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Abstract This study applied advanced machine learning

techniques, widely considered as the most successful

method to produce objective to an inferential problem of

recurrent cervical cancer. Traditionally, clinical diagnosis

of recurrent cervical cancer was based on physician’s

clinical experience with various risk factors. Since the risk

factors are broad categories, years of clinical study and

experience have tried to identify key risk factors for

recurrence. In this study, three machine learning approa-

ches including support vector machine, C5.0 and extreme

learning machine were considered to find important risk

factors to predict the recurrence-proneness for cervical

cancer. The medical records and pathology were accessible

by the Chung Shan Medical University Hospital Tumor

Registry. Experimental results illustrate that C5.0 model is

the most useful approach to the discovery of recurrence-

proneness factors. Our findings suggest that four most

important recurrence-proneness factors were Pathologic

Stage, Pathologic T, Cell Type and RT Target Summary. In

particular, Pathologic Stage and Pathologic T were

important and independent prognostic factor. To study the

benefit of adjuvant therapy, clinical trials should randomize

patients stratified by these prognostic factors, and to

improve surveillance after treatment might lead to earlier

detection of relapse, and precise assessment of recurrent

status could improve outcome.

Keywords Recurrent cervical cancer � Support vector

machine � Extreme learning machine � C5.0

1 Research problem

Cervical cancer remains one of the leading causes of can-

cer-related death among women globally [1, 2]. Even

though the morbidity and the mortality have been

decreasing in recent years, the morbidity rate of cervical

cancer is the second leading type in women. In Taiwan,

cervical carcinoma is the second most common malignancy

for women and contributing to a quarter of all female

cancer cases. It remains one of the most pressing medical

problems for women. The natural history of cervical car-

cinoma begins with a normal epithelium which progress

through various stages of dysplasia—cervical intraepithe-

lial neoplasia grade CIN 1, CIN 2, CIN 3—and finally, to

invasive cervical carcinoma (ICC). There is a long time

interval for the progression to ICC, and consensus on the

fact that regression occurs in CIN. The most important part

of therapy is to detect and eradicate local CIN 3 lesions

before the progression to ICC and metastasis can occur [3].

The cure rate of cervical cancer is quite high if detected

early, but approximately 30 % of International Federation

of Gynecology and Obstetrics (FIGO) stage IB2 to stage IV
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disease will ultimately recur with modern multimodality

treatment [4, 5]. Once the primary treatment has failed, the

opportunity of secondary cure is slim. Patients with

recurrent disease or pelvic metastases have a poor prog-

nosis with a 1-year survival rate between 15 and 20 % [6].

Since, the treatment for recurrent cervical carcinoma is still

a clinical challenge. The existing literature on recurrent

cervical cancer reveals that factors include (1) Age, (2)

Cell Type, (3) Tumor Grade, (4) Tumor Size, (5) Patho-

logic T, (6) Pathologic Stage, (7) Surgical Margin

Involvement, (8) Lymph Node Metastases (LNM), (9)

Number of Fractions of Other RT, (10) RT target Sum-

mary, (11) Sequence of Locoregional Therapy and Sys-

temic Therapy and (12) Lympho-Vascular Space

Involvement (LVSI). Within these broad categories, many

studies have attempted to identify the plethora of factors

that could enhance clinical management in the intervention

of cervical cancer [7, 8]. Machine learning, which involves

the retrieval and analysis of large amounts of data from a

data warehouse, has been successfully used to uncover

hidden patterns (or rules) among data in a variety of fields.

In these circumstances, an alternative solution is to use

modern machine learning technology to identify key

associations between relevant factors on cervical cancer [9,

10]. In this regard, Louie et al. [11] and Kim et al. [12]

used epidemiological analysis to explore the critical factors

that might be used by management in the achievement of

patients’ survivability. However, given that most tech-

niques of prediction involve various combinations of many

potential causative factors, it is unlikely that a single factor

can be identified that provides a full explanation of the

prognosis of serious recurrence in the cervical cancer.

Against this background, the present study attempts to

improve surveillance after treatment might lead to earlier

detection of relapse, and precise assessment of recurrent

status could improve outcome.

Section 2 presents a review of literature relevant to the

concept of methodology. Sect. 3 presents empirical appli-

cation of the cervical cancer. Finally, Sect. 4 concludes the

discussion of this study.

2 Method

In the health field, machine learning applications have been

growing considerably as it can be used to directly derive

patterns, which are relevant to forecast different risk groups

among the patients. [13, 14] To the best of our knowledge,

machine learning technique such as classification has not

been used to analyze the recurrence cervical cancer. Hence,

in this paper, we made an attempt to identify patterns from

the database of the cervical cancer patients using several

advances techniques as follows.

2.1 SVM

The basic idea of applying SVM to classification can be

stated briefly as follows. We can initially map the input

vectors into one feature space (possible with a higher

dimension), either linearly or nonlinearly, which is relevant

with the selection of the kernel function [15]. Then, within

the feature space from the first, we seek an optimized linear

division, that is, construct a hyperplane which separates

two classes (this can be extended to multi-class).

A description of SVM algorithm is as follows: Let

xi; yið Þf gN
i¼1, xi 2 Rd , yi 2 �1; 1f g be the training set with

input vectors and labels. Here, N is the number of sample

observations, d is the dimension of each observation, and yi

is known target. The algorithm is to seek the hyperplane

w � xi þ b ¼ 0, where w is the vector of hyperplane and b is

a bias term, and to separate the data from two classes with

maximal margin width 2= wk k2
, and the all points under the

boundary are named support vector. In order to optimal the

hyperplane that SVM was to solve, the optimization

problem was the following [16].

Min UðxÞ ¼ 1

2
wk k2

s:t: yiðwT xi þ bÞ� 1; i ¼ 1; 2; . . .;N
ð1Þ

It is difficult to solve (1) and to transform the

optimization problem to dual problem by Lagrange

method. In the Lagrange method, the value of alpha must

be nonnegative real coefficients. The (1) is transformed

into the following constrained form

Max Uðw; b; n; a; bÞ ¼
XN

i¼1

ai �
1

2

XN

i¼1; j¼1

aiajyiyjx
T
i xj

s:t:
XN

j¼1

ajyj ¼ 0; 0� ai�C; i ¼ 1; 2; . . .;N

ð2Þ

In (2), C is the penalty factor and determines the degree

of penalty assigned to an error. It can be viewed as a tuning

parameter which can be used to control the trade-off

between maximizing the margin and the classification

error. In general, it could not find the linear separate

hyperplane in all application data. In the nonlinear data,

transforming the original data to higher dimension of linear

separate is the best solution. The higher dimension is called

feature space, and it improves the data separated by

classification. The common kernel functions are linear,

polynomial, radial basis function (RBF) and sigmoid.

Although several choices for the kernel function are

available, the most widely used kernel unction is the

RBF kernel defined as Kðxi; xjÞ ¼ expð�c xi � xj

�� ��2Þ;
c� 0 [16], where c denotes the width of the RBF. Thus,

the RBF is applied in this study. The original SVM was
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designed for binary classifications. Constructing multi-

class SVM is still an ongoing research issue. In this study,

we used multi-class SVM method proposed by Hsu and Lin

[17]. For more details, please refer to [17].

2.2 C5.0

C5.0 classifier is a process for the classification and anal-

ysis of information hidden in large data sets/databases,

which retrieves useful information in the form of a decision

tree, that is, a flowchart-like tree structure [18]. The

algorithm adopts a greedy approach in which the decision

trees are constructed in a top-down recursive divide-and-

conquer manner on the basis of a training set employing an

attribute selection measure. C5.0 is more efficient than

C4.5 such as: faster, more memory efficient, similar results

by smaller decision trees, supports for more accuracy,

weight different attributes and reduce more noise [18, 19].

C4.5 Quinlan [24] builds decision trees from a set of

training data in the same way as ID3 (Iterative Dichoto-

miser 3), using the concept of information entropy. The

training data are a set of already classified samples. Each

sample is a vector including attributes or features. The

training data are augmented with a vector representing the

class that each sample belongs to. Each attribute of the data

can be used to make a decision. [20, 21] C4.5 examines the

normalized information gain that results from choosing an

attribute for splitting the data. The attribute with the

highest normalized information gain is the one used to

make the decision. The algorithm then recurs on the

smaller sub-lists.

Take calculating evaluation properties of A as an

example, calculate information gain ratio GainRatio(A), S

represents a set of samples, pi is the probability that an

arbitrary sample belongs to Bi. Suppose that categorical

attributes have n different values, which define n different

classes Bi, (i = 1, …,n). Suppose Si is the number of

samples in the class B. Info(S) indicates the information

entropy in the current sample. The calculation process is as

follows:

InfoðSÞ ¼
Xn

i¼1

pi logðpiÞ ð3Þ

Suppose attribute A has n different values

{A1;A2; . . .;An}, uses A to divide S into n subsets

{S1; S2; . . .; Sn}, and Sj is the sample that has Aj in A, Sij

is the sample number of class Bi in subset Sj. Info(S, A) is

the needed information entropy.

The calculation progress is as follows:

InfoðS;AÞ ¼
Xn

j¼1

S1j þ S2j þ � � � þ Snj

S
Info ðAÞ ð4Þ

The split information SplitInfo (A) is the entropy of each

value of attribute A about S, and it is used to eliminate

deviation of attribute that has a large number of value

attributes. The calculation progress is as follows:

SplitInfo ðAÞ ¼ �
Xn

i¼1

Sj

�� ��
Sj j log

Sj

�� ��
Sj j

� �
ð5Þ

Gain Að Þ ¼ Info Sð Þ � Info S; Að Þ ð6Þ
GainRatio Að Þ ¼ Gain Að Þ=SplitInfo Að Þ ð7Þ

2.3 ELM

Extreme learning machine (ELM) proposed by Huang et al.

[17] is a single hidden layer feed-forward neural networks

(SLFNs) which randomly selected the input weights and

analytically determines the output weights of SLFNs. ELM

has been successfully applied to many real-world applica-

tions [21, 22, 23, 24]. It not only can be thousands of times

faster than traditional feed-forward network learning

algorithms like back-propagation (BP) algorithm while

obtaining better generalization performance, but also

avoids many difficulties presented to gradient-based

methods such as stopping criteria, learning rate, learning

epochs, local minimal and overtuning issues

Consider N arbitrary distinct samples (xi; ti) wherexi ¼
½xi1; xi2; . . .; xin�T 2 Rn, and ti ¼ ½ti1; ti2; . . .; tim�T 2 Rm.

SLFNs with ~N hidden neurons and activation function g(x)

can approximate N samples with zero error. This means

that

Hb ¼ T ð8Þ

where Hðw1; . . .;weN ; b1; . . .; beN ; x1; . . .; xeN Þ ¼
gðw1 � x1 þ b1Þ � � � gðweN � x1 þ beN Þ
..
. . .

. ..
.

gðw1 � xN þ b1Þ � � � gðweN � xN þ beN Þ

2

664

3

775

N�eN

; beN�m
¼

ðbT
1 ; . . .; bT

eN Þ
t
; TN�m ¼ ðTT

1 ; . . .; TT
NÞ

t
, where

wi ¼ ½wi1;wi2; . . .;win�T , i ¼ 1; 2; . . .; eN ; is the weight

vector connecting the ith hidden node and the input nodes,

bi ¼ ½bi1; bi2; . . .; bim�T is the weight vector connecting the

ith hidden node and the output nodes, and bi is the

threshold of the ith hidden node. wi � xj denotes the inner

product of wi and xj. H is called the hidden layer output

matrix of the neural network; the ith column of H is the ith

hidden node output with respect to inputs x1; x2; . . .xN .

Thus, the determination of the output weights (linking

the hidden layer to the output layer) is as simple as finding

the least-square solution to the given linear system. The

minimum norm least-square (LS) solution to the linear

system [i.e., Eq. (8)] is
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b
_

¼ HWT ð9Þ

where HW is the Moore–Penrose generalized inverse of

matrix H. The minimum norm LS solution is unique and

has the smallest norm among all the LS solutions. Steps of

ELM algorithm can be summarized as follows:

Step 1: Randomly assign input weight wi, and bias bi;

Step 2: Calculate the hidden layer output matrix H;

Step 3: Calculate the output weight b, b
_

¼ HWT , where

T ¼ ðt1; . . .; tNÞt.

3 Empirical study

In this study, the cervical cancer data set provided by the

Chung Shan Medical University Hospital Tumor Registry

is used in order to verify the feasibility and effectiveness of

C5.0, SVM and ELM. Each patient in the data set contains

12 predictor variables, namely Age, Cell Type, Tumor

Grade, Tumor Size, Pathologic T, Pathologic Stage, Sur-

gical Margin Involvement, Lymph Node Metastases

(LNM), Number of Fractions of Other RT, RT target

Summary, Sequence of Locoregional Therapy and Sys-

temic Therapy and Lympho-Vascular Space Involvement

(LVSI). And the response variable is recurrent or no. There

are totally 168 patients in the data set. Among them, 118

datasets with respect to the ratio of recurrent to non-

recurrent patients (the prior probabilities or simply priors)

were randomly selected as the training sample (estimating

the parameters of the corresponding built classification

models), while the remaining 50 will be retained as the

testing sample (evaluating the classification capability of

the built models). Note that the original data sets are first

scaled into the range of [0, 1] before building C5.0, ELM

and SVM classification models. The purpose of doing so is

to ensure that large value input variables do not overwhelm

smaller value inputs, thus helping to reduce classification

errors.

In the modeling of C5.0 classification model, the pre-

dictor (or independent) variables should first be selected.

Two significant independent variables were included in the

final C5.0 model, namely Pathologic T and RT target

Summary. The classification results (the confusion matrix)

of the testing sample using the obtained C5.0 model are

summarized in Table 1. From the results revealed in

Table 1, we can observe that the average correct classifi-

cation rate is 96.0 % with 0 (2) class 1 (2) patients mis-

classified as class 2 (1) patients (here a class 1 patient is

defined as a patient with recurrent, while a class 2 patient is

a patient with non-recurrent).

For modeling the SVM classification model, all of the

twelve predictor variables are used as inputs. The perfor-

mance of the SVM model is mainly affected by the setting

of two parameters (C and c) since the RBF kernel function

is adopted in this study. There are no general rules for the

choice of the parameters. In this study, the grid search

proposed by Hsu and Lin [14] is used for parameters set-

ting. After using the Grid search method, the parameter set

(C = 213, c=2-5) is the best parameter set for the SVM

model. Note that the model selection details of the three

models are omitted for saving space.

The classification results of the testing sample using the

obtained SVM model are summarized in Table 2. From the

results in Table 2, it is observed that the average correct

classification rate is 68.00 % with 2 (14) class 1 (2) patients

misclassified as class 2 (1) patients.

In the modeling of the ELM model, the input layer has

twelve nodes as twelve independent variables are used. It is

known that the most important and critical parameter of

ELM is the number of hidden nodes and ELM tends to be

unstable in a single run classification. Therefore, the ELM

model with different numbers of hidden nodes varying

from 1 to 30 was constructed. For each number of nodes,

the ELM model is repeated 30 times and the number of

hidden nodes that gives the smallest testing RMSE value is

selected. In this study, the ELM model with 23 hidden

nodes has smaller RMSE value and therefore is the best

models of the ELM model.

Table 1 Classification results using C5.0 model

Actual class Classified class

1 (recurrent) 2 (non-recurrent)

1 (recurrent) 34 (95.00 %) 0 (0.00 %)

2 (non-recurrent) 2 (12.50 %) 14 (87.50 %)

Average correct classification rate: 96.00 %

Table 2 Classification results using SVM model

Actual class Classified class

1 (recurrent) 2 (non-recurrent)

1 (recurrent) 32 (94.12 %) 2 (5.88 %)

2 (non-recurrent) 14 (87.50 %) 2 (12.50 %)

Average correct classification rate: 68.00 %

Table 3 Classification results using ELM model

Actual class Classified class

1 (recurrent) 2 (non-recurrent)

1 (recurrent) 31 (91.18 %) 3 (8.82 %)

2 (non-recurrent) 0 (0.00 %) 16 (100.00 %)

Average correct classification rate: 94.00 %
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Table 3 shows the classification result of the ELM

model. The average correct classification rate is 94.00 %

with 3 (0) class 1 (2) patients misclassified as class 2 (1)

patients.

From Tables 1, 2 and 3, it can be found that the average

correct classification rates of the C5.0, SVM and ELM

models are 96.00, 68.00 and 94.00 %, respectively. The

C5.0 model has the best classification capability in terms of

the average correct classification rate. It outperforms the

SVM and ELM models and hence provides an efficient

alternative in conducting cervical cancer classification

tasks.

In order to assess the robustness of the C5.0 method, the

performance of the C5.0, SVM, ELM models was tested

using 10 independent runs. Based on the findings in

Table 4, it can be observed that the ELM model has the

highest average correct classification rate 93.14 % in {1-1}

(a patient with recurrent is classified as recurrent), and the

C5.0 model generates the highest average correct classifi-

cation rate 91.27 % in {2-2} (a patient with non-recurrent

is classified as non-recurrent). The highest average correct

classification rate for the Overall is 92.44 % which is

provided by the C5.0 model. Since the C5.0 model out-

performs the SVM and ELM models under {2-2} and

overall situations, it indicates that the C5.0 model indeed

provides better classification accuracy than the other two

approaches. Consequently, based on the results from this

dataset, we can conclude that the C5.0 model is an effec-

tive alternative for cervical cancer classification.

In this study, the C5.0 model not only generates the best

classification result, but also can be used to select impor-

tant independent variables for cervical cancer classifica-

tion. The selected important independent variables can

provide useful information for cervical cancer treatment. In

this study, after 10 runs, the selected important independent

variables are Pathologic Stage, Pathologic T, Cell Type and

RT target Summary.

4 Conclusion

The cervical cancer can hide for a long time but it would be

helpful if the doctor could predict the recurrence on a basis

of a few variables shortly after the treatment. That is, in

recurrent cervical cancer, the most important question is

why the decision was made; when this is understood. The

doctor is always expected to make the right decision. Years

of clinical study and experience are needed to select the

correct answer yet mistakes are always possible. To better

predict the prognosis, many investigators have tried to

identify risk factors for recurrence. Indeed, these include

tumor size, lymphovascular space involvement, depth of

tumor invasion and lymph node metastasis. Nevertheless,

these factors are interrelated, but analyses using these

factors do not reflect the true prognoses. The problem we

investigate in this study is how to support a physician’s

decision of whether variables are warranted. In our study,

Pathologic Stage deeply invasive tumors and Pathologic T

were independent risk factors, in contrast to other similar

analyses [7, 8].

As a result, our findings support that Pathologic Stage

and Pathologic T are important and independent prognostic

factor. In particular, Cell Type and RT target Summary

were significantly related to the recurrence. Due to the

small number of patients studied, outcomes of different

treatment modalities in patients with LVSI and deeply

invasive tumors without LNM could not be further ana-

lyzed. The presented results suggest the decision tree is a

good decision model. For medical interpretation, however,

a further clinical cooperation with doctors is needed to

Table 4 Robustness evaluation of the C5.0, SVM, ELM models

{1-1} {2-2} Overall

Model C5.0 SVM ELM C5.0 SVM ELM C5.0 SVM ELM

Runs

1 100.00 94.12 91.18 87.50 12.50 100.00 96.00 68.00 94.00

2 91.67 94.44 94.44 100.00 7.14 100.00 94.00 70.00 96.00

3 95.00 92.50 92.50 80.00 10.00 70.00 96.00 76.00 88.00

4 89.47 89.47 94.74 100.00 16.67 83.33 92.00 72.00 92.00

5 91.89 91.89 91.89 92.31 7.69 92.31 92.00 76.00 92.00

6 94.87 89.74 92.31 81.82 18.18 90.10 92.00 94.00 92.00

7 84.38 96.88 96.88 94.44 11.11 83.33 88.00 68.00 92.00

8 97.14 94.29 91.43 80.00 0.00 86.67 92.00 66.00 90.00

9 95.12 92.68 95.15 100.00 0.00 77.78 96.00 76.00 92.00

10 88.89 88.89 88.89 92.86 0.00 92.86 90.00 72.00 90.00

Average 92.05 92.31 93.14 91.27 7.87 86.26 92.44 74.44 91.56
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verify the proposed model. Perhaps by analysis existing or

easily measured data about a patient, we can develop some

results by which a physician caring a patient can better

decide when to take the critical intervention.
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