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Abstract Multiresponse parameter design problems have

become increasingly important and have received consid-

erable attention from both researchers and practitioners

since there are usually several quality characteristics that

must be optimized simultaneously in most modern prod-

ucts/processes. This study applies support vector regression

(SVR), Taguchi loss function, and the artificial bee colony

(ABC) algorithm to develop a six-staged procedure that

resolves these common and complicated parameter design

problems. SVR is used to model the mathematical rela-

tionship between input control factors and output respon-

ses, and the ABC algorithm is used to find the optimal

control factor settings by searching the well-constructed

SVR models in which the Taguchi loss function is applied

to evaluate the overall performance of a product/process.

The feasibility and effectiveness of the proposed approach

are demonstrated via a case study in which the design of a

total internal reflection (TIR) lens is optimized while fab-

ricating an MR16 light-emitting diode lamp. Experimental

results indicate that the proposed solution procedure can

provide highly robust design parameter settings for TIR

lenses that can be directly applied in real manufacturing

processes. Comparisons with the Taguchi method reveal

that the Taguchi method is an undesirable and inappro-

priate method for resolving multiple-response parameter

design problems, while the ABC algorithm can search the

solution spaces in continuous domains modeled via SVR

instead of in the limited discrete experiment levels, thus

finding a more robust design than that obtained by the

traditional analysis of variance. Consequently, the pro-

posed integrated approach in this study can be considered

feasible and effective and can be popularized as a useful

tool for resolving general multiresponse parameter design

problems in the real world.

Keywords Total internal reflection lens � Support vector

regression � Taguchi loss function � Artificial bee colony �
Multiresponse parameter design

1 Introduction

In many real-world applications, several of the output

responses of a product/system must be optimized simulta-

neously by determining the optimal settings for input vari-

ables (control factors), called multiresponse parameter

design problems. The Taguchi method is a well-known

traditional approach for addressing such problems; how-

ever, some subjective trade-offs must be made while

selecting the optimal setting for each control factor in order

to simultaneously consider all responses. Therefore, to deal

with the parameter design problems with multiple respon-

ses, some approaches [1–4] combining miscellaneous

techniques from various fields have been proposed and have

yielded adequate implementation results. These studies

could only determine the settings of the control factors

based on their original discrete experimental levels; how-

ever, the true optimal parameter settings for the control

factors might exist in their experimental ranges with con-

tinuous domains. For this reason, mapping the functional

relationships (mathematical models) between output

responses and input control factors using modeling meth-

odologies and finding the settings of the control factors in

continuous domains by exploring well-constructed
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mathematical models using optimization algorithms have

been attempted [5–13]. In these studies, the second-order

regression models, neural networks, and genetic program-

ming are common tools for building estimation models.

However, the relationships between the input control fac-

tors and output responses might be too complex, and

therefore, second-order regression models do not always

yield estimation models with a sufficient degree of accu-

racy, i.e., a sufficient R-square. Although neural networks

can provide black-box models that are, in general, more

accurate than second-order regression models, the topology

(e.g., the numbers of hidden layers and neurons in each

hidden layer), parameters (e.g., learning rate and momen-

tum), activation functions, and learning rules will signifi-

cantly affect their training results (performance). For

genetic programming, the best models generated during

each run are not always identical owing to the probabilistic

mechanism used in its evolutionary procedure. In addition,

transforming multiple responses into an integrated perfor-

mance index, i.e., objective, and determining the optimal

settings of the control factors through various optimization

techniques with the goal of optimizing a single objective

has been a common approach for addressing several cor-

related (or uncorrelated) and conflict output responses.

However, several parameters, which must be specified

subjectively in advance, are usually required for combining

multiple responses into one. Furthermore, the mathematical

models constructed during the optimization procedure are

usually too complex or difficult for users.

To overcome the above-mentioned shortcomings, this

study attempts to design a general procedure for resolving

the popular and complicated multiresponse parameter

design problems based on a support vector regression

(SVR), the Taguchi loss function, and the artificial bee

colony (ABC) algorithm. Specifically, the SVR is applied

to model the mathematical relationship between the input

control factors and output responses, as the SVR technique

combined with a radial basis function (RBF) kernel can

nonlinearly map data into a higher dimensional space [14]

and construct a regression model that reflects the common

nonlinear functional dependence of the output responses on

the input control factors. In addition, the popular grid-

search approach [14] can be used to effectively and effi-

ciently find the best parameters in the SVR, thus obtaining

a unique estimation model. Next, the Taguchi loss function

is utilized to evaluate the overall quality (performance) of a

product from the viewpoint of the total loss (cost) incurred

owing to deviations in the quality characteristics from their

targets. The advantage of assessing the quality character-

istics using the Taguchi loss function is that decision

makers need not actually determine the only parameter,

i.e., quality loss coefficient, as illustrated in Sect. 5.

Finally, the ABC algorithm has been utilized successfully

in solving optimization problems in various fields and has

yielded sufficient results [15–18]; however, applications of

multiresponse parameter design problems are rare. Hence,

this study attempts to apply the ABC algorithm during the

optimization stage, thus determining the (near) optimal

parameter settings of the control factors by exploring well-

constructed SVR models.

The remainder of this paper is organized as follows.

Previous research on the topic of multiresponse parameter

design problems is reviewed in Sect. 2. Section 3 briefly

introduces the three main methodologies—SVR, Taguchi

loss function, and the ABC algorithm—used in our study.

The integrated approach to deal with multiresponse

parameter design problems is presented in Sect. 4. In Sect.

5, the feasibility and effectiveness of the proposed

approach are illustrated by means of a case study aimed at

improving the design of a TIR lens comprising an MR16

light-emitting diode (LED) lamp. Finally, conclusions are

summarized in Sect. 6.

2 Literature review

Multiresponse parameter design problems have become

increasingly important and have received a considerable

amount of attention from both researchers and practitioners,

since more than one correlated response must be assessed

simultaneously in most modern products/processes. The

Taguchi method is a well-known traditional approach for

tackling such a problem; however, it has not proved to be

fully functional for optimizing multiple responses, espe-

cially in the case of correlated responses. Therefore, many

recent studies have centered on solving parameter design

problems with multiple responses based on various tech-

niques. For example, Kim and Lin [10] presented an

approach that aims to maximize the overall minimal value

of satisfaction with respect to all responses in order to

address the multiresponse parameter design problem by

using response surface methodology (RSM) and exponen-

tial desirability functions. Lu and Antony [4] utilized a

fuzzy-rule-based inference system to map signal-to-noise

(S/N) ratios for multiple responses into a single perfor-

mance index, called multiple performance statistic (MPS).

The Taguchi method is then applied to analyze the MPS

values in an experiment, thus identifying the important

factor/interaction effects, as well as determining the optimal

settings of factors for optimizing the process performance.

Tong et al. [1] applied principal component analysis (PCA)

and the technique for order preference by similarity to ideal

solution (TOPSIS) to optimize multiple responses simulta-

neously. Kovach and Cho [5] developed a multidisciplin-

ary–multiresponse robust design (MMRD) optimization

approach for resolving parameter design problems with
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multiple responses. In their approach, a combined array

design is utilized to effectively incorporate noise factors

into a robust design model. In addition, a nonlinear goal

programming technique in which the system specifications

and desired target values are incorporated as constraints and

goals, which are prioritized with the first goal to minimize

the variance and the second goal to achieve the mean equal

to the desired target value, is employed to optimize multiple

responses simultaneously. Routara et al. [2] proposed an

approach that applies weighted principal component anal-

ysis (WPCA), combined quality loss (CQL), and the

Taguchi method to tackle multiresponse optimization

problems. Ramezani et al. [11] developed an approach for

resolving multiple-response optimization problems in

which concepts from goal programming with normalization

based on negative and positive ideal solutions, as well as

prediction intervals, are used to obtain a set of non-domi-

nated, efficient solutions; the non-dominated solutions are

then ranked using the TOPSIS to generate some suggested

control factor settings. Sibalija et al. [7] proposed an inte-

grated approach based on Taguchi method, principal com-

ponent analysis (PCA), gray relational analysis (GRA),

neural networks (NNs), and genetic algorithms (GAs) to

optimize a multiresponse process. In their approach, the

overall performance with respect to all responses is evalu-

ated by means of a synthetic performance measure gener-

ated using Taguchi’s quality losses, PCA, and GRA. The

relationship between the synthetic performance measure

and control factors is then established by using well-trained

NNs. Finally, the optimal parameter control factor settings

are determined by searching the mathematical model

described via the constructed NNs. Al-Refaie [3] proposed a

procedure that uses two techniques of data envelopment

analysis (DEA) to improve the performance of a product/

process with multiple responses. In the proposed procedure,

each experimental trial in a Taguchi orthogonal array is

treated as a decision-making unit (DMU) in which the

multiple responses are set as inputs and/or outputs for all

DMUs. The cross-evaluation and aggressive formulation

techniques of DEA are then utilized to generate efficiency

scores to measure the performance of each DMU. Finally,

the optimal combination of product/process factor levels is

identified based on the maximum value of the efficiency

scores obtained from DEA. Salmasnia et al. [13] presented a

three-phased approach that uses principal component

analysis (PCA), adaptive-network-based fuzzy inference

systems (ANFIS), desirability function and genetic algo-

rithms (GAs) to simultaneously optimize multiple corre-

lated responses in which the relationships between

responses and design variables are highly nonlinear. He

et al. [8] considered the uncertainty associated with the

fitted response surface model by taking account of all values

in the confidence interval rather than a single predicted

value for each response. In their approach, robust optimal

solutions that can simultaneously optimize multiple

responses are found by using a hybrid genetic algorithm

coupled with pattern search, in which the robustness mea-

sure for the traditional desirability function is defined by the

worst-case strategy. Bera and Mukherjee [9] proposed an

adaptive penalty function-based ‘‘maximin’’ desirability

index for multiple-response optimization (MRO) problems

with close engineering tolerances of quality characteristics.

In addition, a near-optimal solution for the single objective,

i.e., desirability index, problem is determined via continu-

ous ant colony optimization, ant colony optimization in real

space, and global best particle swarm optimization.

Based on the approaches above, it can be seen that a

solution for tackling multiresponse parameter design

problems is generally composed of three stages: data

gathering, model building, and optimization. Furthermore,

transforming multiple responses into a single objective and

determining the optimal parameter settings of the control

factors by optimizing the single objective using various

optimization techniques has been a feasible and effective

way to address multiresponse parameter design problems.

However, as illustrated in Sect. 1, there are some draw-

backs to the previously proposed approaches when inte-

grating multiple responses into a single response, building

an estimation model, or finding the optimal settings of the

control factors. Therefore, this study attempts to apply the

SVR, Taguchi loss function, and ABC algorithm to design

a general procedure for resolving multiresponse parameter

design problems and uses a case study on optimizing the

design of a total internal reflection (TIR) lens to evaluate

the feasibility and effectiveness of the proposed approach.

3 Research methodologies

In this section, the three main methodologies applied in the

proposed integrated procedure for resolving multiresponse

parameter design problems are briefly introduced, starting

with SVR.

3.1 Support vector regression

The support vector machine (SVM), originally developed

by Vapnik et al. [19–23], is a supervised learning model

with an associated learning algorithm that is used to con-

struct a hyperplane in a high-dimensional feature space

used for classification. The SVM can also be applied to

cases of function approximation or regression, called sup-

port vector regression (SVR) [23, 24]. Given a training data

fXk; dkgQ
k¼1, where the input variable Xk 2 R

n is an n-

dimensional vector and the output variable dk 2 R is a real

value, we want to construct an appropriate model to
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describe the functional dependence of d on X. SVR uses a

map U to transform a nonlinear regression problem into a

linear regression problem in a high-dimensional feature

space and approximates a function of the form

f ðX;WÞ ¼
Xm

i

wi/iðXÞ þ w0 ¼WTUðXÞ þ w0 ð1Þ

where wi is the weight; W is the weight vector; /iðXÞ is the

feature; UðXÞ is the feature vector; and w0 is the bias. In

order to evaluate the prediction error, Vapnik [25]

introduced a general error function, called the e-
insensitive loss function, defined by

Leðd; f ðX;WÞÞ ¼
0 if jd � f ðX;WÞj � e
jd � f ðX;WÞj � e otherwise

�
:

ð2Þ

Therefore, the penalty (loss) can be expressed by

di �WTUðXÞ � w0 � e� ni; i ¼ 1; . . .;Q ð3Þ

WTUðXÞ þ w0 � di � e� n
0

i; i ¼ 1; . . .;Q ð4Þ

ni� 0; i ¼ 1; . . .;Q ð5Þ

n
0

i� 0; i ¼ 1; . . .;Q ð6Þ

where ni and n
0

i are non-negative slack variables used to

measure the errors above and below the predicted function,

respectively, for each data point. The empirical risk

minimization problem can then be defined as [25, 26]

1

2
jjW jj2 þ C

XQ

i¼1

ni þ
XQ

i¼1

n
0

i

 !
ð7Þ

subject to the constraints in Eqs. (3)–(6), where C is a user-

specified parameter for the trade-off between complexity

and losses. To solve the optimization in Eq. (7), the

Lagrangian in primal variables are constructed as

LPðW ;w0;N;N
0;K;K

0
;C;C

0 Þ

¼ 1

2
WT W þ C

XQ

i¼1

ni þ
XQ

i¼1

n
0

i

 !

�
XQ

i¼1

ki WTUðXiÞ þ w0 � di þ eþ ni

� �

�
XQ

i¼1

k
0

i di �WTUðXiÞ � w0 þ eþ n
0

i

� �

�
XQ

i¼1

ðcini þ c
0

in
0

iÞ

ð8Þ

where N ¼ ðn1; . . .; nQÞT and N
0 ¼ ðn01; . . .; n

0

QÞ
T

are slack

variable vectors; K ¼ ðk1; . . .; kQÞT ,K
0 ¼ ðk01; . . .; k

0

QÞ
T
,

C ¼ ðc1; . . .; cQÞT , and C
0 ¼ ðc01; . . .; c

0
QÞ

T
are the

Lagrangian multiplier vectors for Eqs. (3)–(6). For

optimality, the partial derivatives of LP with respect to the

primal variables have to vanish at the saddle point. Therefore,

oLPðW ;w0;N;N
0;K;K0;C;C0Þ

oW
¼ 0) W

¼
XQ

i¼1

ðki � k
0

iÞUðXiÞ ð9Þ

oLPðW ;w0;N;N
0;K;K0;C;C0Þ

ow0

¼ 0)
XQ

i¼1

ðki � k
0

iÞ ¼ 0

ð10Þ

oLPðW ;w0;N;N
0;K;K0;C;C0Þ

oni

¼ 0) ci ¼ C � ki ð11Þ

oLPðW ;w0;N;N
0;K;K0;C;C0Þ

on
0

i

¼ 0) c
0

i ¼ C � k
0

i: ð12Þ

The simplified dual form LD can then be obtained by

substituting Eqs. (9), (11), and (12) into Eq. (8), as

maxmize

LDðK;K0Þ ¼
XQ

i¼1

diðki � k
0

iÞ � e
XQ

i¼1

ðki þ k
0

iÞ

� 1

2

XQ

i¼1

XQ

j¼1

ðki � k
0

iÞðkj � k
0

jÞKðXi;XjÞ

ð13Þ

subject to

XQ

i¼1

ðki � k
0

iÞ ¼ 0 ð14Þ

0� ki�C; i ¼ 1; . . .;Q ð15Þ

0� k
0

i�C; i ¼ 1; . . .;Q ð16Þ

where KðXi;XjÞ � UðXiÞ � UðXjÞ is called the kernel function.

In addition, the data points for which ki or k
0

i is not zero are the

support vectors. With the Lagrangian optimization done, the

optimal weight vectors can be obtained as follows

Ŵ ¼
XQ

i¼1

ðk̂i � k̂
0

iÞUðXiÞ ¼
Xns

k¼1

ðk̂k � k̂
0

kÞUðXkÞ ð17Þ

where ns is the number of support vectors, and the index k

only runs over support vectors. Finally, the optimal bias

can be obtained by exploiting the Karush–Kuhn–Tucker

(KKT) conditions [27, 28], as follows

ŵ0 ¼
1

nus

Xnus

i¼1

di �
Xns

k¼1

bkKðXk;XiÞ � e signðbiÞ
 !

ð18Þ

where nus is the number of unbounded support vectors with

Lagrangian multipliers satisfying 0\ki\C and
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bi ¼ k̂i � k̂
0

i. Therefore, the approximate regression model

can be obtained as follows:

f ðX; k̂i; k̂
0

iÞ ¼
XQ

i

ðk̂i � k̂
0

iÞKðXi;XÞ þ ŵ0: ð19Þ

The applications of SVR for resolving real-world

problems in various fields are rich and plentiful, and

adequate results have been obtained in the literature [29–

37]. Further analysis and discussions on SVR can be found

in Cristianini and Shawe-Taylor [38], Smola and Schölkopf

[39], and Kumar [40].

3.2 Taguchi loss function

Genichi Taguchi considers the quality of a product in terms

of its loss to society—which is composed of the costs

incurred in the production process and the costs encoun-

tered during its usage by a customer—and uses a quadratic

loss function to quantify these costs. For a nominal-the-best

(NTB) case, the loss function is defined as

LðyÞ ¼ kðy� mÞ2 ð20Þ

where y is the quality characteristic (output response) of a

product, m is its target value, k is the quality loss

coefficient, and L(y) is the quality loss. The loss

functions for the smaller-the-better (STB) and the larger-

the-better (LTB) quality characteristics are defined as

LðyÞ ¼ ky2 ð21Þ

and

LðyÞ ¼ k
1

y2
; ð22Þ

respectively.

The Taguchi loss function recognizes that more con-

sistent products and low-cost products are desired by cus-

tomers and producers, respectively. It also provides

engineers with more understanding of the importance of

designing for variation. In addition, the loss function makes

the evaluation of quality more effective and helps designers

make better engineering decisions, such as the choice of

materials, components, and designs in the early phase of

the development of a product.

3.3 Artificial bee colony algorithm

In the natural world, honey bees forage according to a

particular repeated process. At the very beginning, a

potential forager starts as an unemployed bee since it has

no knowledge about the food sources around the hive. The

unemployed bee can be a scout that is sent to search for

food sources around the hive spontaneously or can be a

recruit that is recruited as a forager after being motivated

by the waggle dances performed by other foragers. Once a

scout finds a food source, it becomes an employed bee,

memorizes the location, and starts to exploit the food

source. The employed bee then takes a load of nectar from

the food source, returns to the hive, and unloads the food.

At this time, the employed bee attracts more onlookers

through waggle dances or continues to forage by itself

without attracting any onlooker. As soon as the amount of

nectar in the food source is exhausted, the employed bee

abandons that food source and again becomes an unem-

ployed bee. The unemployed bee may then become a scout

that searches for a new food source or become an onlooker

and stay in the dancing area of the hive until it gets

attracted to the waggle dance performed by other employed

bees. After acquiring information about all the current rich

sources through communication using waggle dances, an

onlooker can engage itself on the most profitable source

and become an employed foraging bee again.

Inspired by the intelligent foraging behavior of honey

bee swarms, Karaboga [41] developed a bee swarm algo-

rithm, called the artificial bee colony (ABC) algorithm, for

optimizing multivariable numerical functions. In the ABC

algorithm, the ABC contains three groups of bees:

employed bees, onlookers, and scouts. The first half of the

colony consists of the employed artificial bees, while the

second half is composed of the onlookers. There is only

one employed bee for each food source and an employed

bee becomes a scout as soon as it abandons a food source.

In addition, the position of a food source represents a

possible solution to the optimization problem being con-

sidered, while the amount of nectar in a food source cor-

responds to the quality (fitness) of a solution. Suppose there

are n decision variables in an optimization problem, the

general implementation steps of the ABC algorithm are

summarized as follows [41–43]:

Step 1: Randomly generate an initial population con-

sisting of Nf feasible solutions (the positions of food

sources) where each solution xi ¼ ðx1
i ; x

2
i ; . . .; xn

i Þ ði ¼
1; 2; . . .;Nf Þ is an n-dimensional vector.

Step 2: Evaluate the fitness of the initial solutions

generated in Step 1.

Step 3: Each employed bee produces a candidate food

position vi ¼ ðv1
i ; v

2
i ; . . .; vn

i Þ ði ¼ 1; 2; . . .;Nf Þ from the

old one in its memory by,

v
j
i ¼ x

j
i þ rn

j
i ðx

j
i � x j

qÞ; 8i ¼ 1; 2; . . .;Nf ;

8j ¼ 1; 2; . . .; n;
ð23Þ

where q 2 1; 2; . . .;Nf

� �
is a randomly chosen index that

has to differ from i, and rn
j
i is a random number in the

range (-1, 1).
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Step 4: Evaluate the fitness of the candidate solutions

created in Step 3. An employed bee memorizes the

candidate food position vi ¼ ðv1
i ; v

2
i ; . . .; vn

i Þ if the fitness

corresponding to the candidate food position is superior

to the fitness of its old food position. Otherwise, the

employed bee keeps the old food position in its memory,

i.e.,xi ¼ ðx1
i ; x

2
i ; . . .; xn

i Þ:
Step 5: An onlooker chooses a food source with a

probability calculated by

pbi ¼
fiti

PNf

i¼1

fiti

; 8i ¼ 1; 2; . . .;Nf ; ð24Þ

where pbi is the probability that the ith food source will be

chosen by an onlooker as the target to forage and fiti is the

fitness of the ith food source.

Step 6: Each onlooker produces a modification of the

position of the selected food source based on Eq. (23).

Step 7: Evaluate the fitness of the modified solutions

made in Step 6. An onlooker memorizes the new

position if the fitness corresponding to the modified

solution is higher than that of its previous position.

Step 8: Memorize the position of the best food source

found so far by the employed bees and onlookers.

Step 9: The employed bee abandons the food source

xi� ¼ ðx1
i� ; x

2
i� ; . . .; xn

i� Þ and becomes a scout if it cannot

improve the fitness of the corresponding food position in

Climit search cycles.

Step 10: Each scout becomes an employed bee again and

discovers a new food source based on

x
j
i� ¼ x

j
min þ sn jðx j

max � x
j
minÞ; 8j ¼ 1; 2; . . .; n; ð25Þ

where x j
max and x

j
min are the upper and lower bounds of the

jth decision variable, respectively, and sn j is a random

number in the range (0, 1).

Step 11: Repeat Steps 3 through 10 for MCN cycles and

designate the position of the memorized best food source

as the final optimal solution.

Notably, parameter Climit is usually set as Nf � n in the

literature [42, 43]. The ABC algorithm has been widely

applied to resolve problems in various fields and adequate

results have been reported in the literature [15–18, 44].

Further discussions and analyses of the ABC algorithm can

be found in Karaboga [41] and Karaboga and Basturk [42,

43].

4 Proposed integrated approach

In this paper, an integrated procedure for solving multire-

sponse parameter design problems using SVR, Taguchi

loss function, and the ABC algorithm is proposed. The

proposed solution approach comprises six stages that are

described in detail as follows:

4.1 Stage 1: State the problem

Step 1: State the problem clearly and concisely accord-

ing to the objectives of the quality improvement project.

Step 2: Determine the key quality characteristics, i.e.,

responses, of the concerned product/process, and the

measurement systems and specification limits of these

quality characteristics.

Step 3: Determine the major design/process parameters,

i.e., control factors, to be evaluated in an experiment for

their effect on the selected key quality characteristics

and the operational limits of those control factors based

on engineering principles, experience, and limitations in

the manufacturing process.

Step 4: Identify the important noise factors to be

evaluated for their effect on the quality characteristics

of interest according to the limitations in the manufac-

turing process.

4.2 Stage 2: Design an experiment and collect data

Step 5: Determine the number of experimental levels and

the values for all the experimental levels for each

selected control/noise factor.

Step 6: Select an appropriate orthogonal array as the

inner array to arrange the control factors and select an

appropriate orthogonal array as the outer array to arrange

the noise factors.

Step 7: Design an experimental layout based on the

selected inner and outer arrays.

Step 8: Conduct each experimental trial and collect

experimental data according to the designed experimen-

tal layout.

4.3 Stage 3: Build estimation models

Step 9: Normalize the key quality characteristics values

obtained along with the values of the major design/

process parameters in each experimental trial into a

range of -1 to 1 according to their corresponding

maximum and minimum values.

Step 10: Randomly divide the normalized quality

characteristics values and design/process parameters

into two groups: training data and test data, based on a

pre-specified proportion.

Step 11: Train and determine an appropriate SVR model

for each key quality characteristic to model the math-

ematical relationship between input control factors and

the quality characteristic.
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4.4 Stage 4: Evaluate overall performance

of the product/process

Step 12: Evaluate the performance of each key quality

characteristic using an appropriate Taguchi loss function

as

LðyiÞ ¼
kiðyi � miÞ2 for an NTB case

kiy
2
i for an STB case

ki
1
y2

i

for an LTB case

8
><

>:
ð26Þ

where yi is the estimated value of the ith key quality

characteristic obtained by de-normalizing the outputted

value from the corresponding SVR model constructed in

Step 11, and ki, L(yi), and mi are the quality loss coefficient,

quality loss, and target value for the ith key quality char-

acteristic, respectively.

Step 13: Normalize the quality loss of each key quality

characteristic using

LnðyiÞ ¼
LðyiÞ

Lmax;UðyiÞ if yi�mi

LðyiÞ
Lmax;LðyiÞ otherwise

(
for an NTB case, ð27Þ

LnðyiÞ ¼
LðyiÞ�LminðyiÞ

LmaxðyiÞ�LminðyiÞ if yi� IVi;STB

0 otherwise
for an STB case,

�

ð28Þ

LnðyiÞ ¼
LðyiÞ�LminðyiÞ

LmaxðyiÞ�LminðyiÞ if yi� IVi;LTB

0 otherwise

�
for an LTB case,

ð29Þ

where LnðyiÞ, Lmax;UðyiÞ, Lmax;LðyiÞ, LminðyiÞ, and LmaxðyiÞ
are the normalized, upper maximum, lower maximum,

minimum, and maximum quality losses for the ith key

quality characteristic, respectively; mi is the target value of

the ith key quality characteristic; and IVi,STB and IVi,LTB

are the ideal values for the ith key quality characteristic in

the STB and LTB cases, respectively. Notably, the upper

specification limit for an STB quality characteristic can be

set definitely; however, the ideal value IVi,STB, which

represents the optimal minimum of an STB quality

characteristic, cannot be defined clearly and must be

determined by consulting with design engineers. The same

approach is also applied to set the ideal value IVi,LTB for an

LTB quality characteristic. The Lmax;UðyiÞ and Lmax;LðyiÞ
are calculated as follows:

Lmax;UðyiÞ ¼ kiðUSLi � miÞ2; ð30Þ

Lmax;LðyiÞ ¼ kiðLSLi � miÞ2 ð31Þ

where USLi and LSLi are the upper and lower specification

limits for the ith key quality characteristic, respectively. In

addition, LminðyiÞ and LmaxðyiÞ are calculated by

LminðyiÞ ¼
kiIV

2
i;STB for an STB case

ki
1

IV2

i;LTB

for an LTB case

(
; ð32Þ

LmaxðyiÞ ¼
kiUSL2

i for an STB case

ki
1

LSL
2

i

for an LTB case

(
: ð33Þ

Step 14: Calculate the weighted average quality loss

using

AQLw ¼

Pnq

i

wiLnðyiÞ

Pnq

i

wi

ð34Þ

where wi denotes the weight of the ith key quality char-

acteristic, and nq is the total number of key quality

characteristics.

4.5 Stage 5: Optimize control factors settings

Step 15: Explore the experimental ranges of the major

design/process parameters by using the ABC algorithm

where the mathematical relationships between the

design/process parameters and the key quality charac-

teristics are described by the SVR models constructed

in Step 11. The fitness in the ABC algorithm is defined

by

fitABC ¼ 1� AQLw: ð35Þ

Step 16: Obtain the (near) optimal settings for the major

design/process parameters.

4.6 Stage 6: Conduct a confirmation experiment

Step 17: Conduct a confirmation experiment to verify the

feasibility and effectiveness of the optimal settings

acquired for the major design/process parameters.

Step 18: If the confirmation result is unsatisfactory,

repeat the entire procedure.

5 Case study

In this section, a case study aimed at improving the

design of a TIR lens is used to verify the feasibility and

effectiveness of the proposed integrated solution proce-

dure for resolving multiresponse parameter design prob-

lems. Detailed implementation steps are presented in the

following sub-sections, starting with the problem

statement.
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5.1 Problem statement

A light-emitting diode (LED) is a semiconductor diode

that converts applied voltage into light. Early LEDs could

only emit low-intensity red light. Nowadays, LEDs with

diverse brightness and a wide range of wavelengths from

visible to ultraviolet and infrared light are available and

are being used extensively in various fields. For example,

Fig. 1a is an MR16 LED lamp (where MR stands for

multifaceted reflector and 16 is the diameter in eighths of

an inch across the front face) that is used in most fixtures

designed for a traditional MR16 halogen lamp. An MR16

LED lamp comprises four major components: one or

multiple LED emitters, one or multiple TIR lenses, a heat

sink, and a driver. In order to maximize the overall

lighting performance of an MR16 LED lamp, the TIR

lens, shown in Fig. 1b, requires an elaborate design.

Traditional experimental design techniques and the

Taguchi method, along with the principles of optics and

experience, are common approaches used by design

engineers to determine the optimal geometric design and

selection of materials for a TIR lens. However, some

trade-offs have to be made through engineering judgments

in order to deal with conflicts when selecting an optimal

setting for each design parameter in the simultaneous

optimization of all quality characteristics. Therefore, the

design parameter settings must be revised and further

fine-tuned through a repeated trial-and-error process in

order to determine the final design of a TIR lens. This

trial-and-error approach increases the decision-making

uncertainty. Furthermore, it is costly and time consuming,

as well as being unable to ensure that the parameter

settings of geometric designs and materials are truly

optimal.

According to the objectives of the quality improvement

project aimed at optimizing the design of a TIR lens, five

key quality characteristics that are crucial to downstream

clients were determined through discussions with LED

design engineers and quality managers as follows:

(1) Luminous flux (y1)

Luminous flux is the energy per unit time that is radiated

from a source over visible wavelengths from about 330

(nm) to 780 (nm). The SI unit of luminous flux is the lumen

(lm).

(2) Viewing angle at 0� (y2)

The viewing angle is defined as the angle within which

the luminous intensity (in candela, cd) is at least half of the

maximum luminous intensity. The viewing angle at 0� is

measured from the direction of 0�, i.e., the x axis, based on

the LED emitter contained in the MR16 LED lamp.

(3) Viewing angle at 45� (y3)

The viewing angle at 45� is the viewing angle observed

from the direction of 45�.

(4) Viewing angle at 90� (y4)

The viewing angle at 90� is the viewing angle observed

from the direction of 90�, i.e., the y axis.

(5) Viewing angle at 135� (y5)

The viewing angle at 135� is the viewing angle observed

from the direction of 135�.

The specification limits, response types, and associated

weights for the above five key quality characteristics, as

described in Sect. 4, for a TIR lens used in an MR16 LED

lamp are summarized in Table 1. Notably, the viewing

(A) An MR16 LED lamp (B) A TIR lens 

Fig. 1 An MR16 LED lamp and a TIR lens
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angles (y2 to y5) are fixed once the settings of the major

design parameters, including the lens material (x1), lens

height (x2), lens radius of curvature (x3), micro-lens

diameter (x4), and micro-lens spacing (x5), as described

later, are determined regardless of the optical output power

of the LED chips applied in an MR16 LED lamp. However,

the luminous flux (y1) can still be improved by using LED

chips with a higher optical output power even when the

design of the TIR lens has already been decided. Therefore,

the importance of making these viewing angles meet their

targets is relatively higher than improving the luminous

flux; thus, after consulting with design engineers, this study

assigned larger weights for the viewing angles (wi ¼ 2, for

i ¼ 2; 3; 4; 5) than for the luminous flux (w1 ¼ 1), as shown

in the last row of Table 1.

As a result of brainstorming with design engineers, one

important material property and four main geometric

parameters, as illustrated in Fig. 2, of a TIR lens were

selected as control factors to evaluate their effect on the

above five quality characteristics. They are as follows:

1. Lens material (x1): the material used to fabricate the

TIR lens.

2. Lens height (x2): the height of the TIR lens.

3. Lens radius of curvature (x3): the radius of curvature of

the TIR lens.

4. Micro-lens diameter (x4): the diameter of the micro-

lens.

5. Micro-lens spacing (x5): the spacing between two

adjacent micro-lenses.

Notably, as shown in Fig. 2, the micro-lens spacing (x5)

not only denotes the spacing between two adjacent micro-

lenses in the same circle but also represents the distance

between two adjacent concentric circles where the micro-

lenses were arranged. In addition, the design parameters for

the geometric shape have manufacturing tolerances due to

the limitations in precision when fabricating a TIR lens.

Therefore, the following four noise factors were considered

to evaluate their effect on the quality characteristics of

interest:

1. Tolerance in lens height (z1): the manufacturing

tolerance in the height of the TIR lens.

2. Tolerance in lens radius of curvature (z2): the manu-

facturing tolerance in the radius of curvature of the

TIR lens.

3. Tolerance in micro-lens diameter (z3): the manufac-

turing tolerance in the diameter of a micro-lens.

4. Tolerance in micro-lens spacing (z4): the manufactur-

ing tolerance in the spacing between two adjacent

micro-lenses.

5.2 Experimental design and data collection

In order to estimate the nonlinear effects of the four main

geometric parameters, i.e., x2–x5, upon the key quality

characteristics, three experimental levels were set for each

of these design parameters. For the material design

parameter (x1), two types of materials were considered for

the TIR lens in this study. In addition, three noise levels

were considered for each of the four noise factors, i.e., z1–

z4. Table 2 summarizes the experimental settings for the

design parameters and noise factors. Note that a too narrow

spacing between two adjacent micro-lenses causes the

micro-lenses to overlap. Therefore, the experimental set-

tings of the parameter micro-lens spacing (x5) were set as

multiples of the parameter setting of the micro-lens

diameter (x4), as shown in the last column of Table 2.

Table 1 Typical specifications, response types, and associated

weights for the key quality characteristics

y1 (lm) y2 (�) y3 (�) y4 (�) y5 (�)

Response type LTB NTB NTB NTB NTB

mi – 80 80 80 80

LSLi 202.5 75 75 75 75

USLi – 85 85 85 85

IVi,STB – – – – –

IVi,LTB 216.0 – – – –

wi 1 2 2 2 2

(A) Side view of a TIR lens 

(B) Top view of a TIR lens 

Fig. 2 Illustration of the geometric design parameters of a TIR lens
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An orthogonal array that can arrange one two-level and

four three-level control factors requires a minimum degree

of freedom of 9, i.e., ð2� 1Þ � 1þ ð3� 1Þ � 4. Hence, a

Taguchi L18ð21 � 37Þ orthogonal array was selected as the

inner array to design the experiment. Here, the first design

parameter (x1) was assigned to the first column, while the

remaining four design parameters, i.e., x2–x5, were

assigned to the second to fifth columns. Similarly, the four

noise factors were allocated to an outer array designed by a

Taguchi L9ð34Þ orthogonal array. Thus, the total number of

experimental trials in this case study was 162, i.e.,L18 � L9,

as shown in Table 3.

To conduct the experiment, the SolidWorks 2010

(http://www.solidworks.com) modeling software was used

to construct a geometric model of the TIR lens according to

the settings for design parameters x2–x5 in Table 3, as well

as to build the geometric model of an LED emitter. The

Table 2 Settings of experimental levels for design parameters and

noise factors

Design

parameters

x1 x2

(mm)

x3

(mm)

x4

(mm)

x5

(mm)

Level 1 1 (PMMA) 15 20 1.6 1.5x4

Level 2 2 (PC) 20 25 2.1 1.7x4

Level 3 – 25 30 2.6 1.9x4

Noise factors – z1 (mm) z2 (mm) z3 (mm) z4 (mm)

Level 1 – -0.05 -0.10 -0.05 -0.05

Level 2 – 0.00 0.00 0.00 0.00

Level 3 – ?0.05 ?0.10 ?0.05 ?0.05

(1) To maintain confidentiality, the level settings for the design

parameters in this table have been shifted by certain constants and are

therefore not the original values applied in the real experiment. (2)

PMMA and PC represent Polymethylmethacrylatem and Polycar-

bonate, respectively

Table 3 A part of the collected experimental results

No. Design parameters Noise factors Quality characteristics

x1 x2 (mm) x3 (mm) x4 (mm) x5 (mm) z1 (mm) z2 (mm) z3 (mm) z4 (mm) y1 (lm) y2 (�) y3 (�) y4 (�) y5 (�)

1 1 15 20 1.6 2.40 -0.05 -0.10 -0.05 -0.05 221.9 86.8 85.4 85.6 86.9

2 1 15 20 1.6 2.40 -0.05 0.00 0.00 0.00 221.4 87.3 86.8 87.4 86.5

3 1 15 20 1.6 2.40 -0.05 ?0.10 ?0.05 ?0.05 221.1 86.9 85.5 85.6 85.8

4 1 15 20 1.6 2.40 0.00 -0.10 0.00 ?0.05 222.3 85.6 86.4 85.1 85.5

5 1 15 20 1.6 2.40 0.00 0.00 ?0.05 -0.05 207.9 83.3 82.4 83.2 84.0

6 1 15 20 1.6 2.40 0.00 ?0.10 -0.05 0.00 222.9 87.8 88.4 87.7 87.3

7 1 15 20 1.6 2.40 ?0.05 -0.10 ?0.05 0.00 219.9 86.8 86.4 84.9 84.8

8 1 15 20 1.6 2.40 ?0.05 0.00 -0.05 ?0.05 223.7 87.9 87.2 88.5 87.6

9 1 15 20 1.6 2.40 ?0.05 ?0.10 0.00 -0.05 220.2 86.2 84.7 84.5 83.9

145 2 25 25 1.6 3.04 -0.05 -0.10 -0.05 -0.05 204.3 90.7 88.0 89.5 90.7

146 2 25 25 1.6 3.04 -0.05 0.00 0.00 0.00 200.0 88.6 86.7 87.7 90.9

147 2 25 25 1.6 3.04 -0.05 ?0.10 ?0.05 ?0.05 207.0 90.2 89.0 89.0 89.9

148 2 25 25 1.6 3.04 0.00 -0.10 0.00 ?0.05 207.4 90.8 89.5 88.7 90.5

149 2 25 25 1.6 3.04 0.00 0.00 ?0.05 -0.05 187.8 86.3 86.6 88.2 91.3

150 2 25 25 1.6 3.04 0.00 ?0.10 -0.05 0.00 207.3 90.0 90.2 90.8 91.8

151 2 25 25 1.6 3.04 ?0.05 -0.10 ?0.05 0.00 189.2 88.5 87.5 88.6 91.3

152 2 25 25 1.6 3.04 ?0.05 0.00 -0.05 ?0.05 209.7 91.5 89.9 91.1 92.1

153 2 25 25 1.6 3.04 ?0.05 ?0.10 0.00 -0.05 190.6 88.5 87.1 88.0 89.2

154 2 25 30 2.1 3.15 -0.05 -0.10 -0.05 -0.05 187.0 85.5 83.6 86.1 87.6

155 2 25 30 2.1 3.15 -0.05 0.00 0.00 0.00 190.8 86.4 84.4 85.9 87.3

156 2 25 30 2.1 3.15 -0.05 ?0.10 ?0.05 ?0.05 186.3 85.7 84.3 87.6 87.0

157 2 25 30 2.1 3.15 0.00 -0.10 0.00 ?0.05 193.4 88.2 85.2 88.0 88.7

158 2 25 30 2.1 3.15 0.00 0.00 ?0.05 -0.05 170.9 84.4 83.1 84.0 85.2

159 2 25 30 2.1 3.15 0.00 ?0.10 -0.05 0.00 198.7 85.9 85.2 87.8 88.2

160 2 25 30 2.1 3.15 ?0.05 -0.10 ?0.05 0.00 182.0 87.9 85.4 87.5 88.7

161 2 25 30 2.1 3.15 ?0.05 0.00 -0.05 ?0.05 201.3 89.3 86.4 87.0 89.8

162 2 25 30 2.1 3.15 ?0.05 ?0.10 0.00 -0.05 179.8 85.4 82.6 85.3 86.8
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SolidWorks model constructed was then fed into TracePro

5.0 (http://www.lambdares.com) simulation software for it

to carry out optical simulations with the parameter setting

of the lens material (x1). Notably, the LED emitter used in

this study comprised nine chips—each a square with an

edge length of 0.61 (mm) and a thickness of 0.15 (mm).

The spacing between two adjacent chips and the diameter

of the optical lens were 0.15 (mm) and 4.5 (mm), respec-

tively. The thicknesses of the base layer and substrate were

set as 0.16 (mm) and 0.54 (mm), respectively, as shown in

Fig. 3. The optical power emitted by the surface of each

chip in the LED emitter was set at 30 (lumens), and the

wavelength of the emitted rays was set at 550 (nm). The

surface property of the substrate was set as ‘‘diffuse

white’’. In addition, the refractive index of the silicone used

to fabricate the optical lens and base layer was set as 1.5.

In TracePro, the total number of tracing rays used can

significantly influence the optical simulation results. Too

few tracing rays cannot provide reliable, stable, and suffi-

ciently converged simulation results. On the other hand, it

is time consuming if too many tracing rays are simulated.

Hence, a preliminary experiment with a total number of

 

 (A) Top view of the LED emitter 

 

(B) Side view of the LED emitter 

Fig. 3 Major parameter settings for the LED emitter used in this

study

Table 4 SVR implementation results via LIBSVM

Quality characteristic Trial number in

the fivefold cross-validation

Optimal ðC; c; eÞ Training

MSE

Test

MSE

Training

R2
Test

R2
SVR model

name

y1 1* (64.0, 0.1768, 0.0110) 0.001284 0.002099 0.9950 0.9948 SVRy1

2 (64.0, 0.5000, 0.0078) 0.000574 0.004266 0.9982 0.9759

3 (64.0, 0.2500, 0.0039) 0.001183 0.002487 0.9961 0.9878

4 (64.0, 0.2500, 0.0039) 0.000914 0.002462 0.9971 0.9874

5 (45.3, 0.3535, 0.0156) 0.001003 0.002256 0.9959 0.9948

y2 1* (64.0, 0.1250, 0.0313) 0.005080 0.004741 0.9657 0.9629 SVRy2

2 (45.3, 0.1250, 0.0156) 0.005581 0.005508 0.9615 0.9578

3 (8.00, 0.2500, 0.0442) 0.005896 0.005208 0.9600 0.9565

4 (32.0, 0.2500, 0.0442) 0.003896 0.007544 0.9742 0.9209

5 (64.0, 0.0625, 0.0442) 0.003804 0.014615 0.9671 0.9415

y3 1 (64.0, 0.1768, 0.0625) 0.005624 0.009738 0.9686 0.9707

2 (64.0, 0.1250, 0.0625) 0.006728 0.006273 0.9714 0.8929

3* (64.0, 0.1768, 0.0625) 0.006127 0.006264 0.9713 0.9600 SVRy3

4 (64.0, 0.1250, 0.0442) 0.005497 0.010941 0.9739 0.9387

5 (64.0, 0.0884, 0.0442) 0.006049 0.012842 0.9648 0.9642

y4 1 (64.0, 0.0884, 0.0625) 0.004298 0.009711 0.9810 0.9566

2 (32.0, 0.5000, 0.0442) 0.003078 0.006432 0.9861 0.9764

3 (16.0, 0.1768, 0.0313) 0.004924 0.006859 0.9781 0.9705

4* (45.3, 0.0884, 0.0625) 0.005575 0.004941 0.9746 0.9811 SVRy4

5 (32.0, 0.3536, 0.0221) 0.002784 0.009356 0.9881 0.9536

y5 1 (22.6, 0.1768, 0.0625) 0.006723 0.009633 0.9643 0.9715

2 (32.0, 0.5000, 0.0625) 0.004434 0.011354 0.9819 0.8102

3* (16.0, 0.1768, 0.0625) 0.007054 0.009130 0.9700 0.9419 SVRy5

4 (22.6, 0.7071, 0.0625) 0.003979 0.011982 0.9828 0.9250

5 (32.0, 0.5000, 0.0884) 0.003927 0.021983 0.9781 0.9430
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tracing rays starting from 1,000 with a step of 1,000 was

carried out. The simulation results showed that the changes

of five key quality characteristics within a range of 5,000

tracing rays starting from 31,000 to 36,000 tracing rays

were smaller than 0.5 %. This was considered to be suffi-

ciently stable, and thus, the total number of tracing rays

used in this study was 36,000. Table 3 presents a part of the

collected experimental results.

5.3 Building estimation models

In order to describe the functional relationship between

each quality characteristic (output variables) and the five

design parameters (input variables), the LIBSVM 2.86 [45]

software for the SVR technique was applied in this study to

construct the estimated mathematical models. Here, the

radial basis function (RBF), defined by

KðXi;XjÞ ¼ expð�cjjXi � Xjjj2Þ; c [ 0; ð36Þ

was used as the kernel function for the following reasons:

(1) it can nonlinearly map samples into a higher dimen-

sional space, (2) it has only one parameter gamma (c), and

(3) it has less numerical difficulties [14]. In addition, the

grid-search approach [14] was used to determine the best

combination of parameters C, c, and e for one problem by

trying pairs of ðC; c; eÞ and picking the one with the best

cross-validation accuracy to minimize the prediction error.

First, the values obtained for the five quality characteristics

along with the values for the five design parameters in each

experimental trial were normalized in the range -1 to 1

according to their corresponding maximum and minimum

values. A fivefold cross-validation method was then

applied to the normalized experimental data. That is, the

original normalized data were randomly partitioned into

five sub-groups. Of the five sub-groups, a single sub-group

was retained as the test data for validating the constructed

SVR model, and the remaining four sub-groups were used

as the training data for constructing an SVR model. Table 4

summarizes the optimal parameters found in SVR and the

information, including the mean squared errors (MSEs) and

R-squares, for the approximation regression models

obtained for the five trials for each quality characteristic. In

order to maximize the prediction capability of the SVR

model for the unknown test data that had never been

encountered while training the SVR model, the SVR model

obtained with the least test MSE, as denoted by an asterisk

in Table 4, was selected as the optimal approximation

regression model. These selected SVR models for the five

quality characteristics are described as SVRy1, SVRy2,

SVRy3, SVRy4, and SVRy5, respectively. Thus, the nor-

malized values of the five key quality characteristics y1–y5

can be predicted by feeding the normalizations of the five

design parameters x1–x5 into the corresponding selected

SVR models.

Table 5 Execution results for the ABC algorithm

x1 x2

(mm)

x3

(mm)

x4

(mm)

x5

(mm)

CPU time (s)

Average SD

1 (PMMA) 23.21 21.20 2.10 3.70 69.1 7.0

Table 6 Confirmation experimental results

No. x1 x2

(mm)

x3

(mm)

x4

(mm)

x5

(mm)

y1 (lm) y2 (�) y3 (�) y4 (�) y5 (�)

1 1 (PMMA) 23.21 21.20 2.10 3.70 212.6 80.5 80.3 80.0 80.5

2 1 (PMMA) 23.16 21.10 2.05 3.65 212.4 80.3 80.4 80.8 81.4

3 1 (PMMA) 23.16 21.20 2.10 3.70 212.7 80.1 80.0 80.6 79.6

4 1 (PMMA) 23.16 21.30 2.15 3.75 214.0 80.7 80.2 80.4 81.0

5 1 (PMMA) 23.21 21.10 2.10 3.75 210.5 79.2 79.0 79.7 79.8

6 1 (PMMA) 23.21 21.20 2.15 3.65 207.3 80.9 79.6 80.1 81.5

7 1 (PMMA) 23.21 21.30 2.05 3.70 216.5 81.4 82.2 81.5 80.8

8 1 (PMMA) 23.26 21.10 2.15 3.70 204.7 79.5 80.1 80.4 80.3

9 1 (PMMA) 23.26 21.20 2.05 3.75 216.2 79.7 79.9 80.1 80.1

10 1 (PMMA) 23.26 21.30 2.10 3.65 213.6 81.2 82.5 82.0 80.8

Max – – – – – 216.5 81.4 82.5 82.0 81.5

Min – – – – – 204.7 79.2 79.0 79.7 79.6

Mean – – – – – 212.0 80.4 80.4 80.5 80.6

SD – – – – – 3.69 0.72 1.10 0.70 0.64

Coefficient of

variation

– – – – – 1.74 9 10-2 8.92 9 10-3 1.37 9 10-2 8.70 9 10-3 7.96 9 10-3
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5.4 Optimization of design parameters

To find the optimal settings for the five design parameters

of the TIR lens, the ABC algorithm was used to explore

the experimental ranges in which the functional relation-

ships between design parameters and key quality charac-

teristics were described via the SVRy1, SVRy2, SVRy3,

SVRy4, and SVRy5 models constructed in Sect. 5.3. Here,

each solution is represented by a five-dimensional vector,

i.e., the total number of design parameters, and the

parameters Nf and Climit, as described in Sect. 3.3, were

set as 10 and 50, respectively. The fitness function was

designed using Eq. (35), where the weights representing

the relative importance of the key quality characteristics

were set to w1 ¼ 1 and wi ¼ 2 (for i ¼ 2; 3; 4; 5), as

shown in Table 1. Notably, Eqs. (26), (29), (32), and (33)

were used to calculate the normalized quality loss for the

quality characteristic y1, an LTB response, as well as the

normalized quality losses for y2 to y5, NTB quality char-

acteristics, were obtained using Eqs. (26), (27), (30), and

(31) along with the information shown in Table 1. The

ABC algorithm was coded in Visual C?? 6.0 and ran on

a personal computer with an Intel Core 2 Quad 2.66 GHz

CPU and 2 GB RAM. The algorithm was terminated when

the best solution found so far could not be further

improved over the last 50 search cycles. Table 5 sum-

marizes the execution results of implementing the ABC

search procedure for 10 runs. Notably, the ABC algorithm

converged on the same settings for the design parameters

of the TIR lens, as shown in Table 5, in all 10 runs. The

average and standard deviation for the CPU time were

69.1 and 7.0 (s). On the basis of the above information,

the ABC algorithm can be considered an efficient and

robust optimization method for finding the optimal set-

tings for the design parameters of a product/process.

5.5 Confirmation experiment

To verify the feasibility and effectiveness of the optimal

parameter settings obtained for the TIR lens, as shown in

Table 5, a confirmation experiment using SolidWorks and

TracePro software was conducted. The results are sum-

marized in the first trial in Table 6. In addition, as men-

tioned in Sect. 5.1, four noise factors were considered in

order to evaluate the effect of manufacturing tolerances on

the five quality characteristics of interest. In order to

evaluate the robustness of the optimal settings acquired for

the design parameters of the TIR lens, a Taguchi L9ð34Þ
orthogonal array was employed to design another nine

confirmation trials, as shown by the second to tenth trials in

Table 6. The simulation results in Table 6 reveal that all

five quality characteristics in all the trials confirm theT
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specification requirements shown in Table 1. Furthermore,

the coefficients of variation for all five quality character-

istic were smaller than 0.02. The above information indi-

cates that the proposed integrated approach used in this

study is a feasible and effective method for resolving

multiresponse parameter design problems. In addition, the

TIR lens designed based on the optimal parameter settings

obtained via the proposed solution procedure was highly

robust. Therefore, the proposed method can be directly

applied to a real manufacturing process. Thus, the case

study on improving the overall lighting performance of an

MR16 LED lamp by optimizing the design of the TIR lens

can be considered a success.

5.6 Comparison with the Taguchi method

The Taguchi method is a well-known traditional approach

for resolving parameter design problems. To demonstrate

the superiority of the integrated approach proposed in this

study over the Taguchi method for dealing with parameter

design problems with multiple responses, the full experi-

mental data, partially shown in Table 3, were further ana-

lyzed using the Taguchi method. As mentioned in Sect. 5.2,

Taguchi L18ð21 � 37Þ and L9ð34Þ orthogonal arrays were

used to design the inner and outer arrays, respectively.

Therefore, there were eighteen signal-to-noise (S/N) ratios

for each quality characteristic. Table 7 summarizes the

results of analysis of these S/N ratios; the asterisks in the

second to sixth rows denote the optimal level settings of

design parameters for solely optimizing (maximizing) the

S/N ratio for an individual quality characteristic. It can be

seen in Table 7 that a conflict occurred while selecting the

optimal setting for each design parameter that can simul-

taneously optimize all of the five key quality characteris-

tics. For example, a setting of 15 (mm) was selected for the

design parameter x2 to maximize the S/N ratios for quality

characteristics y1, y2, y4, and y5. However, design param-

eter x2 was set as 25 (mm) while considering the quality

characteristic y3. By examining the factors’ effects based

on the S/N ratios along with the suggestions of engineers,

the optimal settings for the design parameters were finally

determined, shown in the last row of Table 7. Simulation

experiments were then conducted and the results were

summarized in Table 8. The first experimental trial was

carried out based on the optimal settings for the design

parameters in Table 7, while the remaining nine experi-

mental trials were implemented according to a Taguchi

L9ð34Þ orthogonal array that took the four noise factors into

consideration.

In order to illustrate the functions and strengths of the

SVR and ABC algorithms, the proposed integrated

approach presented in Sect. 4 was implemented again

without Stage 3 and Stage 5, which aim to build estimation

models through SVR and optimize control factor settings

using the ABC algorithm, respectively. In addition, the

overall quality performance of the TIR lens was evaluated

using the weighted average quality loss calculated based

on Eq. (34). The eighteen weighted average quality losses

obtained were then used to calculate the weighted average

quality loss respective to each level setting for each design

parameter. Table 9 summarizes the results, where the

asterisks denote the optimal setting of each design

parameter for minimizing the weighted average quality

loss. Similarly, an experimental layout that includes one

trial according to the optimal settings of the design

parameters for the TIR lens in Table 9, along with another

nine experimental trials based on a Taguchi L9ð34Þ
orthogonal array for arranging four noise factors, was

designed. Table 10 summarizes the results of this

simulation.

Table 8 Confirmation experimental results based on the Taguchi method

No. x1 x2 (mm) x3 (mm) x4 (mm) x5 (mm) y1 (lm) y2 (�) y3 (�) y4 (�) y5 (�)

1 1 (PMMA) 15.00 25.00 2.10 3.99 226.7 88.0 84.7 87.8 86.5

2 1 (PMMA) 14.95 24.90 2.05 3.94 226.9 88.6 87.6 88.0 91.1

3 1 (PMMA) 14.95 25.00 2.10 3.99 226.7 88.5 86.9 87.9 87.1

4 1 (PMMA) 14.95 25.10 2.15 4.04 226.6 90.3 88.7 89.2 88.0

5 1 (PMMA) 15.00 24.90 2.10 4.04 227.1 89.2 87.0 89.7 86.6

6 1 (PMMA) 15.00 25.00 2.15 3.94 226.0 88.2 88.2 89.8 87.3

7 1 (PMMA) 15.00 25.10 2.05 3.99 227.2 89.4 87.7 88.2 87.7

8 1 (PMMA) 15.05 24.90 2.15 3.99 226.1 89.2 87.2 88.6 87.2

9 1 (PMMA) 15.05 25.00 2.05 4.04 227.5 88.4 86.7 87.0 86.7

10 1 (PMMA) 15.05 25.10 2.10 3.94 226.5 88.3 89.2 89.5 88.6

Max – – – – – 227.5 90.3 89.2 89.8 91.1

Min – – – – – 226.0 88.0 84.7 87.0 86.5

Mean – – – – – 226.7 88.8 87.4 88.6 87.7
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From the results in Table 8, it can be seen that none of

the ten experimental trials could provide a design for a TIR

lens that makes all of the five quality characteristics fulfill

the specification requirements. This implies that manually

making some trade-off for considering all quality charac-

teristics at one time is an undesirable and inappropriate

method for resolving a multiple-response parameter design

problem. Furthermore, only four designs among the ten

experimental trials can make a TIR lens fully meet its

specification requirements, according to Table 10. This

provides adequate evidence that the ABC algorithm can

search the SVR models in the entire experimental ranges,

thus finding the (near) optimal settings for design param-

eters in continuous domains rather than in the limited

discrete experiment levels used in the original experimental

layout. Therefore, the settings for the design parameters for

a TIR lens obtained through the proposed approach in this

study were more robust than those acquired by using the

proposed approach without modeling by SVR and opti-

mizing using the ABC algorithm. From the above results

and analyses, the integrated approach proposed in this

study can be considered for popularization as a feasible and

effective tool for solving general multiresponse parameter

design problems in the real world.

6 Conclusions

For most modern products/processes, there are usually

several quality characteristics that must be optimized

simultaneously by determining the optimal settings for

their design/process parameters. Although the Taguchi

method is a famous and common approach for tackling

parameter design problems, it brings some uncertainties

and difficulties since some subjective trade-offs have to be

made in order to determine the optimal settings of control

factors for simultaneously considering multiple quality

characteristics. In this study, the SVR technique, Taguchi

loss function, and the ABC algorithm were applied to

design a six-staged procedure to deal with these compli-

cated and troublesome problems. The feasibility and

effectiveness of the proposed approach were demonstrated

via a case study in which the design of a TIR lens used in

fabricating an MR16 LED lamp was optimized. The

experimental results indicate that the proposed solution

procedure can provide highly robust design parameter

settings for a TIR lens and is considered to be directly

applicable in real manufacturing processes. A comparison

of the proposed method with the Taguchi method revealed

that resolving a multiple-response parameter design

problem by manually making some trade-off for simul-

taneously considering all quality characteristics is an

undesirable and inappropriate method. In addition, theT
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ABC algorithm can search the (near) optimal settings of

design parameters by exploring the SVR models in con-

tinuous domains instead of in the limited discrete exper-

imental levels, thus finding a more robust design for the

TIR lens than that obtained by the traditional analysis of

variance. Therefore, the integrated approach proposed in

this study can be considered feasible and effective and can

therefore be popularized as a useful tool for resolving

general multiresponse parameter design problems in the

real world.

The proposed procedure also has certain limitations.

First, the radial basis function (RBF) kernel and the related

parameters found using a grid-search approach have not

been proven for constructing an optimal SVR regression

model describing the functional dependence of the output

responses on the input control factors. Next, the ideal

values IVi,STB and IVi,LTB must be set subjectively. Finally,

the parameter settings of the ABC algorithm may influence

the final search results; however, there are no exact rules

for setting such parameters. Moreover, the optimal settings

of the design parameters obtained from the ABC algorithm

cannot be proven as the real optimal values, and their

feasibility and effectiveness can only be verified

experimentally.

Future work in this area may include the following: (1)

determining the best combination of parameters of the SVR

using heuristic algorithms with higher efficiency and

effectiveness; (2) applying a Taguchi quality loss that is

fully linked to the actual production or manufacturing cost

for evaluating the overall performance of a product; and (3)

utilizing various contemporary methodologies in the opti-

mization stage while tackling multiresponse parameter

design problems and comparing the efficiency and effec-

tiveness of their solution.
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