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Abstract The long-term streamflow forecasts are very

significant in planing and reservoir operations. The

streamflow forecasts have to deal with a complex and

highly nonlinear data patterns. This study employs support

vector machines (SVMs) in predicting monthly stream-

flows. SVMs are proved to be a good tool for forecasting

the nonlinear time series. But the performance of the SVM

depends solely upon the appropriate choice of parameters.

Hence, particle swarm optimization technique is employed

in tuning SVM parameters. The proposed SVM-PSO model

is used in forecasting the streamflow values of Swan River

near Bigfork and St. Regis River near Clark Fork of

Montana, United States. Further SVM model with various

input structures is constructed, and the best structure is

determined using various statistical performances. Later,

the performance of the SVM model is compared with the

autoregressive moving average model (ARMA) and artifi-

cial neural networks (ANN’s). The results indicate that

SVM could be a better alternative for predicting monthly

streamflows as it provides a high degree of accuracy and

reliability.

Keyword SVM � Streamflow � Forecasting � Time series �
PSO

1 Introduction

Reliable streamflow forecasts are very significant in

planning and managing the water resources. In particular,

in operations related to reservoirs and generation of

hydroelectric power, one is more interested in the long-

term streamflow forecasts. The streamflow forecast

depends upon many seen factors such as precipitation,

evapotranspiration, ambient temperature and on many

other unseen factors such as the memory, soil character-

istics of the catchment and degree of urbanization, thus

making the time series of a streamflow highly nonlinear,

time varying and stochastic in nature. Because of its

highly nonlinear nature, predicting the accurate stream-

flow forecasts have always been a challenge for the

hydrologists. In the past, there were many applications

using the traditional statistical models like autoregressive

model, moving average model and autoregressive moving

average models for solving the nonlinear models. These

models perform well when the data lie within the range of

past observations. But they perform poorly to predict

extremes and also when the data are lying just near to

limits. However, with the advent of artificial neural net-

works (ANN’s) and inspired by its strong ability of

nonlinear mapping, many applied them in diverse fields.

Even in water resources, there are numerous applications

of ANN. ANN’s are giving good forecasts for the simpler

problems. However, ANN’s were subjected to local con-

vergence and slow learning so they could not gain satis-

factory performance while solving the complex

hydrological process. Recently, support vector machines
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(SVMs) emerged to be a successful computational tech-

nique as it overcomes many of the drawbacks of ANN

and thus found numerous applications in different areas of

science and engineering [1–4]. Even in the field of

hydrology, researchers have applied SVM extensively.

Sivapragasam et al. [5] have applied SVM in forecasting

rainfall runoff, Yu et al. [6] employed SVM to predict

rainfall runoff of Tryggevælde catchment, Khadam et al.

[7] used SVM to describe the relative uncertainty of

calibration data in hydrologic models, and Asefa et al. [8]

used SVM in multiscale streamflow predictions.

Even though there is an increase in popularity of SVM,

still the SVM is confined only to the ’expert’ users group as

the performance of SVM models depends upon the

appropriate selection of SVM hyper-parameters. Thus, the

main concern for scientists is to find out proper parameter

values for a given data set in SVM regression which can

ensure good generalization performance. While the exist-

ing study on SVM regression [9–11] provides some rec-

ommendations for appropriate setting of SVM parameters,

there is hardly general consensus and many contradictory

opinions regarding these settings. Hence, many applica-

tions use re-sampling as a possible method for determining

the SVM parameters. However, employing re-sampling for

tuning several SVM parameters is very computationally

expensive. Thus, the basic objective of this study is to

determine ways and means for obtaining the optimal

parameter values of SVM. In this study, particle swarm

optimization (PSO) is adapted to find out the SVM

parameters. Particle swarm optimization technique being a

heuristic technique explores out the search space in an

efficient manner and finds out the best set of parameters for

SVM.

This paper is organized as follows. Section 2.1 describes

the adaptation of PSO algorithm in estimating the optimal

SVM parameters. In Sect. 4, the proposed model is applied

over two stations and the results are compared with the

standard traditional models autoregressive moving average

model (ARMA) and artificial neural networks (ANN’s).

Finally, the conclusions are presented in Sect. 5.

2 Support vector machines

Support vector machine (SVM) was a most promising

technique for data classification and regression. This sec-

tion gives a brief account of SVM. Assume

fðx1; y1Þ; . . .:; ðx‘; y‘Þg be the given training data sets,

where each xi � Rn shows the input space of the sample

and has a corresponding target value yi � R for i ¼ 1; . . .; l

where l represents the size of the training data. The support

vector regression solves an optimization problem:

minimize
1

2
wk k2þC

X‘

i¼0

ðnþ n�Þ ð1Þ

subjected to

yi � hw; xii � b� �i þ n
hw; xii þ b� yi� �i þ n�

ni; n
�
i � 0 i ¼ 1; . . .; l

8
<

:

where xi is mapped to a higher dimensional space by the

function /, ni is the upper training error (ni
* is the lower)

subject to the � insensitive tube yi� hw; xii � b� �: The

parameters which control the regression quality are the cost

of error C, the width of the tube � and the mapping function

/. The constraints imply that we would like to put most

data xi in the tube yi� hw; xii � b� �: If xi is not in the

tube, there is an error ni or ni
* which we would like to

minimize in the objective function. SVM avoids underfit-

ting and overfitting the training data by minimizing the

training error C
P

i=0
l (n ? n*) as well as the regularization

term 1
2

wk k2: For traditional least square regression, � is

always zero and data are not mapped into higher dimen-

sional spaces. Hence, SVM is a more general and flexible

treatment on regression problems.

2.1 Computation of SVM parameters

There are several Kernel functions which are being used in

SVM. Dibike et al. [12] demonstrated that the radial basis

function (RBF) outperforms other kernel functions after

using different kernels in SVM for rainfall runoff model-

ing. Also, Da wei et al. [13] suggest that the regression

process can be modeled more effectively using RBF

because of its centralized feature. Besides this, many

researchers report the use of SVM in hydrological model-

ing and forecasting and suggest that the radial basis func-

tion performs well [14–16]. The RBF is thus adopted in this

study also and expressed as

kðxi; xÞ ¼ exp �c x� xij j2
n o

ð2Þ

where c is the parameter of RBF which gives the width of

the kernel. In general, c varies from 0 to 1.

The SVM model used herein has three mutually

dependent parameters, namely C; �; c; thus changing the

value of one parameter changes the other parameters too. A

simultaneous or global optimization scheme such as PSO

can be helpful [3] in determining the parameters of SVM.

The general procedure of SVM-PSO method is illustrated

in the flow chart given in Fig. 1.

A common way to estimate the SVM parameters (C; �

and c) is to separate the data into two sets, namely a training

data set and a validation data set. The prediction accuracy of

this validation data set reflects the accuracy of the model,

and SVM parameters that are able to give minimum
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prediction error are considered to be the optimal parame-

ters. However, there is a risk of overfitting, in this proce-

dure. Overfitting is a phenomenon that occurs when the

performance error of the model is observed to be very small

during training; however, when a new data set is used for

simulation, the model tends to make some wild predictions.

In the present study, a ‘k-fold’ cross-validation method is

employed to check the generalization ability of the model

and to select the appropriate input vector for time series. In

the ‘k-fold’ cross-validation method, the data are segmented

into ‘k’ sub-samples (k = 5 for the present study [17]. Of the

various ‘k’ sub-samples, a single sub-sample is retained as

validation data for testing the model and the remaining

‘k - 1’ comprise the training data. The cross-validation

process is then repeated ‘k’ times with each of the k sub-

samples used exactly once as validation data.

3 Particle swarm optimization technique in selecting

the parameters of SVM

Swarm optimization, like genetic algorithms, is an opti-

mization technique based on the metaphor of social

behavior. Particle swarm optimization (PSO) is the mem-

ber of a wide category of swarm intelligence-based meth-

ods used for solving global optimization problems [18–21].

PSO is based on the simulation of simplified social models,

such as bird flocking, fish schooling and swarm theory.

A flow diagram of the entire process is also highlighted

in Fig. 1. Initially, the upper and lower bounds of the three

SVM parameters c; � and C are specified. The values for the

three parameters of SVM are then generated randomly

within the bounds for each particle, and then these

parameters are fed into SVM model. Next the fitness

function is evaluated. In this study, the normalized mean

square error (NMSE) serves as the fitness criterion for

identifying the suitable parameters for SVM model. The

NMSE value of each particle is then determined using the

fitness function (Eq. 3).

NMSE ¼ n� 1

n

Pn
i¼1½ðQmÞi � ðQsÞi�

2

Pn
i¼1½ðQmÞi � ð~QmÞi�

2
ð3Þ

Where Q is the streamflow value, and the subscripts ‘m’

and ‘s’ represent the measured and simulated values,

respectively. The average value of associated variable is

represented with a ’tilde’ above it, and n depicts the total

number of training records.

The fitness evaluation of the particle is then compared

with the pbest value of the particle. If the current value is

better than pbest, pbest value is set equal to the current

value and the pbest location equal to the current location in

dimensional space. The fitness evaluation is now compared

with the overall previous best of the population. If the

current value comes out to be better than gbest, gbest is

reset to the current value of the particle’s array index. The

velocity and position of the particle are then changed

according to the equation

vt
ij ¼ xvt�1

ij þ c1r1 pbestt�1
ij � xt�1

ij

� �
þ c2r2 gbestt�1

j � xt�1
ij

� �h i

ð4Þ

xt
ij ¼ xt�1

ij þ vt
ij ð5Þ

where c1 and c2 are the acceleration constants and r1 and r2

are the random real numbers between 0 and 1. Thus, the

particle flies through a potential solution toward pbest and

Fig. 1 Flow chart of PSO algorithm in SVM parameter selection
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gbest in a navigated way while still exploring new areas

through stochastic mechanism to escape from a local

optima. x is called inertia weight to control the impact of

the history of the velocity on the current one. The NMSE

value is repeatedly determined until a criterion is met that

usually specifies a good fitness or a maximum number of

iterations allowed.

3.1 Parameters of PSO

The important parameters of PSO used in this model are

given in Table 1. In this case, it has been assumed that the

acceleration coefficients c1 = c2. Figure 2 depicts the var-

iation in coefficient of correlation with an increase in the

acceleration constant. The acceleration constant is varied

from 0 to 10, and the performance of SVM-PSO is checked

using a testing data set in terms of its R and NMSE values.

It is found that as acceleration coefficients increases, the

R value increases till it reaches a maximum of 0.93 at

acceleration coefficient value 2; thereafter, R value again

decreases as acceleration coefficient value increases. Thus,

the value of c1 and c2 is taken to be 2.0 for this case.

Further from Fig. 2, one can observe that with an increase

in the value of acceleration coefficient, the NMSE value

decreases. Inertia weight x is set to vary linearly from 1 to

near 0 during the course of an iteration run.

4 Case study and simulation results

In this study, the monthly streamflow data of Swan River

near Bigfork and St. Regis River near Clark Fork were used

in evaluating the performance capabilities of the proposed

SVM-PSO model. The location of Bigfork station and

Clark Fork station is shown in Fig. 3.

The St. Regis River near Clark Fork has a drainage area

of 10,709 mile2, whereas the Swan River Basin near Big-

fork has the total drainage area of 671 mile2. The observed

data are 80 years (960 months) long with an observation

period between 1930 and 2010 for both stations. A total of

75 % of the total data are used for fivefold cross-validation
Fig. 2 Sensitive analysis of SVM-PSO model at different accelera-

tion coefficients

Fig. 3 The study area

Table 1 Parameters used in the PSO model

Parameters Value

Acceleration constants (c1,c2) (2,2)

Population size 25

Inertia weight x Varied linearly

Minimum error gradient 10-9
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test. Remaining 25 % of the data are used for testing. These

testing data are unseen by the model till the entire training

program is completed.

4.1 SVM model development

The SVM model aims to develop a relationship of the form

Zm ¼ f ðXnÞ ð6Þ

where Xn is an n-dimensional input vector comprising of

variables x1; x2; x3; . . .; xn and Zm is an m-dimensional

output vector consisting of the resulting variables of

interest y1; y2; y3; . . .; yn. In modeling the streamflows, the

values of xi may be streamflow values with different lags

and the value of yi is the streamflow level of the next time

step. However, the number of antecedent streamflow values

to be included in the vector Xn is not known apriori.

Therefore, in this study, the proper input data set is

identified by developing various models with the different

combinations of the streamflow values at several time lags.

The input vector is modified each time by successively

adding an streamflow value at one more time lag leading to

the development of a new SVM model. The appropriate

input vector is identified by comparing the coefficient of

correlation, efficiency and NMSE. Three SVM models were

developed with different sets of inputs variables as follows:

Model 1 Q(t) = f[Q(t - 1)]

Model 2 Q(t) = f[Q(t - 1), Q(t - 2)]

Model 3 Q(t) = f[Q(t - 1), Q(t - 2), Q(t - 3)]

4.1.1 Determining parameters of SVM models

SVM parameters were estimated for the different models

using PSO technique as mentioned in Sect. 2.1. Since the

bounds of parameters of SVM are not known apriori, a coarse

range search is made to find the best region of the SVM

parameters. Performing a complete grid search may be time-

consuming; hence, a coarse grid search is performed first.

Once the coarse grid search is performed; then, the fine grid

search is performed. The range of parameters taken for

coarse grid and fine grid search is given in Table 2.

Three models were evaluated for Swan River near

Bigfork station, to predict current streamflow values. PSO

was used to find parameters for all the three cases. The

optimal set of SVM parameters obtained from PSO algo-

rithm for Swan River near Bigfork station is given in

Tables 3 and 4. The NMSE and R statistics of SVM-PSO

models in training and testing are given in Table 5. The

table indicates that the SVM-PSO model whose inputs

were the flows of three pervious months (Q(t) = f[Q(t -

1), Q(t - 2), Q(t - 3)]) had the best accuracy in training,

validation and testing periods.

Likewise, three SVM-PSO models were developed for

St. Regis River near Clark Fork station to estimate current

streamflow value. Table 4 depicts the parameters of the

SVM model obtained from PSO technique after optimizing

the Eq. 3. Further NMSE and R statistics were computed

which are presented in Table 6. The table indicates that

SVM-PSO model with three antecedent streamflows

(Q(t) = f[Q(t - 1), Q(t - 2), Q(t - 3)]) shows better

accuracy when compared with other models.

Table 2 Coarse and fine range partitions of SVM parameters taken

during two-step optimization

SVM parameters Coarse range partitions Fine range partitions

C [10-5, 105] [10-1, 101]

� [0, 101 [10-7, 10-1]

c [0, 101] [0, 1]

Table 3 Optimal SVM parameters obtained from PSO for different

models for Swan River near Bigfork station

Models C � c

Model 1 1.93 0.983 0.735

Model 2 1.45 0.023 0.59

Model 3 1.59 0.078 0.621

Table 4 Optimal SVM parameters obtained from PSO for different

models for St. Regis River near Clark Fork station

Models C � c

Model 1 1.12 0.342 0.61

Model 2 1.68 0.67 0.87

Model 3 1.56 0.56 0.82

Table 5 The NMSE and R statistics of SVM-PSO application for

Swan River near Bigfork station

Model inputs Cross-validation Testing

NMSE R NMSE R

Qt-1 0.67 0.73 1.4 0.82

Qt-1, Qt-2 0.4 0.81 0.5 0.85

Qt-1, Qt-2, Qt-3 0.12 0.92 0.13 0.90

Table 6 The NMSE and R statistics of SVM-PSO application for St.

Regis River near Clark Fork Station

Model inputs Cross-validation Testing

NMSE R NMSE R

Qt-1 1.3 0.78 1.1 0.76

Qt-1, Qt-2 0.74 0.81 0.823 0.79

Qt-1, Qt-2, Qt-3 0.29 0.93 0.23 0.850
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4.2 Models for comparing forecast performance

The normalized mean squared error (NMSE) as given in Eq. 3

is used as the measurement of forecasting accuracy. Addi-

tionally, the coefficient of correlation (R) is given by Eq. 7.

R ¼
Pn

i¼1½ðQmÞi � ð~QmÞ�½ðQsÞi � ð~QsÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1½ðQmÞi � ð~QmÞ�2 �

Pn
i¼1½ðQsÞi � ð~QsÞ�2

q ð7Þ

Where Q is the streamflow value, and the subscripts ‘m’

and ‘s’ represent the measured and simulated values,

respectively. The average value of associated variable is

represented with a ’tilde’ above it, and n depicts the total

number of training records.

The forecasting accuracy of the proposed SVM-PSO

model is compared with the traditional ARMA and with

ANN. The performance of SVM-PSO and ANN models is

compared while predicting the streamflow values taking a

one month lead. To set a direct comparison, the ANN

model is trained using the same training data set

(Q(t) = f[Q(t - 1), Q(t - 2), Q(t - 3)]) as used for the

SVM-PSO for both the stations.

SVM-PSO, ANN and ARMA were used for forecasting

the one month lead values for Bigfork station. In the testing

phase, SVM-PSO forecasts the streamflow values with an

NMSE of 0.13 and correlation coefficient is 0.86, whereas

ANN predicts with NMSE of 0.45 and R value is 0.82.

Likewise ARMA has NMSE of 0.79 and R value 0.76 for

the Swan River. Even though the correlation coefficient

(R) is almost same for all the three processes, still there is

much change in the NMSE value. Hence, it is always

advisable to check the mean square error to compare the

performance of the algorithm. Further from the results, it

seen that SVM-PSO model predicts the streamflow values

with low NMSE and greater correlation coefficient and thus

showing a better performance compared to ARMA and

ANN. Figures 4, 5 and 6 show the comparison of the

measured and predicted heads using the testing data for

ARMA, ANN and SVM-PSO methods. Further in this

study, the mean absolute peak prediction error was calcu-

lated. Table 7 depicts the error involved in predicting the

peak streamflows by the each process. Table 7 shows that

SVM-PSO model was able to predict the peaks more

accurately compared to the ANN and ARMA. The per-

formance of the various models is summarized in Table 8.

Similarly, the performance of various models at the

Clark Fork station is summarized in Table 8. The SVM-

PSO has obtained the minimum NMSE of 0.193, compared

to ANN and ARMA. This shows that SVM-PSO is able to

capture the underlying dynamics of the streamflow values

more closely when compared with ANN and ARMA. This

is reconfirmed by observing the correlation values. Also,

Figs. 7, 8 and 9 depict the measured and predicted heads

using ARMA, ANN and SVM-PSO models for the testing

Table 7 The comparison of peak estimates predicted by different models for the testing period of Swan River

Peak no Observed streamflow (m3/s) SVM-PSO ANN ARMA Relative error

SVM-PSO ANN ARMA

1 5,601.00 3,394.79 3,447.69 2,729.28 0.39 0.38 0.51

2 5,212.00 2,654.90 2,243.00 2,986.89 0.49 0.57 0.43

3 5,069.00 3,438.89 3,760.51 3,814.35 0.32 0.26 0.25

4 4,704.00 2,700.18 3,122.61 1,824.31 0.43 0.34 0.61

5 4,321.00 3,645.08 3,717.69 2,489.01 0.16 0.14 0.42

6 4,240.00 3,598.78 3,504.70 2,509.08 0.15 0.17 0.41

7 4,182.00 3,698.07 3,563.73 2,545.29 0.12 0.15 0.39

8 4,086.00 3,697.52 3,554.56 2,950.23 0.10 0.13 0.28

9 3,690.00 3,814.25 2,845.78 2,753.89 0.03 0.23 0.25

10 3,680.00 3,491.31 3,261.86 2,541.15 0.05 0.11 0.31

11 3,673.00 3,831.58 3,758.54 2,471.08 0.04 0.02 0.33

12 3,661.00 2,675.33 2,753.20 1,655.50 0.27 0.25 0.55

13 3,599.00 3,745.31 2,977.04 2,862.91 0.04 0.17 0.20

14 3,549.00 3,624.98 3,791.22 2,460.23 0.02 0.07 0.31

Mean relative absolute peak prediction error 0.186 0.213 0.375

Table 8 Comparison of R and NMSE values for Swan River and St.

Regis River

Swan River St. Regis River

R NMSE R NMSE

SVM-PSO 0.86 0.13 0.857 0.23

ANN 0.82 0.45 0.84 0.54

ARMA 0.79 0.76 0.81 0.95
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Fig. 4 Comparison between simulated and actual streamflow values

for testing data of Swan River near Big Fork Station(ARMA model)

Fig. 5 Comparison between simulated and actual streamflow values

for testing data of Swan River near Big Fork Station (ANN model)

Fig. 6 Comparison between simulated and actual streamflow values

for testing data of Swan River near Big Fork Station (SVM-PSO

model)

Fig. 7 Comparison between simulated and actual streamflow values

for testing data of St. Regis River near Clark Fork Station (ARMA

model)

Fig. 8 Comparison between simulated and actual streamflow values

for testing data of St. Regis River near Clark Fork Station (ANN

model)

Fig. 9 Comparison between simulated and actual streamflow values

for testing data of St. Regis River near Clark Fork Station (SVM-PSO

model)
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data. Further it is seen that mean absolute peak prediction

error has been calculated to determine which method is

predicting peaks more closely. From Table 9, it is observed

that SVM-PSO predicts peaks with 0.24 error, whereas

ARMA model predicts peaks with 0.355 error and ANN

has 0.266 error. Therefore, the nonlinear mapping ability

and proper selection of parameters make the SVM-PSO

successful in streamflow forecasting.

5 Conclusions

A hybrid model based on the combination of SVM and

PSO is proposed in this study to improve the forecasting

performance. The SVM-PSO model was obtained by

integrating the two novel methods PSO and SVM. SVM

operates on the principle of structural minimization rather

than the minimization of the errors. Further PSO was

employed in selecting the appropriate SVM parameters to

enhance the forecasting accuracy. So this combination of

SVM and PSO has made the proposed SVM-PSO model to

perform better compared to the other traditional models.

Furthermore, this study determines that the proposed SVM-

PSO offers a valid alternative for application in hydrology.

In this study, only streamflow values are used for the

analysis. In future, the other hydrological variables such as

rainfall and temperature can be used in the prediction of

streamflow values. The idea of hybrid model can be used in

other areas like weather forecast and rainfall runoff fore-

cast to check the usability of the proposed model. Further,

some enhanced versions of PSO technique [22] can be

adapted to choose the SVM parameters.
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