 9 10-1 1.8046 9 10-2 0.6250 3.0773

California housing 1.4015 9 10-1 2.0989 9 10-3 57.6563 7.2628 1.4070 9 10-1 1.9726 9 10-3 39.218 7.8502

Bank domains 6.6323 9 10-2 7.9992 9 10-3 30.625 3.7950 6.6763 9 10-2 7.8527 9 10-3 9.8437 7.9004

Machine CPU 2.2979 9 10-2 3.1875 9 10-3 2.0312 5.2812 8.3653 9 10-2 4.1265 9 10-2 0.4687 2.6788

Abalone 7.5865 9 10-2 1.5442 9 10-3 12.0312 6.6086 7.7460 9 10-2 1.6104 9 10-3 6.0937 7.6595

Delta ailerons 3.8851 9 10-2 6.5961 9 10-4 18.1250 6.9238 3.9520 9 10-2 5.3632 9 10-4 10.937 7.1963

Delta elevators 5.3281 9 10-2 6.3806 9 10-4 25.9375 7.4389 5.3605 9 10-2 4.7367 9 10-4 15.3125 4.4305

Boston housing 9.9456 9 10-2 7.5832 9 10-3 2.0312 6.1445 1.1565 9 10-1 7.9467 9 10-3 1.40625 5.0129

Data sets FLN (training samples) with 20 hidden nodes FLN (testing samples) with 20 hidden nodes

RMSE Time (910-3s) RMSE Time (910-3s)

Mean SD Mean SD Mean SD Mean SD

Auto MPG 6.6315 9 10-2 4.1711 9 10-3 2.6042 5.9226 7.8921 9 10-2 4.8938 9 10-3 1.5625 4.7676

Servo 7.8692 9 10-2 1.3279 9 10-2 1.0416 3.9641 1.1972 9 10-1 1.9759 9 10-2 0 0

California housing 1.3630 9 10-1 1.9502 9 10-3 83.8541 7.6583 1.3696 9 10-1 1.7131 9 10-3 46.3541 2.8527

Bank domains 4.7622 9 10-2 7.7918 9 10-4 45.3125 4.7676 4.8183 9 10-2 9.3479 9 10-4 10.9375 7.2826

Machine CPU 2.0317 9 10-2 2.2557 9 10-3 1.5625 4.7676 1.1859 9 10-1 6.5693 9 10-2 0 0

Abalone 7.4823 9 10-2 1.7943 9 10-3 17.1875 4.7676 7.6933 9 10-2 2.1051 9 10-3 6.2500 7.7855

Delta ailerons 3.8723 9 10-2 6.6724 9 10-4 23.4375 7.9461 3.9323 9 10-2 4.7892 9 10-4 11.9791 6.7216

Delta elevators 5.3097 9 10-2 6.8177 9 10-4 34.8958 8.8800 5.3560 9 10-2 5.4503 9 10-4 17.7083 5.4022

Boston housing 8.2361 9 10-2 8.0322 9 10-3 3.1250 7.4916 1.0489 9 10-1 9.1439 9 10-3 1.0416 3.9641
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In summation, the FLN with much more compact net-

works and fast speed could achieve good generalization

performance and stability on most functions. So, the FLN

could be thought of an effective machine learning tool.

4 Real-world design problem

For studying the influence of adjustable boiler operation

parameters for the thermal efficiency and NOx emissions of

a 330 WM double-furnace coal-fired boiler, 20 cases were

carried out under various operating conditions. The boiler

equips a coal pulverizing system with intermediate silo, 4

coal pulverizers, 4 mill exhausters and 32 pulverized fuel

feeders. In order to set up a function between the thermal

efficiency/NOx emissions and operating conditions, the

proposed FLN is employed.

Firstly, as seen from the Table 1 of the Ref. [20], Cases

1–3, Case 4, Cases 5–6, Cases 7–14 and Cases 15–20,

respectively, work in different properties of coal-fired.

According to the coal characteristics, the 20 cases are

divided into two parts: training samples (17 cases: Cases

1–2, Cases 4–11, Cases 13–16 and Cases 18–20) and

testing samples (3 cases: Case 3, Case 12 and Case 17), in

order to set up the function relation between the thermal

efficiency/NOx emissions and operating conditions, and

test its validity. The thermal efficiency/NOx emissions

mainly depend on 26 operational conditions given as

follows.

• The boiler load (MW).

• The coal feeder rotation speed (CFRS, r min-1),

including A, B, C, D levels.

• The primary air velocity, including A, B, C, D levels.T
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number of hidden neurons
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• The secondary air velocity (m s-1), including AA, AB,

BC, CD, DE levels.

• The oxygen content in the flue gas (OC, %).

• The exhaust gas temperature (EGT, �C).

• The over fire air port (OFA, %)

• The separated over fire air port (SOFA, %).

• The coal characteristics including content of carbon

(Car, %), hydrogen (Har, %), oxygen (Oar, %),

nitrogen (Nar, %), water (War, %), volatile (Var, %),

heat value (Qdw.ar, kJ/kg).

The proposed FLN is adopted to set up mathematical

models of the thermal efficiency/NOx emissions, which

could state the mapping relation between the thermal

efficiency/NOx emissions and operational conditions. The

complex mapping function relation could be simplified as a

model which is shown in Fig. 3.

In order to test the model repeatability and validity,

every experiment is repeated 30 times. The minimum,

maximum, median and mean of the root-mean-square error

(RMSE) have been recorded for the training samples. And

simultaneously, the minimum, maximum, median and

mean of the prediction values are also recorded for testing

samples. For the thermal efficiency, the training time and

related values of RMSE are given in Table 6, the predic-

tion values of training samples are shown in Fig. 4, its error

comparisons are shown in Fig. 5, and the prediction values

of testing samples are given in Table 7. For NOx emissions,

the training time and related values of RMSE are given in

Table 8, the prediction values of training samples are

shown in Fig. 6, its error comparisons are shown in Fig. 7,

and the prediction values of testing samples are given in

Table 9.

As to the comparison of the thermal efficiency’s model,

just as we can see from Tables 6, 7 and Figs. 4, 5, the

minimum, maximum, median and mean of the RMSE and

the prediction values of testing samples remain unchanged

for Bp, SVM and LSSVM in 30 training models. Although

these values have some variations for FLN, these variations

are too small. But for ELM, the minimum, maximum,

median and mean of RMSE are different, and the

330WM 
coal-fired 

double 
furance 
boiler

Load    (1)

coal feeder rotation speed    (4)

The primary air velocity    (4)

The secondary air velocity    (5)

The oxygen content in the flue gas    (1)

The exhaust gas temperature (1)

The over fire air port   (2)

The separated over fire air port  (1)

The coal characteristics    (7)

the thermal efficiency/NOx emissions

Fig. 3 Simplified boiler model

Table 6 Training time and related values of RMSE for the thermal efficiency

Method RMSE Time (s)

Min Max Med Mean

Bp 7.063 9 10-1 7.063 9 10-1 7.063 9 10-1 7.063 9 10-1 0.9761

SVM 9.4612 9 10-2 9.4612 9 10-2 9.4612 9 10-2 9.4612 9 10-2 1.4035

LSSVM 1.6190 9 10-4 1.6190 9 10-4 1.6190 9 10-4 1.6190 9 10-4 3.7975

ELM 4.5983 9 10-1 7.3271 9 10-1 6.1009 9 10-1 6.0817 9 10-1 6.2500 3 1024

FLN 1.2673 3 10213 1.2454 3 10212 3.5409 3 10213 4.3855 3 10213 9.3750 3 1024

Values given in bold are the best one
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Fig. 4 The prediction values of the thermal efficiency for training

samples
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difference is very large. So, ELM’s prediction errors of

training samples are not shown in Fig. 5. For the prediction

precision of training samples, the FLN’s RMSE is the least

among all the 5 methods, whose values achieve 10-13. The

runtime of training process is also the least, except for

ELM. As seen from the prediction values of testing sam-

ples, the LSSVM’s prediction errors are the least one,

secondly FLN. The Bp’s prediction values are same for

different cases, and ELM’s some prediction values of

testing samples overstep the limitation of the thermal

efficiency. Therefore, we could think the ELM and BP are

out of work for the prediction of the thermal efficiency. In a

word, although LSSVM has better generalization ability

than FLN, FLN’s generalization ability is also very well

and better than those of Bp, SVM and ELM; in addition,

FLN’s learning time and RMSE of training samples are

much better than any one of Bp, SVM and LSSVM.

As to the comparison of NOx emissions’ model, just as

we can see from Tables 8, 9 and Figs. 6, 7, the minimum,

maximum, median and mean of the RMSE and the pre-

diction values of testing samples keep unchanged as the

thermal efficiency’s model for Bp, SVM and LSSVM.
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Fig. 5 The prediction errors of the thermal efficiency for training samples

Table 7 Prediction values of testing samples for the thermal efficiency

Case Original data Bp SVM ELM LSSVM FLN

3 89.46

Min 91.0435 90.9746 -7.27 9 10-4 90.3505 90.2680

Max 91.0435 90.9746 362.53 90.3505 90.6963

Med 91.0435 90.9746 90.9738 90.3505 90.3705

Mean 91.0435 90.9746 -6.34 9 10-2 90.3505 90.3799

12 91.57

Min 91.0435 91.0229 88.1218 91.1729 91.9602

Max 91.0435 91.0229 1.34 9 106 91.1729 92.7832

Med 91.0435 91.0229 91.2796 91.1729 92.2220

Mean 91.0435 91.0229 1.37 9 104 91.1729 92.2689

17 90.36

Min 91.0435 91.0177 89.3654 90.4588 90.2555

Max 91.0435 91.0177 91.7367 90.4588 90.6306

Med 91.0435 91.0177 90.7685 90.4588 90.4804

Mean 91.0435 91.0177 90.7735 90.4588 90.4702
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Although there are tiny variations in these values of FLN,

they are negligible. But for ELM, there are very large

variations in these values, so ELM’s prediction errors of

training samples are not shown in Fig. 6. According to the

RMSE, the training precision of FLN is the best among the

five methods, and simultaneously, the FLN needs the least

training time. For the predicted NOx emission of testing

samples, the prediction values of Bp and SVM are same for

different cases, and some ELM’s prediction values over-

step the limitation of NOx emissions; therefore, we may

think the ELM, BP and SVM are out of work for the

prediction of NOx emissions. Although the predicted NOx

emissions of FLN are not better than those of LSSVM for

Case 12, majority of predicted NOx emissions of FLN

outperform those of LSSVM for Case 3 and Case 17 in 30

prediction models. So, the FLN has very good prediction

precision and generalization ability with little runtime for

training process.
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Fig. 6 The prediction values of the thermal efficiency for training

samples

Table 8 Training time and related values of RMSE for NOx emissions

Method RMSE Time (s)

Min Max Med Mean

Bp 93.0858 93.0858 93.0858 93.0858 1.0268

SVM 9.9957 9 10-2 9.9957 9 10-2 9.9957 9 10-2 9.9957 9 10-2 1.0739

LSSVM 1.9083 9 10-2 1.9083 9 10-2 1.9083 9 10-2 1.9083 9 10-2 3.7678

ELM 33.7875 92.7139 71.9961 69.6539 7.8125 3 1024

FLN 9.5794 3 10213 7.5443 3 10212 2.5816 3 10212 2.8531 3 10212 4.6875 3 1024

Values given in bold are the best one
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In summary, the FLN has very good prediction precision

and generalization ability and simultaneously needs little

learning time in the training process. So, the FLN may set

up very good models of the thermal efficiency and NOx

emissions and proves to be a good effective learning

method.

5 Conclusions

This paper proposes a novel artificial neural network, fast

learning network (FLN), which is a double parallel for-

ward neural network. In FLN, the input weights and

hidden layer biases are randomly generated like ELM, and

the other weights and biases are would be analytically

determined based on least squares methods. In order to

test FLN’s validity, it is applied to 9 regression problems.

Experimental results show that compared with SVM, Bp

and ELM, the FLN with the same hidden neurons can

achieve better regression accuracy, generalization perfor-

mance and stability at a very fast speed. Although the

hidden neuron’s number of FLN is less than that of ELM,

the FLN still has better generalization performance and

stability than ELM on most applications. In addition, the

FLN is applied to a 330 WM coal-fired boiler. Compared

with other learning methods (such as Bp, ELM, SVR and

LSSVR), the FLN can achieve better regression accuracy,

generalization performance and stability at a high speed.

So, the FLN could be a useful machine learning tool and

be applied to various applications like other intelligent

learning machines.
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