
ORIGINAL ARTICLE

Stable iterative adaptive dynamic programming algorithm
with approximation errors for discrete-time nonlinear systems

Qinglai Wei • Derong Liu

Received: 19 March 2012 / Accepted: 1 February 2013 / Published online: 19 February 2013

� Springer-Verlag London 2013

Abstract In this paper, a novel iterative adaptive

dynamic programming (ADP) algorithm is developed to

solve infinite horizon optimal control problems for dis-

crete-time nonlinear systems. When the iterative control

law and iterative performance index function in each iter-

ation cannot be accurately obtained, it is shown that the

iterative controls can make the performance index function

converge to within a finite error bound of the optimal

performance index function. Stability properties are pre-

sented to show that the system can be stabilized under the

iterative control law which makes the present iterative

ADP algorithm feasible for implementation both on-line

and off-line. Neural networks are used to approximate

the iterative performance index function and compute the

iterative control policy, respectively, to implement the

iterative ADP algorithm. Finally, two simulation examples

are given to illustrate the performance of the present

method.

Keywords Adaptive dynamic programming �
Approximate dynamic programming � Adaptive critic

designs � Optimal control � Neural networks � Nonlinear

systems

1 Introduction

Adaptive dynamic programming (ADP), proposed by Wer-

bos [33, 34], is an effective adaptive learning control

approach to solve optimal control problems forward-in-time.

There are several synonyms used for ADP, including

‘‘adaptive critic designs’’ [3, 4, 21], ‘‘adaptive dynamic

programming’’ [20, 27], ‘‘approximate dynamic program-

ming’’ [5, 34, 35], ‘‘neural dynamic programming’’ [9],

’’neuro-dynamic programming’’ [7], and ‘‘reinforcement

learning’’ [22, 23]. In [21, 34, 35], ADP approaches were

classified into several main schemes, which are heuristic

dynamic programming (HDP), action-dependent HDP

(ADHDP), also known as Q-learning [28], dual heuristic

dynamic programming (DHP), action-dependent DHP

(ADDHP), globalized DHP (GDHP), and ADGDHP. In

recent years, iterative methods are also used in ADP to obtain

the solution of Hamilton–Jacobi–Bellman (HJB) equation

indirectly and have received lots of attention [1, 2, 10, 11, 12,

17, 20, 25, 27, 32, 35]. There are two main iterative ADP

algorithms which are based on policy iteration and value

iteration [14]. Policy iteration algorithms for optimal control

of continuous-time systems with continuous state and action

spaces were given in [1]. In 2011, Wang et al. [26] studied

finite-horizon optimal control problems of discrete-time

nonlinear systems with unspecified terminal time using pol-

icy iteration algorithms. Value iteration algorithms for opti-

mal control of discrete-time nonlinear systems were given in

[6]. In [5], a value iteration algorithm, which was referred to

as greedy HDP iteration algorithm, was proposed for finding

the optimal control law. The convergence property of the

algorithm is also proved [5]. In [29], an iterative h-ADP

algorithm was established that permits the ADP algorithm to

be implemented both on-line and off-line without the initial

admissible control sequence.
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Although iterative ADP algorithms attract a lot of

attentions [3, 16, 19, 24, 37, 40, 41], for nearly all of the

iterative algorithms, the iterative control of each iteration is

required to be accurately obtained. These iterative ADP

algorithms can be called ‘‘accurate iterative ADP algo-

rithms’’. For most real-world control systems, however,

accurate control laws in the iterative ADP algorithms can

hardly be obtained, no matter what kind of fuzzy and

neural network structures are used [18, 31, 36, 38, 39]. In

other words, we can say that the approximation errors are

inherent in all real control systems. Hence, it is necessary

to discuss the ADP optimal control scheme with approxi-

mation error. Unfortunately, discussions on the ADP

algorithms with approximation error are very scarce. To

the best of our knowledge, only in [30], the convergence

property of the algorithm was proposed while the stability

of the system cannot be guaranteed, which means the

algorithm can only be implemented off-line. To overcome

this difficulty, new methods must be developed. This

motivates our research.

In this paper, inspired by [29, 30], a new stable iterative

ADP algorithm based on iterative h-ADP algorithm is

established for discrete-time nonlinear systems. The theo-

retical contribution of this paper is that when the iterative

control law and iterative performance index function in

each iteration cannot be accurately obtained, using the

present iterative ADP algorithm, it is proved that the per-

formance index function will converge to a finite neigh-

borhood of the optimal performance index function and the

iterative control law can stabilize the system. First, it will

show that the properties of the iterative ADP algorithms

without approximation errors may be invalid after intro-

ducing the approximate errors. Second, we will show that

the stability property of the algorithm in [30] cannot be

guaranteed, when approximation errors exist. Third, the

convergence properties of the iterative ADP algorithm with

approximation errors are presented to guarantee that the

iterative performance index function is convergent to a

finite neighborhood of the optimal one. Next, it will show

that the nonlinear system can be stabilized under the iter-

ative control law which makes the developed iterative ADP

algorithm feasible for implementations both on-line and

off-line.

This paper is organized as follows. In Sect. 2, the

problem statement is presented. In Sect. 3, the stable iter-

ative ADP algorithm is derived. The convergence and

stability properties are also analyzed in this section. In

Sect. 4, the neural network implementation for the optimal

control scheme is discussed. In Sect. 5, two simulation

examples are given to demonstrate the effectiveness of the

present algorithm. Finally, in Sect. 6, the conclusion is

drawn.

2 Problem statement

In this paper, we will study the following discrete-time

nonlinear systems

xkþ1 ¼ Fðxk; ukÞ; k ¼ 0; 1; 2; . . .; ð1Þ

where xk 2 R
n is the n-dimensional state vector, and

uk 2 R
m is the m-dimensional control vector. Let x0 be the

initial state.

Let uk ¼ ðuk; ukþ1; . . .Þ be an arbitrary sequence of

controls from k to 1: The performance index function for

state x0 under the control sequence u0 ¼ ðu0; u1; . . .Þ is

defined as

Jðx0; u0Þ ¼
X1

k¼0

Uðxk; ukÞ; ð2Þ

where U(xk,uk) [ 0, for V xk, uk = 0, is the utility function.

In this paper, the results are based on the following

assumptions.

Assumption 1 The system (1) is controllable and the

function F(xk, uk) is Lipschitz continuous for V xk, uk.

Assumption 2 The system state xk = 0 is an equilibrium

state of system (1) under the control uk = 0, i.e., F(0,0) = 0.

Assumption 3 The feedback control uk = u(xk) is Lips-

chitz continuous function for V xk and satisfies uk = u(xk)

= 0 for xk = 0.

Assumption 4 The utility function U(xk, uk) is a contin-

uous positive definite function of xk, uk.

Define the set of control sequences as Uk ¼
�

uk: uk ¼
ðuk; ukþ1; . . .Þ; 8ukþi 2 R

m; i ¼ 0; 1; . . .
�
: Then, for an

arbitrary control sequence uk 2 Uk, the optimal perfor-

mance index function can be defined as

J�ðxkÞ ¼ inf Jðxk; ukÞ: uk 2 Ukf g:

According to Bellman’s principle of optimality, J*(xk)

satisfies the discrete-time HJB equation

J�ðxkÞ ¼ inf
uk2Rm

Uðxk; ukÞ þ J�ðFðxk; ukÞÞf g: ð3Þ

Then, the law of optimal single control vector can be

expressed as

u�ðxkÞ ¼ arg min
uk2Rm

Uðxk; ukÞ þ J�ðFðxk; ukÞÞf g:

Hence, the HJB Eq. (3) can be written as

J�ðxkÞ ¼ Uðxk; u
�ðxkÞÞ þ J�ðFðxk; u

�ðxkÞÞÞ: ð4Þ

Generally, J*(xk) is impossible to obtain by solving the

HJB Eq. (4) directly. In [29], an iterative h-ADP algorithm

was proposed to solve the performance index function and
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control law iteratively. The iterative h-ADP algorithm can

be expressed as in the following equations:

viðxkÞ ¼ arg min
uk2Rm

Uðxk; ukÞ þ Viðxkþ1Þf g ð5Þ

and

Viþ1ðxkÞ ¼ min
uk2Rm

Uðxk; ukÞ þ Viðxkþ1Þf g

¼Uðxk; viðxkÞÞ þ ViðFðxk; viðxkÞÞÞ
ð6Þ

where V0ðxkÞ ¼ hWðxkÞ;WðxkÞ 2 �Wxk
, is the initial perfor-

mance index function, and h[ 0 is a large finite positive

constant. The set of positive definite functions �Wxk
is

defined as follows.

Definition 1 Let

�Wxk
¼ WðxkÞ: WðxkÞ[ 0 is positive definite;f

and 9mðxkÞ 2 R
m;WðFðxk; mðxkÞÞÞ\WðxkÞg

be the set of initial positive definition functions.

In [29], it is proved that the iterative performance index

function Vi(xk) converges to J*(xk), as i!1: It also shows

that the iterative control law vi(xk) is a stable control law

for i ¼ 0; 1; . . .: For the iterative h-ADP algorithm, the

accurate iterative control law and accurate iterative per-

formance index function must be obtained to guarantee the

convergence of the iterative performance index function.

To obtain the accurate control law, it also requires that the

control space must be continuous with no constraints. In

real-world implementations, however, for 8i ¼ 0; 1; . . ., the

accurate iterative control law vi(xk) and the iterative per-

formance index function Vi(xk) are both generally impos-

sible to obtain. For this situation, the iterative control law

cannot guarantee the iterative performance index function

to converge to the optimum. Furthermore, the stability

property of the system cannot be proved under the iterative

control law. These properties will be shown in the next

section. To overcome this difficulty, a new ADP algorithm

and analysis method must be developed.

3 Properties of the approximation error-based iterative

ADP algorithm

In this section, based on the iterative h-ADP algorithm, a

new stable iterative ADP algorithm with approximation

error is developed to obtain the nearly optimal controller

for nonlinear systems (1). The goal of the present ADP

algorithm is to construct an iterative controller, which

moves an arbitrary initial state x0 to the equilibrium, and

simultaneously makes the iterative performance index

function reach a finite neighborhood of the optimal per-

formance index function. Convergence proofs will be

presented to guarantee that the iterative performance index

functions converge to the finite neighborhood of the opti-

mal one. Stability proofs will be given to show the iterative

controls stabilize the nonlinear system (1) which makes

the algorithm feasible for implementation both on-line and

off-line.

3.1 Derivation of the stable iterative ADP algorithm

with approximation error

In the present iterative ADP algorithm, the performance

index function and control law are updated by iterations,

with the iteration index i increasing from 0 to infinity. For

8xk 2 R
n; let the initial function WðxkÞ be an arbitrary

function that satisfies WðxkÞ 2 �Wxk
where �Wxk

is expressed

in Definition 1. For 8xk 2 R
n; let the initial performance

index function V̂0ðxkÞ ¼ hWðxkÞ, where h[ 0 is a large

finite positive constant. The iterative control law v̂0ðxkÞ can

be computed as follows:

v̂0ðxkÞ ¼ arg min
uk2Rm

Uðxk; ukÞ þ V̂0ðxkþ1Þ
� �

þ q0ðxkÞ ð7Þ

where V̂0ðxkþ1Þ ¼ hWðxkþ1Þ; and the performance index

function can be updated as

V̂1ðxkÞ ¼ Uðxk; v̂0ðxkÞÞ þ V̂0ðFðxk; v̂0ðxkÞÞÞ þ p0ðxkÞ; ð8Þ

where q0(xk) and p0(xk) are approximation error functions

of the iterative control and iterative performance index

function, respectively.

For i ¼ 1; 2; . . ., the iterative ADP algorithm will iterate

between

v̂iðxkÞ ¼ arg min
uk2Rm

Uðxk; ukÞ þ V̂iðxkþ1Þ
� �

þ qiðxkÞ ð9Þ

and performance index function

V̂iþ1ðxkÞ ¼ Uðxk; v̂iðxkÞÞ þ V̂iðFðxk; v̂iðxkÞÞÞ þ piðxkÞ;
ð10Þ

where qi(xk) and pi(xk) are finite approximation error

functions of the iterative control and iterative performance

index function, respectively.

Remark 1 From the iterative ADP algorithm (7)–(10), we

can see that for i ¼ 0; 1; . . ., the iterative performance index

function Vi(xk) and iterative control law vi(xk) in (5)–(6) are

replaced by V̂iðxkÞ and v̂iðxkÞ; respectively. As there exist

approximation errors, generally, we have for 8i� 0; v̂iðxkÞ
6¼ viðxkÞ and the iterative performance index function

V̂iþ1ðxkÞ 6¼ Viþ1ðxkÞ: This means there exists an error

between V̂iþ1ðxkÞ and Vi?1 (xk). It should be pointed out that

the iterative approximation is not a constant. The fact is that

as the iteration index i!1, the boundary of iterative

approximation errors will also increase to infinity, although
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in the single iteration, the approximation error is finite. The

following theorem will show this property.

Lemma 1 Let xk 2 R
n be an arbitrary controllable state

and Assumptions 1–4 hold. For i ¼ 1; 2; . . .; define a new

iterative performance index function as

CiðxkÞ ¼ min
uk2Rm

fUðxk; ukÞ þ V̂i�1ðxkþ1Þg ð11Þ

where V̂iðxkÞ is defined in (10). If the initial iterative

performance index function V̂0ðxkÞ ¼ C0ðxkÞ ¼ hWðxkÞ
and i ¼ 1; 2; . . .; and there exists a finite constant � that

makes

V̂iðxkÞ � CiðxkÞ� � ð12Þ

hold uniformly, then we have

V̂iðxkÞ � ViðxkÞ� i� ð13Þ

where � is called uniform approximation error (approxi-

mation error in brief).

Proof The theorem can be proved by mathematical

induction. First, let i = 1. We have

C1ðxkÞ ¼ min
uk2Rm

fUðxk; ukÞ þ V̂0ðxkþ1Þg

¼ min
uk2Rm

fUðxk; ukÞ þ V0ðFðxk; ukÞÞg

¼ V1ðxkÞ:

Then, according to (12), we can get

V̂1ðxkÞ � V1ðxkÞ� �:

Assume that (13) holds for i ¼ l� 1; l ¼ 2; 3; . . .: Then,

for i = l, we have

ClðxkÞ ¼ min
uk2Rm

fUðxk; ukÞ þ V̂ l�1ðxkþ1Þg

� min
uk2Rm

fUðxk; ukÞ þ Vl�1ðxkþ1Þ þ ðl� 1Þ�g

¼VlðxkÞ þ ðl� 1Þ�:

Then, according to (12), we can get (13).

Remark 2 From Lemma 1, we can see that for the itera-

tive h-ADP algorithm (7)–(10), the error bound between

Vi(xk) and V̂iðxkÞ is increasing as i increases. This means

that although the approximation error for each single step is

finite and maybe small, as the iteration index i!1
increases, the approximation error between V̂iðxkÞ and

Vi(xk) may also increase to infinity. Hence, we can say that

the original iterative h-ADP algorithm may be invalid with

the approximation error.

To overcome these difficulties, we must discuss the

convergence and stability properties of the iterative ADP

algorithm with finite approximation error.

3.2 Properties of the stable iterative ADP algorithm

with finite approximation error

For convenience of analysis, we transform the expressions

of the approximation error as follows. According to the

definitions of V̂iðxkÞ and CiðxkÞ in (10) and (11), we have

CiðxkÞ� V̂iðxkÞ: Then, for 8i ¼ 0; 1; . . .; there exists a

r C 1 that makes

CiðxkÞ� V̂iðxkÞ� rCiðxkÞ ð14Þ

hold uniformly. Hence, we can give the following theorem.

Theorem 1 Let xk 2 R
n be an arbitrary controllable

state and Assumptions 1–4 hold. For 8i ¼ 0; 1; . . . , let

CiðxkÞ be expressed as (11) and V̂iðxkÞ be expressed as

(10). Let c\1 and 1� d\1 be constants that make

J�ðFðxk; ukÞÞ� cUðxk; ukÞ

and

J�ðxkÞ�V0ðxkÞ� dJ�ðxkÞ ð15Þ

hold uniformly. If there exists a r, i.e., 1� r\1, that

makes (14) hold uniformly, then we have

J�ðxkÞ� V̂iðxkÞ

� r 1þ
Xi

j¼1

cjrj�1ðr� 1Þ
ðcþ 1Þj

þ ciriðd� 1Þ
ðcþ 1Þi

 !

� J�ðxkÞ

ð16Þ

where we define
Pi

j ð�Þ ¼ 0 for V j [ i.

Proof The theorem can be proved by mathematical

induction. First, let i = 0. Then, (16) becomes

J�ðxkÞ� V̂0ðxkÞ� rdJ�ðxkÞ: ð17Þ

As J*(xk) B V0(xk) B dJ*(xk) and V̂0ðxkÞ¼V0ðxkÞ¼ hWðxkÞ,
we can obtain (17). Then, the conclusion holds for i = 0.

Assume that (16) holds for i = l - 1, l ¼ 1; 2; . . .: Then

for i = l, we have

ClðxkÞ� min
uk2Rm

( 
1þc

Xl�1

j¼1

cj�1rj�1ðr�1Þ
ðcþ1Þj

þcl�1rl�1ðrd�1Þ
ðcþ1Þl

!
Uðxk;ukÞ

þ
"
r

 
1þ
Xl

j¼1

cjrj�1ðr�1Þ
ðcþ1Þj

þclrlðd�1Þ
ðcþ1Þl

!

�
 
Xl�1

j¼1

cj�1rj�1ðr�1Þ
ðcþ1Þj

þ cl�1rl�1ðrd�1Þ
ðcþ1Þl

!#

�J�ðFðxk;ukÞÞ
)

¼ 1þ
Xl

j¼1

cjrj�1ðr�1Þ
ðcþ1Þj

þclrlðd�1Þ
ðcþ1Þl

 !
J�ðxkÞ:

ð18Þ
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Then, according to (14), we can obtain (16) which proves

the conclusion for 8i ¼ 0; 1; . . ..

Lemma 2 Let xk 2 R
n be an arbitrary controllable state

and Assumptions 1–4 hold. Suppose Theorem 1 holds for

8xk 2 R
n. If for c\1 and r C 1, the inequality

r\
cþ 1

c
ð19Þ

holds, and then as i!1, the iterative performance index

function V̂iðxkÞ in the iterative ADP algorithm (7)–(10) is

convergent to a finite neighborhood of the optimal

performance index function J*(xk), i.e.,

lim
i!1

V̂iðxkÞ ¼ V̂1ðxkÞ� r 1þ cðr� 1Þ
1� cðr� 1Þ

� �
J�ðxkÞ:

ð20Þ

Proof According to (18) in Theorem 1, we can see that

for j ¼ 1; 2; . . .; the sequence
cjrj�1ðr�1Þ
ðcþ1Þj

n o
is a geometrical

series. Then, (18) can be written as

CiðxkÞ�
"

1þ

cðr�1Þ
cþ1

1� cr
cþ1

� �i
� �

1� cr
cþ1

þ ciri d� 1ð Þ
cþ 1ð Þi

#
J�ðxkÞ:

ð21Þ

As i!1; if 1� r\ cþ1
c , then (21) becomes

lim
i!1

CiðxkÞ ¼ C1ðxkÞ� 1þ cðr� 1Þ
1� cðr� 1Þ

� �
J�ðxkÞ: ð22Þ

According to (14), let i!1; and then we have

V̂1ðxkÞ� rC1ðxkÞ: ð23Þ

According to (22) and (23), we can obtain (20).

Remark 3 We can see that if the approximation error r

satisfies r\ cþ1
c , then the performance index function is

convergent to the finite neighborhood of the optimal per-

formance index function J*(xk). However, the stability of

the system under v̂iðxkÞ cannot be guaranteed. The fol-

lowing theorem will show this property.

Theorem 2 Let xk 2 R
n be an arbitrary controllable

state and Assumptions 1–4 hold. Let vi be defined as

vi ¼ r 1þ
Xi

j¼1

cjrj�1ðr� 1Þ
ðcþ 1Þj

þ ciriðd� 1Þ
ðcþ 1Þi

 !
: ð24Þ

Let the difference of the iterative performance index

function be expressed as

DV̂iþ1ðxkÞ ¼ V̂iþ1ðxkþ1Þ � V̂iþ1ðxkÞ: ð25Þ

If Theorem 1 and Lemma 2 hold for 8xk 2 R
n; then we

have DV̂iþ1ðxkÞ satisfies

� 1

vi

Uðxk; v̂iðxkÞÞ �
ðvi � 1Þviþ1

vi

J�ðxkÞ

�DV̂ iþ1ðxkÞ
� � Uðxk; v̂iðxkÞÞ þ ðviþ1 � 1ÞJ�ðFðxk; v̂iðxkÞÞÞ: ð26Þ

Proof According to Theorem 1, we have the inequality

(16) holds for 8i ¼ 0; 1; . . .: Taking (16) to (10), we can get

V̂iþ1ðxkÞ�Uðxk; v̂iðxkÞÞ þ viJ
�ðxkþ1Þ

�Uðxk; v̂iðxkÞÞ þ viV̂iþ1ðxkþ1Þ:

Then, we have

viðV̂ iþ1ðxkþ1Þ � V̂ iþ1ðxkÞÞ� � Uðxk; v̂iðxkÞÞ
� ðvi � 1ÞV̂ iþ1ðxkÞ

� � Uðxk; v̂iðxkÞÞ
� ðvi � 1Þviþ1J�ðxkÞ: ð27Þ

Putting (25) into (27), we can obtain the left hand side of

the inequality (26).

On the other hand, according to (10), we can also obtain

viþ1J�ðxkÞ� V̂iþ1ðxkÞ�Uðxk; v̂iðxkÞÞ þ J�ðxkþ1Þ:

Then, we can get

V̂ iþ1ðxkþ1Þ � V̂ iþ1ðxkÞ� viþ1J�ðxkþ1Þ � Uðxk; v̂iðxkÞÞ
� J�ðxkþ1Þ
¼ � Uðxk; v̂iðxkÞÞ
þ ðviþ1 � 1ÞJ�ðxkþ1Þ:

ð28Þ

Putting (25) to (28), we can obtain the right hand side of

the inequality (26).

According to Lemma 2, we have for 8i ¼ 0; 1; . . .; vi is

finite. Furthermore, according to the definitions of r and d
in (14) and (15), respectively, we know r[ 1 and d[ 1.

Then, we have vi [ 1 for Vi = 0, 1,…. Hence, the

inequality (26) is well defined for Vi = 0, 1,…. The proof

is completed.

From Theorem 2, we can see that for Vi = 1,2,

…, DV̂iðxkÞ in (25) is not necessarily negative definite. So,

the function V̂iðxkÞ is not sure to be a Lyapunov function

and the system (1) may not be stable under the iterative

control law v̂iðxkÞ. This means that the iterative h-ADP

algorithm (7)–(10) cannot be implemented on-line. To

overcome this difficulty, in the following, we will establish

new convergence criteria. It will be shown that if the new

convergence conditions are satisfied, the stability of the
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system can be guaranteed, which makes the algorithm

implementable both on-line and off-line.

Theorem 3 Let xk 2 R
n be an arbitrary controllable

state and Assumptions 1–4 hold. Suppose Theorem 1 holds

for 8xk 2 R
n. If

r� 1þ d� 1

cd
; ð29Þ

then the iterative performance index function V̂iðxkÞ con-

verges to a finite neighborhood of J*(xk), as i!1:

Proof For i ¼ 0; 1; . . ., let

�ViðxkÞ ¼ viJ
�ðxkÞ: ð30Þ

be the least upper bound of the iterative performance index

function V̂iðxkÞ, where vi is defined in (24). From (24), we

can get

viþ1 � vi ¼
ciþ1riðr� 1Þ

cþ 1ð Þiþ1
þ ciþ1riþ1ðd� 1Þ

cþ 1ð Þiþ1

� ciriðd� 1Þ
cþ 1ð Þi

:

Let vi?1 - vi B 0, and then we can obtain (29). On the

other hand, we can see that

cþ 1

c
¼ 1þ 1

c
[ 1þ

1� 1
d

c
¼ 1þ d� 1

cd
:

Hence, for r� 1þ d�1
cd , according to Theorem 1, the least

upper bound of the iterative performance index function
�ViðxkÞ for the iterative ADP algorithm converges to a finite

neighborhood of J*(xk), as i!1: As �ViðxkÞ is the least

upper bound of the iterative performance index function,

we have V̂iðxkÞ, which satisfies J�ðxkÞ� V̂iðxkÞ� �ViðxkÞand

also converges to a finite neighborhood of J*(xk), as

i!1.

Theorem 4 Let xk 2 R
n be an arbitrary controllable

state and Assumptions 1–4 hold. For i ¼ 0; 1; . . .; the

iterative performance index function V̂iðxkÞ and the itera-

tive control law v̂iðxkÞ are obtained by (7)–(10) , respec-

tively. If Theorem 1 holds for V xk and r satisfies (29), then

we have for 8i ¼ 0; 1; . . ., the iterative control law v̂iðxkÞ is

an asymptotically stable control law for system (1).

Proof The theorem can be proved by three steps.

(1) Show that for 8i ¼ 0; 1; . . .; V̂iðxkÞ is a positive def-

inite function.

According to the iterative h-ADP algorithm (7)–(10), for

i = 0, we have

V̂0ðxkÞ ¼ V0ðxkÞ ¼ hWðxkÞ:

As Wð0Þ ¼ 0; we have that V̂0ðxkÞ ¼ 0 at xk = 0.

According to Assumption 4 of this paper, we have that

V̂0ðxkÞ is a positive definite function.

Assume that for i, the iterative performance index

function V̂iðxkÞ is a positive definite function. Then, for

i ? 1, we have (10) holds. As U(0,0) = 0, then we have

that V̂iþ1ðxkÞ and v̂iðxkÞ can be defined at xk = 0.

According to Assumptions 1–4, we can get

V̂iþ1ð0Þ ¼ Uð0; v̂ið0ÞÞ þ V̂iðFð0; v̂ið0ÞÞÞ ¼ 0

for xk = 0. As V̂iðxkÞ is a positive definite function, we

have V̂ið0Þ ¼ 0. Then, we have V̂iþ1ð0Þ ¼ 0. If xk = 0,

according to Assumption 4, we have V̂iþ1ðxkÞ[ 0. On the

other hand, we let xk !1. As U(xk, uk) is a positive

function for V xk, uk, we have V̂iþ1ðxkÞ ! 1. So, V̂iþ1ðxkÞ
is a positive definite function. The mathematical induction

is completed.

(2) Show that v̂iðxkÞ is an asymptotically stable control

law if V̂iþ1ðxkÞ reaches its least upper bound.

Let �ViðxkÞ be defined as in (30). As r� 1þ d�1
cd , according

to Theorem 3, we have �Viþ1ðxkÞ� �ViðxkÞ. Then, we can get

�ViðxkÞ� �Viþ1ðxkÞ ¼ Uðxk;�viðxkÞÞ þ �Viðxkþ1Þ

where

�viðxkÞ ¼ arg min
uk2Rm

Uðxk; ukÞ þ �Viðxkþ1Þf g þ �qiðxkÞ:

So, we have �Viðxkþ1Þ � �ViðxkÞ� � Uðxk;�viðxkÞÞ� 0.

Hence, �ViðxkÞ is a Lyapunov function and �viðxkÞ is an

asymptotically stable control law for 8i ¼ 0; 1; . . .:
3. Show that v̂iðxkÞ is an asymptotically stable control law

when V̂iþ1ðxkÞ does not reach its least upper bound.

As �ViðxkÞ is a Lyapunov function, there exist two

functions aðkxkkÞ and bðkxkkÞ belong to class K which

satisfy aðkxkkÞ� �ViðxkÞ� bðkxkkÞ (details can be seen in

[15]). For 8e [ 0; there exists dðeÞ[ 0 that makes

bðdÞ� aðeÞ. So for Vk0 and xðk0Þk k\dðeÞ, there exists a

k 2 ½k0;1Þ that satisfies

aðeÞ� bðdÞ� �Viðxk0
Þ� �ViðxkÞ� aðkxkkÞ: ð31Þ

As �ViðxkÞ is the least upper bound of V̂iðxkÞ for 8i ¼
0; 1; . . .; we have

V̂iðxkÞ� �ViðxkÞ: ð32Þ

For the Lyapunov function �ViðxkÞ, if we let k!1; then
�ViðxkÞ ! 0. So, according to (32), there exists a time

instant k1 that satisfies k0 \ k1 \ k and makes

�Viðxk0
Þ� �Viðxk1

Þ� V̂iðxk0
Þ� �ViðxkÞ
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hold. Choose e1 [ 0 that satisfies V̂iðxk0
Þ� aðe1Þ� �ViðxkÞ.

Then, there exists �d1ðe1Þ[ 0 that makes aðe1Þ� bðd1Þ�
�ViðxkÞ hold. Then, we can obtain

V̂iðxk0
Þ� aðe1Þ� bðd1Þ� �ViðxkÞ� V̂iðxkÞ� aðkxkkÞ:

According to (31), we have

aðeÞ� bðdÞ� V̂iðxk0
Þ� aðe1Þ� bðd1Þ� V̂iðxkÞ

� aðkxkkÞ:

Since að xkk kÞ belongs to class K, we can obtain xkk k� e.
Therefore, we can conclude that v̂iðxkÞ is an asymptotically

stable control law for all V̂iðxkÞ.

Remark 4 According to the analysis of this subsection,

we can see that the iterative performance index function

V̂iðxkÞ of the iterative ADP algorithm (7)–(10) possesses

different convergence properties for different r.

First, if r = 1, then we say the iterative performance

index function Vi(xk) and the iterative control law vi(xk) can

be accurately obtained. The stable iterative ADP algorithm

(7)–(10) is reduced to the regular iterative h-ADP algo-

rithm (5)–(6). It has been proved in [29] that the iterative

ADP algorithm V̂iðxkÞ is nonincreasing convergent to J*(xk)

and the iterative ADP algorithm can be implemented both

on-line and off-line.

Second, if r satisfies (29), then the iterative performance

index function Vi(xk) and the iterative control law vi(xk)

cannot be accurately obtained. In this situation, the iterative

performance index function V̂iðxkÞ will converge to a finite

neighborhood of J*(xk). In the iteration process, the itera-

tive control law v̂iðxkÞ is still stable which means the stable

iterative ADP algorithm can also be implemented both on-

line and off-line.

Third, when r satisfies (19), the iterative performance

index function V̂iðxkÞ can also converge to a finite neigh-

borhood of J*(xk). But in the iteration process, the stability

property of iterative control law v̂iðxkÞ cannot be guaran-

teed, which means the iterative ADP algorithm can only be

implemented off-line.

Finally, when r does not satisfies (19), the convergence

property of Vi(xk) cannot be guaranteed.

4 Implementation of the stable iterative ADP algorithm

by neural networks

In this section, BP neural networks are introduced to

approximate V̂iðxkÞ and compute the control law vi(xk).

Assume that the number of hidden layer neurons is denoted

by l, the weight matrix between the input layer and hidden

layer is denoted by Y, and the weight matrix between the

hidden layer and output layer is denoted by W, and then the

output of the three-layer neural network is represented by:

F̂ðX; Y ;WÞ ¼ WTrðYT XÞ

where rðYT XÞ 2 Rl; ½rðzÞ�i ¼ ezi�e�zi

eziþe�zi
; i ¼ 1; . . .; l, are the

activation function.

There are two networks, which are critic network and

action network, respectively, to implement the stable iter-

ative ADP algorithm. The whole structure diagram is

shown in Fig. 1.

4.1 The critic network

The critic network is used to approximate the performance

index function Vi (xk). The output of the critic network is

denoted as

V̂iðxkÞ ¼ WT
cirðYT

cixkÞ: ð33Þ

The target function can be written as

Viþ1ðxkÞ ¼ Uðxk; v̂iðxkÞÞ þ V̂iðxkþ1Þ: ð34Þ

Then, we define the error function for the critic network as

eciðkÞ ¼ V̂iþ1ðxkÞ � Viþ1ðxkÞ: ð35Þ

The objective function to be minimized in the critic

network training is

EciðkÞ ¼
1

2
e2

ciðkÞ: ð36Þ

So, the gradient-based weight update rule [22] for the critic

network is given by

wcðiþ1ÞðkÞ ¼ wciðkÞ þ DwciðkÞ;

¼ wciðkÞ � ac

oEciðkÞ
owciðkÞ

� 	
;

¼ wciðkÞ � ac

oEciðkÞ
oV̂iðxkÞ

oV̂iðxkÞ
owciðkÞ

;

ð37Þ

where ac [ 0 is the learning rate of critic network, and

wc(k) is the weight vector in the critic network which can

be replaced by Wci and Yci. If we define

Fig. 1 The structure diagram of the algorithm
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qlðkÞ ¼
XLc

j¼1

Y
lj
ciðkÞxjk; l ¼ 1; 2; . . .; Lc

and

plðkÞ ¼
eqlðkÞ � e�qlðkÞ

eqlðkÞ þ e�qlðkÞ
; l ¼ 1; 2; . . .; Lc;

then we have

V̂ iþ1ðxkÞ ¼
XLc

l¼1

Wl
ciðkÞplðkÞ;

where Lc is the total number of hidden nodes in the critic

network. By applying the chain rule, the adaptation of the

critic network is summarized as follows.

The hidden to output layer of the critic is updated as

DWl
ciðkÞ ¼ �ac

oEciðkÞ
oV̂ iþ1ðxkÞ

oV̂ iþ1ðxkÞ
oWl

ciðkÞ
¼ �aceciðkÞplðkÞ:

The input to hidden layer of the critic is updated as

DYl
ciðkÞ ¼ � ac

oEciðkÞ
oV̂ iþ1ðxkÞ

oV̂ iþ1ðxkÞ
oYl

ciðkÞ

¼ � ac

oEciðkÞ
oV̂ iþ1ðxkÞ

oV̂ iþ1ðxkÞ
oplðkÞ

oplðkÞ
oqlðkÞ

oqlðkÞ
oYl

ciðkÞ

¼ � aceciðkÞWl
ciðkÞ

1

2
1� p2

l ðkÞ

 �� 	

xlk:

4.2 The action network

In the action network, the state error xk is used as input to

create the optimal control law as the output of the network.

The output can be formulated as

v̂iðxkÞ ¼ WT
airðYT

aixkÞ:

The target of the output of the action network is given by

(5). So, we can define the output error of the action network as

eaiðkÞ ¼ v̂iðxkÞ � viðxkÞ:

The weights in the action network are updated to minimize

the following performance error measure:

EaiðkÞ ¼
1

2
e2

aiðkÞ:

The weights updating algorithm is similar to the one for the

critic network. By the gradient descent rule, we can obtain

waðiþ1ÞðkÞ ¼ waiðkÞ þ DwaiðkÞ;

¼ waiðkÞ � ba

oEaiðkÞ
owaiðkÞ

� 	

¼ waiðkÞ � ba

oEaiðkÞ
oeaiðkÞ

oeaiðkÞ
ov̂iðkÞ

ov̂iðkÞ
owaiðkÞ

;

ð38Þ

where ba [ 0 is the learning rate of action network.

If we define

glðkÞ ¼
XLa

j¼1

Y
lj
aiðkÞxjk; l ¼ 1; 2; . . .; La

and

hlðkÞ ¼
eglðkÞ � e�glðkÞ

eglðkÞ þ e�glðkÞ
; l ¼ 1; 2; . . .; La;

then we have

v̂iðxkÞ ¼
XLa

l¼1

Wl
aiðkÞhlðkÞ;

where La is the total number of hidden nodes in the action

network. By applying the chain rule, the adaptation of the

action network is summarized as follows.

The hidden to output layer of the action is updated as

DWl
aiðkÞ ¼ �ba

oEaiðkÞ
ov̂iðxkÞ

ov̂iðxkÞ
oWl

aiðkÞ
¼ �baeaiðkÞhlðkÞ:

The input to hidden layer of the action is updated as

DYl
aiðkÞ ¼ �ba

oEaiðkÞ
ov̂iðxkÞ

ov̂iðxkÞ
oYl

aiðkÞ

¼ �ba

oEaiðkÞ
ov̂iðxkÞ

ov̂iðxkÞ
ohlðkÞ

ohlðkÞ
oglðkÞ

oglðkÞ
oYl

aiðkÞ

¼ �baeaiðkÞWl
aiðkÞ

1

2
1� g2

l ðkÞ

 �� 	

xlk:

The detailed neural training algorithm can also be seen

in [22].

5 Simulation studies

Example 1 Our first example is chosen as the one in [8,

19, 37]. Consider the following discrete-time affine non-

linear system

xkþ1 ¼ f ðxkÞ þ gðxkÞuk; ð39Þ

where f ðxkÞ ¼
�0:8x2k

sinð0:8x1k � x2kÞ þ 1:8x2k

� 	
and gðxkÞ ¼

0

�x2k

� 	
. Let the initial state x0 = [0.5, 0.5]T. Let the

performance index function be a quadratic form which is

expressed as

Jðx0; u0Þ ¼
X1

k¼0

xT
k Qxk þ uT

k Ruk


 �

where the matrix Q = R = I, and I denotes the identity matrix

with suitable dimensions. Neural networks are used to
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implement the stable iterative ADP algorithm. The critic

network and the action network are chosen as three-layer BP

neural networks with the structures of 2–8–1 and 1–8–1,

respectively. Let h = 7 and WðxkÞ ¼ xT
k Qxk to initialize the

algorithm. We choose a random array of state variable in

[-0.5, 0.5] to train the neural networks. For each iteration

step, the critic network and the action network are trained for

800 steps under the learning rate ac = ba = 0.01 so that the

computation precision 10-6 is reached. The stable iterative

ADP algorithm is implemented for 30 iteration steps to

guarantee the convergence of the iterative performance index

function. The admissible approximation error by (29) is

shown in Fig. 2. From Fig. 2, we can see that the computation

precision 10-6 satisfies (29). Hence, we say that the iterative

performance index function is convergent. The trajectory of

the iterative performance index function is shown in Fig. 3a.

As value iteration algorithm is a most basic iterative ADP

algorithm, in this paper, comparisons between stable iterative

adaptive dynamic programming and value iteration algo-

rithm in [19] will be displayed to show the effectiveness of

the present algorithm. In [5, 19], it is proved that the iterative

performance index function will nondecreasingly converge

to the optimum. The trajectory of the iterative performance

index function by value iteration is shown in Fig. 3b.

From Fig. 3a, b, we can see that the iterative performance

index functions obtained by the stable iterative ADP algo-

rithm and value iteration algorithm both converge, which

shows the effectiveness of the present algorithm in this paper.

By implementing the converged iterative control law by the

stable iterative ADP algorithm to the control system (39) for

Tf = 40 time steps, we get the optimal system states and

optimal control trajectories. The trajectories of optimal sys-

tem states by the stable iterative ADP algorithm are shown in

Fig. 4a and the corresponding optimal control trajectory is

shown in 4b. The trajectories of optimal system states

obtained by value iteration algorithm are shown in Fig. 4c,

and the corresponding optimal control trajectory is shown in

4d. From the simulation results, we can see that the present

stable iterative ADP algorithm achieved effective results.

For value iteration algorithm [37] and many other iter-

ative ADP algorithms in [5, 40, 16, 24, 3, 37, 41],

approximation errors were not considered. In the next

example, we will analyze the convergence and stability

properties considering different approximation errors.

Example 2 Our second example is chosen as the one in

[13, 26, 30]. Consider the following discrete-time nonaffine

nonlinear system

xkþ1 ¼ Fðxk; ukÞ ¼ xk þ sinð0:1x2
k þ ukÞ ð40Þ

with x0 = 1. Let the performance index function be the same

as in Example 1. Neural networks are used to implement the

stable iterative ADP algorithm. The critic network and the

action network are chosen as three-layer BP neural networks

with the structures of 1–8–1 and 1–8–1, respectively. Let

h = 8 and WðxkÞ ¼ xT
k Qxk to initialize the algorithm. We

choose a random array of state variable in [-0.5, 0.5] to train

the neural networks. For the critic network and the action

network, let the learning rate ac = ba = 0.01. The stable

iterative ADP algorithm is implemented for 40 iteration

steps. To show the effectiveness of the present stable itera-

tive ADP algorithm, we choose four different approximation

errors, which are � ¼ 10�6; 10�4; 10�3; 10�1; respectively.

The trajectories of the iterative performance index functions

under the four different approximation errors are shown in

Fig. 5a–d, respectively.
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Fig. 3 The trajectories of the iterative performance index functions.

a Iterative performance index function by stable iterative ADP

algorithm. b Iterative performance index function by value iteration

algorithm
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In this paper, we have proved that if the approximation

error satisfies (29), then iterative performance index func-

tion is convergent. As the approximation errors are

different for different state xk, the admissible error trajec-

tory obtained by (29) is shown in Fig. 6a. In [30], it shows

that if the approximation error satisfies (19), then iterative
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Fig. 4 The trajectories of

optimal states and controls.

a Optimal states by stable

iterative ADP algorithm.

b Optimal control by stable

iterative ADP algorithm.

c Optimal states by value

iteration algorithm. d Optimal

control by value iteration

algorithm
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Fig. 5 The trajectories of the

iterative performance index

functions. a The approximation

error � ¼ 10�6. b The

approximation error � ¼ 10�4.

c The approximation error

� ¼ 10�3. d The approximation

error � ¼ 10�1
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performance index function is also convergent. The

admissible error trajectory obtained by (19) is shown in

Fig. 6b.

From Figs. 5 and 6, we can see that for approximation

errors � ¼ 10�6 and � ¼ 10�4, the performance index

functions in Fig. 5a, b are both convergent. The trajectories

of the control and state are displayed in Fig. 7a, b,

respectively, where the implementation time is Tf = 15.

For the approximation error � ¼ 10�3, we can see that the

approximation error satisfies (19). From [30], we know that

the iterative performance index function is also convergent,

and the convergence trajectory of the iterative performance

index function is shown in Fig. 5c. While in this case, the

iterative performance index function is not convergent

monotonically. The corresponding control and state tra-

jectories are displayed in Fig. 7c. For the approximation

error � ¼ 10�1; we can see that the iterative performance

index function is not convergent any more because of the

large approximation error. The trajectories of the control

and state are displayed in Fig. 7d.

According to Theorem 3, we know that if the approxi-

mation error � satisfies (29), then the iterative control is

stable. To show the effectiveness of the present ADP algo-

rithm, we display the state and control trajectories under the

control law v̂0ðxkÞ with different approximation errors. The

results can be seen in Fig. 8a–d, respectively. From Fig. 8a,

b, we can see that the system is stable under the iterative

control law v̂0ðxkÞ with approximation errors � ¼ 10�6 and

� ¼ 10�4. In this paper, we have shown that the approxi-

mation error in [30] cannot guarantee the stability of the

control system. From Fig. 8c, we can see that for the

approximation error � ¼ 10�3, the system is not stable under

the control law v̂0ðxkÞ. From Fig. 8d, for � ¼ 10�1, as the

iterative performance index function is not convergent, the

stability of the system cannot be guaranteed.
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Fig. 6 The trajectories of the admissible approximation error. a The

trajectory of the admissible approximation error by (29). b The

trajectory of the admissible approximation error by (19)
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6 Conclusions

In this paper, an effective stable iterative ADP algorithm is

developed to find the infinite horizon optimal control for

discrete-time nonlinear systems. In the present stable itera-

tive ADP algorithm, any of the iterative control is stable for

the nonlinear system which makes the present algorithm

feasible for implementations both on-line and off-line.

Convergence analysis of the performance index function for

the iterative ADP algorithm is proved and the stability proofs

are also given. Neural networks are used to implement the

present ADP algorithm. Finally, simulation results are given

to illustrate the performance of the present algorithm.

Acknowledgments This work was supported in part by the National

Natural Science Foundation of China under Grants 61034002,

61233001, 61273140, in part by Beijing Natural Science Foundation

under Grant 4132078, and in part by the Early Career Development

Award of SKLMCCS.

References

1. Abu-Khalaf M, Lewis FL (2005) Nearly optimal control laws for

nonlinear systems with saturating actuators using a neural net-

work HJB approach. Automatica 41(5):779–791

2. Adhyaru DM, Kar IN, Gopal M (2011) Bounded robust control of

nonlinear systems using neural network-based HJB solution.

Neural Comput Appl 20(1):91–103

3. Al-Tamimi A, Abu-Khalaf M, Lewis FL (2007) Adaptive critic

designs for discrete-time zero-sum games with application to H?

control. IEEE Trans Syst Cybern B Cybern 37(1):240–247

4. Al-Tamimi A, Lewis FL (2007) Discrete-time nonlinear HJB

solution using approximate dynamic programming: convergence

proof. In: Proceedings of the IEEE symposium on approximate

dynamic programming and reinforcement learning, pp 38–43

5. Al-Tamimi A, Lewis FL, Abu-Khalaf M (2008) Discrete-time

nonlinear HJB solution using approximate dynamic program-

ming: convergence proof. IEEE Trans Syst Man Cybern B

Cybern 38(4):943–949

6. Beard R (1995) Improving the closed-loop performance of non-

linear systems. Ph.D Thesis, Rensselaer Polytechnic Institute,

Troy, NY

7. Bertsekas DP, Tsitsiklis JN (1996) Neuro-dynamic programming.

Athena Scientific, Belmont

8. Chen Z, Jagannathan S (2008) Generalized Hamilton–Jacobi–

Bellman formulation-based neural network control of affine

nonlinear discretetime systems. IEEE Trans Neural Netw

19(1):90–106

9. Enns R, Si J (2003) Helicopter trimming and tracking control

using direct neural dynamic programming. IEEE Trans Neural

Netw 14(8):929–939

10. Chen D, Yang J, Mohler RR (2008) On near optimal neural

control of multiple-input nonlinear systems. Neural Comput Appl

17(4):327–337

11. Hagen S, Krose B (2003) Neural Q-learning. Neural Comput

Appl 12(2):81–88

12. Huang T, Liu D (2013) A self-learning scheme for residential

energy system control and management. Neural Comput Appl

22(2):259–269

13. Jin N, Liu D, Huang T, Pang Z (2007) Discrete-time adaptive

dynamic programming using wavelet basis function neural

networks. In: Proceedings of the IEEE symposium on approxi-

mate dynamic programming and reinforcement learning,

pp 135–142

14. Lewis FL, Vrabie D (2009) Reinforcement learning and adaptive

dynamic programming for feedback control. IEEE Circuits Syst

Mag 9(3):32–50

0 5 10 15
−2

0

2

4

6

Time steps

(c)

0 5 10 15
−0.5

0

0.5

1

Time steps

(a)

0 5 10 15
−0.5

0

0.5

1

Time steps

(b)

0 5 10 15
0

1

2

3

4

5

6

Time steps

(d)state
control

state
control

state
control

state
control

Fig. 8 The trajectories of states

and controls under the control

law v̂0ðxkÞ with different

approximation errors. a The

approximation error � ¼ 10�6.

b The approximation error

� ¼ 10�4. c The approximation

error � ¼ 10�3. d The

approximation error � ¼ 10�1

1366 Neural Comput & Applic (2014) 24:1355–1367

123



15. Liao X, Wang L, Yu P (2007) Stability of dynamical systems.

Elsevier Press, Amsterdam

16. Liu D, Javaherian H, Kovalenko O, Huang T (2008) Adaptive

critic learning techniques for engine torque and air-fuel ratio

control. IEEE Trans Syst Man Cybern B Cybern 38(4):988–993

17. Liu D, Zhang Y, Zhang H (2005) A self-learning call admission

control scheme for CDMA cellular networks. IEEE Trans Neural

Netw 16(5):1219–1228

18. Liu Z, Zhang H, Zhang Q (2010) Novel stability analysis for

recurrent neural networks with multiple delays via line integral-

type L-K functional. IEEE Trans Neural Netw 21(11):1710-1718

19. Luo Y, Zhang H (2008) Approximate optimal control for a class

of nonlinear discrete-time systems with saturating actuators. Prog

Nat Sci 18(8):1023–1029

20. Murray JJ, Cox CJ, Lendaris GG, Saeks R (2002) Adaptive

dynamic programming. IEEE Trans Syst Man Cybern C Appl

Rev 32(2):140–153

21. Prokhorov DV, Wunsch DC (1997) Adaptive critic designs. IEEE

Trans Neural Netw 8(5):997–1007

22. Si J, Wang YT (2001) On-line learning control by association and

reinforcement. IEEE Trans Neural Netw 12(2):264–276

23. Sutton RS, Barto AG (1998) Reinforcement learning: an intro-

duction. The MIT Press, Cambridge

24. Song R, Zhang H (2013) The finite-horizon optimal control for a

class of time-delay affine nonlinear system. Neural Comput Appl

22(2):229–235

25. Wang D, Liu D, Zhao D, Huang Y, Zhang D (2013) A neural-

network-based iterative GDHP approach for solving a class of

nonlinear optimal control problems with control constraints.

Neural Comput Appl 22(2):219–227

26. Wang F, Jin N, Liu D, Wei Q (2011) Adaptive dynamic pro-

gramming for finite-horizon optimal control of discrete-time

nonlinear systems with e-error bound. IEEE Trans Neural Netw

22(1):24–36

27. Wang F, Zhang H, Liu D (2009) Adaptive dynamic program-

ming: an introduction. IEEE Comput Intell Mag 4(2):39–47

28. Watkins C (1989) Learning from delayed rewards. Ph.D Thesis,

Cambridge University, Cambridge, England

29. Wei Q, Liu D (2012) Adaptive dynamic programming with stable

value iteration algorithm for discrete-time nonlinear systems. In

Proceedings of international joint conference on neural networks,

Brisbane, Australia, 1–6

30. Wei Q, Liu D (2012) Finite-approximation-error based optimal

control approach for discrete-time nonlinear systems. IEEE Trans

Syst Man Cybern B Cybern. Available on-line: http://ieeexplore.

ieee.org/stamp/stamp.jsp?tp=&arnumber=6328288

31. Wei Q, Liu D (2012) An iterative e-optimal control scheme for a

class of discrete-time nonlinear systems with unfixed initial state.

Neural Netw 32:236–244

32. Wei Q, Zhang H, Dai J (2009) Model-free multiobjective

approximate dynamic programming for discrete-time nonlinear

systems with general performance index functions. Neurocom-

puting 72(7–9):839–1848

33. Werbos PJ (1977) Advanced forecasting methods for global crisis

warning and models of intelligence. Gen Syst Yearbook 22:25–38

34. Werbos PJ (1991) A menu of designs for reinforcement learning

over time. In: Miller WT, Sutton RS, Werbos PJ (eds) Neural

networks for control. The MIT Press, Cambridge, pp 67–95

35. Werbos PJ (1992) Approximate dynamic programming for real-

time control and neural modeling. In: White DA, Sofge DA, (eds)

Handbook of intelligent control: neural, fuzzy, and adaptive

approaches. Van Nostrand Reinhold, New York, ch. 13.

36. Zhang H, Liu Z, Huang G, Wang Z (2010) Novel weighting-

delay-based stability criteria for recurrent neural networks with

time-varying delay. IEEE Trans Neural Netw 21(1):91–106

37. Zhang H, Luo Y, Liu D (2009) The RBF neural network-based

near-optimal control for a class of discrete-time affine nonlinear

systems with control constraint. IEEE Trans Neural Netw

20(9):1490–1503

38. Zhang H, Quan Y (2001) Modeling identification and control of a

class of nonlinear system. IEEE Trans Fuzzy Syst 9(2):349–354

39. Zhang H, Song R, Wei Q, Zhang T (2011) Optimal tracking

control for a class of nonlinear discrete-time systems with time

delays based on heuristic dynamic programming. IEEE Trans

Neural Netw 22(12):1851–1862

40. Zhang H, Wei Q, Liu D (2011) An iterative adaptive dynamic

programming method for solving a class of nonlinear zero-sum

differential games. Automatica 47(1):207–214

41. Zhang H, Wei Q, Luo Y (2008) A novel infinite-time optimal

tracking control scheme for a class of discrete-time nonlinear

systems via the greedy HDP iteration algorithm. IEEE Trans Syst

Man Cybern B Cybern 38(4):937–942

Neural Comput & Applic (2014) 24:1355–1367 1367

123

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6328288
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6328288

	Stable iterative adaptive dynamic programming algorithm with approximation errors for discrete-time nonlinear systems
	Abstract
	Introduction
	Problem statement
	Properties of the approximation error-based iterative ADP algorithm
	Derivation of the stable iterative ADP algorithm with approximation error
	Properties of the stable iterative ADP algorithm with finite approximation error

	Implementation of the stable iterative ADP algorithm by neural networks
	The critic network
	The action network

	Simulation studies
	Conclusions
	Acknowledgments
	References


