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Abstract In this paper, a nonlinear reservoir release

optimization problem has been solved by using four opti-

mization tools with various combinations of input param-

eters that are generally used in this research field. A

comparison has been made between evolutionary methods

[genetic algorithm (GA)] and swarm intelligences [particle

swarm optimization (PSO) and artificial bee colony (ABC)

optimization] in searching the optimum reservoir release

policy. From the historical recorded data, the monthly

inflow was categorized into three states: high, medium and

low. As a guideline for the decision maker, an optimum

release curve was generated for each month showing the

release options with a variety of different storage condi-

tions. GA (real and binary), ABC optimization and PSO

algorithm have been used as optimization tools with the

same formulation and objective function for all the meth-

ods. For verification of the models, a simulation is done by

using 264 monthly historical inflow data. Different indices

such as reliability, vulnerability and resiliency were cal-

culated in order to check the performance and risk analysis

purposes. The results show that the most recently devel-

oped ABC optimization technique provides the best results

in meeting demands, avoiding wastage of water and in

handling critical period of low flows.

Keywords Optimal reservoir release policy � Genetic

algorithms � Particle swarm optimization � Artificial bee

colony optimization

1 Introduction

In many researches carried out recently, it has been proved

that the nature has the best optimization techniques in it, for

maintaining the global systems. Sharing the information

between chromosomes in giving birth to offspring and

finding the shortest path of the food sources of ants, move-

ments of bird flocks, foraging behavior of honey bees, etc.,

bring the idea of optimization techniques (like GA, ACO,

PSO, ABC and other hybrid methods) that have opened a

wide door and scope for researches. In the last two decades,

the use of these evolutionary techniques extremely got the

attention of the researchers in hydrological field. The main

problem is that the development of the model and application

of the methodology are totally problem dependent. None of

these methods are unique for all types of problem formula-

tion. Also, the application in real-world problem is full of

complexities. Here, we analyzed these methods in solving

reservoir release optimization problem and build up the

problem formulation as a purpose of practical application.

We have prepared a curve that can tell us how much water

release would be an optimum release for a definite period of

time with a known inflow condition and storage volume.

Reservoir operation is a complex task as it deals with the

natural uncertainties and directly handles the human needs.

Irrigation, flood protection, storage of the water, domestic

water supply and hydropower generations are the common

functions of reservoir systems. The consumable water is

limited in our world and careful uses of water resources are

very much essential. So, only a proper optimization tech-

nique can assure these aspects. Artificial methods (inspired

by natural techniques) are the powerful and popular tools

as till now the researchers are using these in solving dif-

ferent kind of complex problems like global positioning

system [1], improving quality service of computer networks
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[2], designing spread footing [3], water quality prediction

[4]. Wardlaw and Sharif [5] used GA to solve the well-

known ‘‘four reservoir problem’’ where they concluded that

the real-coded GA can produce the best results more effi-

ciently. Kennedy and Eberhart [6] added a new level of

accuracy and simplicity in optimization technique inspiring

from the natural bird flocking, and they named it as particle

swarm optimization (PSO). Kumar and Reddy [7] suc-

cessfully applied PSO to reservoir optimization problem. In

PSO, the algorithm is free from the complexity of using the

basic operators of GA, that is, crossover and mutations.

Even though PSO is very fast in searching optimal solution,

it has some drawbacks and application difficulties too.

Premature convergences, failing in finding better solutions

for complex functions and asking for fine tuning of the

parameters are the common problems of PSO algorithm [8].

In this study, we use the most recently developed arti-

ficial bee colony (ABC) optimization algorithm [9] to solve

the reservoir optimization problem. ABC optimization

algorithm is another population-based swarm intelligence

and inspired by natural foraging behavior of honey bees.

The optimization results obtained from ABC algorithm

were compared with the results of GA and PSO techniques.

The detailed explanation of ABC optimization is given in

Sect. 3 of this paper. In searching for an optimal reservoir

release rules, whole inflow pattern was categorized into

three states on the basis of available historical data. For

each monthly inflow states, we developed release curves

with respect to different storage conditions.

2 GA and PSO algorithms in reservoir release

optimization

2.1 Genetic algorithm

Application of GA is not new in reservoir optimization field.

Both binary- and real-coded GA were already successfully

applied in many reservoir release problems, and the effi-

ciency of these models is comparatively very good with

previously used methods like dynamic programming [10]

and linear programming [11]. As GA is already well devel-

oped in this research field, we took the opportunity to skip the

basic description of the problem formulation, and besides,

we referred some previous excellent works for basic under-

standing and future developments [5, 10, 12, 13].

In this study, we have adopted the modified mating

technique in GA algorithm given by Haupt and Haupt [14].

For binary GA, a single mating point was selected by using

the following equation:

matingpoint ¼ roundððnbits� nvar�1Þ � ½r�Þ ð1Þ

In Eq. (1), nbits represents total number of bits, nvar

number of variables and [r] a row matrix of randomly

generated numbers between 0 and 1. After selecting the

mating point, the parent chromosomes were allowed to

interchange their genes (bits) in respect of this mating point

to produce new offsprings. In cases of real-coded GA, the

mating point was selected by using Eq. (2).

matingpoint ¼ roundðnvar� ½r�Þ ð2Þ

After selecting the mating point, new chromosomes

were created by interchanging the information between the

two chromosomes that are selected as parents. Binary

mutation was done easily by changing 0 to 1 and vice versa

by maintaining a mutation rate. The following

mathematical equations were used in the main algorithm

to perform mutation process for real-coded GA.

nmut ¼ ðpopsize� 1Þ � nvar� ratemut ð3Þ
rowmut ¼ sortðroundupð½r� � ðpopsize� 1ÞÞ þ 1Þ ð4Þ
columnmut ¼ roundupð½r� � nvarÞ ð5Þ

In Eqs. (3), (4) and (5), nmut represents total mutation

number, popsize population size, nvar variable number,

rowmut selected row number for the variable to be mutated,

Columnmut selected column number for the variable to be

mutated, and [r] a row matrix (dimension -1, discard/2)

consisting of random numbers between 0 and 1.

The application procedure followed in this study to

implement GA in finding the optimal release by maintaining

storage bounds and continuity constraints is given as:

1. Set the objective function

2. Generate an initial population with random values

within the allowable water release ranges

3. Compute the fitness value of the objective function

using population members

4. Search the minimum fitness values and the responsible

strings causing the lower fitness

5. Replace the weaker string (string posing greater fitness

values in minimizing the water deficit) by the string

stored in step 4

6. Create new population members by using the basic

operators of GA, that is, selection, crossover and

mutation

7. Update the old population with newest member of

step 6

8. Back to the step 3, until the iteration condition is

fulfilled.

2.2 Particle swarm optimization

PSO is also a population-based search technique where a

population of particles starts their journey in a space with

respect to the current best position. The basic algorithm
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comes up from the idea of the natural technique of bird

flocking and firstly proposed by Kennedy and Eberhart [6].

Kumar and Reddy [7] used an improved PSO and proved its

nobility in reservoir optimization field. In this technique, a

population starts to move toward a global optimum solution

by following the current best position. So, initially it sear-

ches for a local solution and after that it updates the particles

(in PSO literature, it is called adding velocity) and compares

the fitness with the previous one. Thus, the particles tend

toward the global optimum solution. The PSO algorithm is

controlled by the following two equations:

vtþ1
ij ¼ v½wvt

ij þ /1rt
1ðpt

ij � xt
ijÞ þ /2rt

2ðpt
gj � xt

ijÞ� ð6Þ

xtþ1
ij ¼ vtþ1

ij þ xt
ij ð7Þ

Here, Eq. (6) expressed the velocity updates and Eq. (7)

represents the position updates of the particles. If we have a

problem consisting of D variables, then j = 1, 2, 3,…, D;

and if the size of the swarm was considered as N, then

i = 1, 2,…, N. During the tth iteration, if a particle is

holding a position xt
ij with a local best position of pt

ijand yet

the global best position of pt
gj, then for the next iteration

(t ? 1), the velocity will update as vt þ 1
ij by using Eq. (1),

where v represents constriction coefficient, /1 and /2

acceleration coefficient, w inertial weight, and r1 and r1

random numbers in [0, 1].

To control the velocity, a maximum value was consid-

ered to be followed by the algorithm (as given in Equa-

tion 5.3). The value of the maximum velocity was taken as

the fraction of the differences between upper and lower

limits of the decision variables.

vmax ¼ ðRmax � RminÞ � r ð8Þ
vinitial ¼ vmax � ½r�ðpopsize;nvarÞ ð9Þ

The initial velocity was generated by using Eq. (9).

Here, R represents the release options and r represents a

fraction number between 0 and 1. Instead of adopting the

standard way for using the value of the weight (w) in

velocity updating process (Eq. 6), here an improved

technique was followed. Different values were assigned

to the inertial weight for updating the velocity for each step

of iteration. The following expressions will help describe

the procedures:

weightstep ¼ wmax � wmin

total iteration number
ð10Þ

wi ¼ wmax � ðweightstep� iÞ ð11Þ

Equation (10) represents the weight steps for each

iteration where wmax and wmin are the considered limits of

the weight. This weight step was used in any ith iteration to

calculate the actual inertial weight for that particular

iteration as given in Eq. (11).

The steps followed in this study in view of applying

PSO algorithm in searching optimum release are given

below:

1. Building up the objective function

2. Set the PSO parameters

3. Generate an initial population with random values

within the allowable water release ranges

4. Compute the fitness values of the objective function

(mentioned in step 1.) using population members

5. Generate random initial velocity with the same

dimension as population in step 3

6. Store the local best and global best among the

population

7. Update the particles to create new population by

using Eqs. (6) and (7)

8. Crop to upper and lower range to maintain the

allowable water release bounds

9. Compute the fitness values and compare with the

previous solutions

10. Back to the step 6, until the iteration condition is

fulfilled.

3 Artificial Bee Colony Optimization

3.1 Foraging behavior of honey bee

Based on the reaction–diffusion equations, Tereshko [15]

developed a model of honey bee colony. He observed two

dominating components of bee’s colony: recruitment and

abandonment of the located food sources. The main com-

ponents of his model consist of the following:

Food sources: A forager bee chooses a food source on

the basis of some quality like distance of it from the hive,

amount of food, and difficulties involved in getting the

food.

Employed foragers: Employed foragers are those bees

that are currently busy in exploiting a specific food source

and should carry the information about that source. After

returning to the hive, they share this information with other

bees.

Unemployed foragers: A forager was known as an

unemployed bee if it either never involved in collecting

nectar before or abandoned a food source. Unemployed

foragers normally wait in the hive to involve in the process

and it happened in two ways. They could be selected either

as ‘‘Scout Bees’’ to explore outside in search of previously

undiscovered food sources or as ‘‘Onlooker Bees’’ to wait

for the information of employed bee and to follow him to

the food source.

To share the information of the food source that was

carried by the employed bees, a physical movement
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technique is adopted known as ‘‘Waggle Dance.’’ The

intensity and the pattern of the dance pass the information

to the onlooker bees. The activities of the employed,

onlooker and scout bees are nicely described by Karaboga

and Akay [16]. All honey bees are identical in nature and

shape, so it is easy to replace one with another among

positions of these three categories. Let us examine Fig 1

for better understanding the foraging behavior of honey

bees. In Fig. 1, an employed bee follows the path E from

food source to hive. After storing the nectar, he has three

options to choose on the basis of the current situation of the

source: E1, to continue exploiting; E2, waggle dancing to

pass the information; and E3, to become an unemployed

bee after abandoning the food source. On the other hand,

onlooker bees were waiting in the hive and observing the

waggle dance (position O) to get recruited. After getting a

signal from an employed bee, he followed the path O1 and

reached the food source. Sometimes, it might be needed to

explore new food sources and then the scout foragers’

follow path S. With the combination of these three inter-

changing behaviors and sharing the knowledge of local

optima, bees show their intelligence in finding global

optima.

3.2 ABC algorithm in reservoir release optimization

The application of ABC algorithm is very new in reservoir

release optimization. Karaboga and Basturk [17] compared

ABC with other evolutionary methods in solving classical

benchmark functions. Hossain and El-Shafie [18] used

ABC in optimization release policy for a reservoir system.

In different optimization problems and application plat-

form, many studies suggested adopting ABC methodology

in both standards improved the form [19, 20]. In this

algorithm, the position of a food sources was considered as

the solution (here release options) for the optimization

problem and the fitness values of the corresponding solu-

tions represent the food source quality. So for the monthly

time period, a set of 12 numbers of release options together

represents a food source. As the number of employed and

onlooker bees is same, we can consider a set of N food

sources and thus create the initial population with N num-

bers of strings. The bees carry the information about the

food source quality (fitness values) and share the infor-

mation about them to others. The algorithm is actually run

with the performance of these three types of bees; here, the

word ‘‘types’’ means the bees characteristics according to

their working manners. And also they are identical and

interchangeable with each other. The individual working

principles are given as follows.

Function of employed bees: An employed bee goes to

the source and save the information about the food sources.

They can modify the position of a food source in their

memory keeping in mind the present quality of food

sources. A candidate solution that was randomly chosen

and modified can be expressed as:

vij ¼ xij þ /ijðxij � xikÞ ð12Þ

Here, xij represents the current candidate solution of

any randomly chosen source, and xik represents other

randomly chosen solution but must be taken from different

neighbor source. /ij is taken as a random number between

[-1 to 1].

Function of onlooker bees: The onlooker bees followed

the direction and information given by employed bees.

Each food sources have a probability of being selected by

the onlooker, and this probability is assigned on the basis of

the corresponding source quality. If the fitness value of ith

food source is f(xi), then with a total n = 1,2,…, N popu-

lation, the probability for the ith food source for being

selected can be determined by

pi ¼
f ðxiÞ

PN
n¼1 f ðxnÞ

ð13Þ

After selecting the food sources, onlookers again update

the candidate solution using Eq. (12). It is important to note

that the onlookers deal with the food sources that are

already filtered by the employed bees.

Function of scout bees: The position of the abandoned

food sources needs to be taken by new sources and scout

bees can provide such new sources. The new source was

also created in a random fashion within the variable

bounds.

The steps followed in this study to apply ABC algorithm

in search of optimal release of a reservoir are described as

1. Building up the objective function

2. Create a population of decision variables that repre-

sent the food sources

3. Calculate the fitness of each source and save the

minimum fitness and corresponding solutions

Begin Iteration

Introduce Employed Bees

Hive 

Dance 
Floor 

Food

Store 

Unemployed 

E 

E1 
E2 

E3 

Undiscovered 
Food Source 

S 

O

O1 

Fig. 1 Foraging behavior of honey bees
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4. Select a random candidate of any source and a

different random neighbor source

5. Modify the source using Eq. (12)

6. Compute the fitness of new solutions and compare

with the previous best result

7. Store the better sources and point out the abandoned

food sources

8. Perform the processes 4–7 for all sources

Introduce Onlooker Bees

9. Calculate the probability using Eq. (13) for each food

source provided by employed bees

10. Select the sources according to their probability of

selection

11. Improve the candidate solution using Eq. (12)

12. Compute the fitness of new solutions and compare

with the previous best result

13. Store the better sources and point out the abandoned

food sources

14. Perform the processes of 10 to 13 for all sources

Introduce Scout Bees

15. Find the positions of the abandoned food source

16. Replace the abandoned source with randomly created

source

17. Provide the population that is free from abandoned

sources for the next iteration

End Iteration

4 Case studies and model implementations

4.1 Klang gate dam (KGD)

The Klang gate dam was opened in 1958 and is located in

Taman Melawati, Malaysia. The main functions of the dam

are the water supply for the people of Klang area and to

protect them from the flood. The monthly inflow for the

dam was categorized into three states (high, medium and

low) from the analysis of 264 sequential monthly historical

inflow data and given in Table 1. Other constraints and

reservoir bounds (in MG) are given below:

• Storage constraint: The reservoir storage in a month

should not be less than the dead storage and should not

be more than the capacity of the reservoir,

1,648.67 B St B 6,194

• Release constraint: The release of water from the

reservoir to meet the water demand of the area has a

lower and upper bound, 868 B Rt B 1,379.50

For KGD, the authority assumed the loss that relates the

inflow amount for a particular month. This study followed

the following guideline provided by Puncak Niaga

(M) Sdn. Bhd, Malaysia, to compute the water losses. The

losses were computed and are given in Table 2.

4.2 Model formulation

A reservoir optimization model may deal with maximizing

benefits, minimization of operational cost, meeting various

(municipal and/or industrial) water demands or any com-

bination of these objectives. Here, the minimization of

water deficit was used as the main objective. The formu-

lation of the objective function and the constraint handling

methods are given below:

Objective function: The main objective considered in

this study is to minimize the squared deviation of monthly

release to water demand and can be expressed as Eq. (14).

min f ðxÞ ¼
X12

t¼1

Dt � xtð Þ2 ð14Þ

Here, Dt and xt are the downstream water demands and

release in any time period t, respectively.

Constraint handling: As the releases are considered as

the decision variables, the population with random values

Table 1 Monthly inflow and water demand (in MG) for KGD

Months Inflow Demand

High Medium Low

January 1,506.89 760.85 123.12 1,298.64

February 1,901.08 1,024.49 259.34 1,083.09

March 2,831.7 1,646.31 923.24 1,152.45

April 2,919.74 1,959.92 764.88 1,173

May 2,974.2 1,786.87 938.31 1,198.73

June 2,825.69 1,355.22 447.97 1,271.73

July 2,717.32 1,618.95 645.61 1,258.14

August 2,948.26 1,644.53 816.78 1,206.41

September 3,368.12 1,859.86 631.15 1,160.05

October 3,545.83 2,316.13 654.35 1,204.14

November 3,838.47 2,342.89 1,021.79 1,213.09

December 2,699.3 1,455.7 340.69 1,290.59

Source: Puncak Niaga (M) Sdn. Bhd., Malaysia

Table 2 Range of inflow and value of loss (in MG)

Inflow Loss

0 \ I B 500 740.199

500 \ I B 1,000 -11.405

1,000 \ I B 1,500 -472.402

1,500 \ I B 2,000 -643.010

2,000 \ I B 2,500 -758.122

2,500 \ I B 3,000 -1,327.168

I [ 3,000 -2,186.554

Source: Puncak Niaga (M) Sdn. Bhd., Malaysia
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for each technique was build by using the upper limit and

lower limit of the release as Eq. (15), where N is the

population size and the D is the total number of decision

variables.

½population�N;D ¼ releasemin þ ½rand�N;D � ðreleasemax

� releaseminÞ
ð15Þ

It is very important to maintain the continuity equation

for any hydrological modeling, and in this study, the

continuity equation is readily satisfied as the final storage

for any month is determined by using Eq. (16).

Sðtþ1Þ ¼ St þ It � Rt � Lossest ð16Þ

However, some of the final storages calculated here may

violate the storage bounds, and using the penalty function

approach, we recovered the problem. In penalty function

approach, a penalty term is introduced with the main

objective function, and for this minimization problem, the

variables that caused to violate the storage constraints are

eliminated through the optimization process. The penalty

terms used in this study are given below:

penalty1 ¼ 0 if St [ Smin

C1ðSmin � StÞ 2 if St \ Smin

�

and

penalty2 ¼ 0 if St \ Smax

C2ðSt � SmaxÞ 2 if St [ Smax

�

In the above-mentioned penalty terms, the penalty

coefficient C generally got a big numerical value to

maintain the elimination of constraint-violating solutions.

The entire working pattern is shown in Fig. 2.

4.3 Performance checking

In order to check the performance of all optimization tools

used here, a simulation is done based on historical monthly

inflow data. The general indices like reliability, vulnera-

bility, resilience and shortage index calculated with the

release were provided by ABC, PSO and GA optimization

models. The periodical reliability was calculated as a per-

centage of how many times the proposed water release is

able to meet the demand over the total time period. The

reliability of firm water (RFY) can be calculated by using

Eq. (17).

RFY ¼ 1� S

FY
ð17Þ

In the above equation, S represents the average annual

water deficit, and FY is the firm yield and can be taken as

the annual target demand. In this study, we have calculated

the average annual water deficit for a sequence of

T = 22 years of historical data using Eq. (18).

S ¼ 1

T

XT

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Deficitið Þ2
q

Demand
ð18Þ

Shortage index (SI) also can be used as a measure of

performance checking. The SI carries the information

about the periodical reliability as well as the magnitude of

deficit. Here, we used Eq. (19) to calculate the shortage

index.

SI ¼ 100

T

X annual deficit

annual demand

� �2

ð19Þ

Vulnerability is the measure of worst-case scenario that

can be experienced by a reservoir system. During the

simulation, the maximum deficit occurred in any period,

was taken as the vulnerability of the model and represented

as percentage of demand. In this study, we considered

another way to define vulnerability. Here, we calculated the

average annual inflow of available historical data, and for

the lowest annual inflow, we observed the model

performances. Resilience is the probability for a shortage

High Inflow 

Medium Inflow 

Low Inflow 

Initial Storage (1) 

Initial Storage (2) 

Initial Storage (10) 

GA (binary) 

GA (real) 

PSO 

ABC 

ResultCase study  
(KGD) 

Input Data 

Fig. 2 Working pattern in search of optimal reservoir release
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period to meet the demand for the next period release. In

order to compute the resiliency, Loucks and Beek [21] took

the ratio of the number of satisfied releases that follows an

unsatisfied value to the total number of unsatisfactory

occurred. According to this formula, simply the ratio of

maximum number of consecutive satisfied period occurred

by a model output to the total number of water shortage

period was calculated. So, mathematically, it can be

expressed as Eq. (20).

Resilience

¼ no: of period a satisfactory value follows an shortage

no: of total shortage period

ð20Þ

There is another simple way to define resiliency. The

maximum number of consecutive failure can be taken to

measure the ability of a model to get back in track after a

single failure. But in this way, the lower number of
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month of January
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consecutive failure is better in comparing the resiliency of

different release policy modeling.

5 Results and discussions

The best release options for all months with different initial

storages were determined by using four optimization

techniques. The primary objective was to produce a curve

that can show the optimum releases for a defined inflow

category. So here, we have twelve different release policies

for each inflow category. Figure 3a, b, c is such calibrated

curves for the month of January considering high (Fig. 3a),

medium (Fig. 3b) and low (Fig. 3c) inflow states. The aim

of these optimization models was to provide a release

policy that can minimize the water deficit as far as possible,

maintaining the release bounds for every month and safe

storage volume. So here, the storage condition was also

provided with the release options to get the clear picture of

the reservoir system.

To find the closest curve to a demand for a specific

inflow category, the root mean square error (RMSE)

approach is used (given as Eq. 21). In Eq. (11), i is denoted

as the indexes of 10 known values of the release curve

(i = 1, 2,…, 10). The RMSE for every month is given in

Table 3 for medium inflow (medium inflow is chosen

because no violation of storage constraint has occurred).

ABC optimization showed the lowest error in this case

study.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

meanððxi � DemandÞ2Þ
q

ð21Þ

The fitness through the all iteration processes is shown

in Fig. 4. From the figure, we can see that both the swarm

intelligence techniques, ABC and PSO, performed better

than the genetic algorithms for the same problem

configuration and formulation. Totally, 22 years (from

1887 to 2008) of historical actual inflow data were used for

checking the model efficiency and verification purpose.

The selection of the release curve among high, medium and

low category was done by observing the actual inflow

amount of a month. After the selection of the correct curve,

the amount of release can be determined for a specific

initial storage condition of the reservoir. The demand and

the releases from the simulation are shown in Fig. 5a, b, c,

d. For graphical convenience, here we only presented the

optimum release of the time period starting form January

1995 to December 2008.

In Fig. 5, for all cases, we can see some scarcity of

water, which occurred mainly for low inflow during that

time period. For example, on February 1996, the inflow

was only 221.3 MG, and so, the logical optimum release

must be below the demand of that month to keep the

Table 3 RMSE (in MG) of all techniques for medium-inflow

category

Months ABC PSO Real-coded

GA

Binary-

coded GA

January 95.56296 97.33242 102.1057 118.6042

February 57.15567 61.46059 67.15825 63.49003

March 70.64764 62.91275 63.66787 75.55802

April 46.90427 56.11568 58.46889 80.2556

May 62.35557 56.7529 40.65074 101.9642

June 51.76583 57.15068 68.57881 41.41234

July 65.16919 56.19315 66.07014 96.61208

August 53.9695 54.98207 55.84364 68.20662

September 0.001245 0.139859 8.186639 50.80872

October 7.99E-05 1.809941 20.48498 44.47532

November 1.31E-05 0.473721 17.7495 49.48262

December 0.001268 1.878905 16.49303 56.6085

Total 503.5332 507.2027 585.4582 847.4783

Mean 41.9611 42.267 48.79 70.623
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Fig. 4 Fitness values for

different optimization
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Fig. 5 Release and demand

analysis using historical inflow,

obtained from a ABC

optimization b PSO c Real-

coded GA and d Binary GA
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storage of reservoir in allowable range. The releases given

by the binary-coded GA are rarely meeting the actual

demands where ABC and PSO seem to lead among these

four methods in meeting the demand most of the time

period. Here, from Fig. 5a–d, we can see that the swarm

intelligences showed better performance than evolutionary

GA algorithms. In addition, Fig. 6 shows the performance

of swarm intelligences over real-coded GA. In this figure,

the release curve for the month of June is presented con-

sidering the medium inflow.

Figure 6 shows that the ABC release options are reached

and follow the demand line more quickly and closely than

GA releases. Also, during the dead storage, ABC release

curve shows the minimum deficit. To analyze the period-

ical reliability, a useful technique was applied. After using

actual historical inflow of 22 years, each model gives

monthly release policy, which linked 1 month to another.

So for analyzing 22 years, there is a chain of optimum

release options consisting of 264 values of release for 264

consecutive months (from January 1987 to December

2008). For example, from the very beginning, we used the

actual inflow and reservoir storage for the month of Janu-

ary 1987, and each model provides the optimum release

option for that particular month. With this optimum

release, we calculate the final storage and used this storage

value as initial storage for the next consecutive month (i.e.,

February 1987). Now, we can count for every year how

many times the releases are meeting the demands and how

many months they are not for all methods. The results for

these observations are given in Table 4. Among the total of

264 months, 162 times the optimum release options of

ABC optimization technique are able to meet the demand

which is 61.36 % of total number of release results. PSO

results meet the demands 157 times (59.47 %), real-coded

GA 147 times and binary GA only 62 times. Excess release

from demand also causes wastage of water and is not

preferable for any hydrological optimization models. In

this case, ABC optimization and PSO model provide

excess release for 32 times (12.12 %), which is less than

other two models. Table 5 shows the reliability, vulnera-

bility and other performance checking measures.

The average annual inflow for 22 years is shown in

Fig. 7. According to this figure, lowest average inflow

occurred in the year of 1992. So in this period of time,

water deficit is very usual and logical. Also, the maximum

consecutive period of failure (resilience) and the maximum

deficit (vulnerability) occurred in this time period. We

observed the performances of the release curves generated
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Fig. 6 Comparing GA and

ABC algorithms

Table 4 Periodical reliabilities: categorized in terms of meeting

demand

Optimization

techniques

More than

demand

Meet the

demand

Less than

demand

Total no. of

release

ABC

optimization

32 times 162 times 70 times 264

PSO 32 times 157 times 75 times 264

Real-coded

GA

38 times 147 times 79 times 264

Binary-coded

GA

75 times 62 times 127 times 264

Table 5 Performance checking measures

Measures ABC PSO GA(real

coded)

GA

(binary)

Wastage due to excess release

(% of total period)

12.12 12.12 14.4 28.4

Meeting demand (% of the

total time period)

61.36 59.47 55.68 23.5

Shortage index 0.68 0.67 0.67 0.73

Reliability of firm yield 0.95 0.95 0.95 0.95

Vulnerability (% of demand) 53 53 51 44

Resiliency (Eq. 20) 0.16 0.15 0.14 0.09

Resilience (months) 10 10 11 12
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by ABC, PSO and GA methods individually in this par-

ticular year. The deficit occurred due to the release options

given by these optimization methods, which are tabulated

in Table 6. In this critical period of lowest inflow, ABC

optimization and PSO algorithm were able to provide the

release options with the minimum water deficit.

After observing all the experimental results, a conclu-

sion can be made that the swarm intelligence performs

better in providing optimum releases for a reservoir system.

The application of ABC optimization technique is very

new in reservoir release policy and provides comparatively

better results than the well-established methods in this field

like PSO and GA. Some indices seem very near to each

other among the ABC and PSO, but the overall perfor-

mance of ABC is better than PSO in this study.

6 Conclusion

The verification of all the models was done using actual

historical inflow of 22 years. The release policy was

developed for different inflow states with a view of using in

practical reservoir system management. The decision

maker easily can have the optimum release for a month

with the help of release curves generated in this study.

ABC and PSO algorithms are very fast, and the results are

very close to each other in finding optimal solutions. The

simplicity of the ABC optimization technique is the main

attraction over PSO algorithm in finding release policy of a

reservoir. Less parameter handling, simple analysis of the

problem and, also very important, the practical applications

in a reservoir system suggest considering the ABC algo-

rithm in this research field.
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