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Abstract Multilayer perceptron has been widely used in

time series forecasting for last two decades. However, it is

a well-known fact that the forecasting performance of

multilayer perceptron is negatively affected when data

have outliers and this is an important problem. In recent

years, some alternative neuron models such as generalized-

mean neuron, geometric mean neuron, and single multi-

plicative neuron have been also proposed in the literature.

However, it is expected that forecasting performance of

artificial neural network approaches based on these neuron

models can be also negatively affected by outliers since the

aggregation function employed in these models is based on

mean value. In this study, a new multilayer feed forward

neural network, which is called median neuron model

multilayer feed forward (MNM-MFF) model, is proposed

in order to deal with this problem caused by outliers and to

reach high accuracy level. In the proposed model, unlike

other models suggested in the literature, MNM which has

median-based aggregation function is employed. MNM is

also firstly defined in this study. MNM-MFF is a robust

neural network method since aggregation functions in

MNM-MFF are based on median, which is not affected

much by outliers. In addition, to train MNM-MFF model,

particle swarm optimization method was utilized. MNM-

MFF was applied to two well-known time series in order to

evaluate the performance of the proposed approach. As a

result of the implementation, it was observed that the

proposed MNM-MFF model has high forecasting accuracy

and it is not affected by outlier as much as multilayer

perceptron model. Proposed method brings improvement in

7 % for data without outlier, in 90 % for data with outlier,

in 95 % for data with bigger outlier.

Keywords Feed forward � Forecasting � Median neuron

model � Particle swarm optimization � Robust neural

networks � Outlier

1 Introduction

In the literature, various approaches have been used for

forecasting. Conventional forecasting methods can be

insufficient for real-life time series since these approaches

need some assumptions to be satisfied [1]. Not requiring

any assumption such as linearity and normal distribution in

forecasting time series makes artificial neural networks

applicable for many fields [4]. In recent years, an effective

way to forecast time series has been to utilize artificial

neural networks [5]. This approach has been successfully

used for forecasting in various implementations [2].

Various neuron models have been proposed in the lit-

erature [6, 14, 16, 17, 26]. The most preferred artificial

neural network type is multilayer perceptron (MLP)

introduced by Rumelhart et al. [18]. When real-life prob-

lems are solved using standard artificial neural networks

such as MLP, it requires large number of neurons in the

architecture [20]. A neuron having higher-order statistics
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can produce superior neural network with comparatively

lesser number of neurons [20]. Thus, higher-order neural

networks have been suggested by Chaturvedi et al. [8],

Giles and Maxwell [9], Homma and Gupta [11], Sinha

et al. [21], Taylor and Commbes [22]. Higher-order

neurons have demonstrated improved computational

power and generalization ability. However, these models

are difficult to train because of a combinatorial explosion

of higher-order term as the number of inputs to the

neuron increases [20]. In addition, it is a well-known fact

that the forecasting performance of MLP is negatively

affected when data include outliers [10, 25]. In recent

years, some artificial neural networks models which are

based on some neuron models such as generalized-mean

neuron (GMN) [23], geometric mean neuron (G-MN)

[20], and single multiplicative neuron (SMN) [24] have

been proposed as an alternative for MLP. Like MLP,

these suggested models can also be negatively affected

by outliers since aggregation functions in these models

are based on mean.

A MNM is firstly introduced in this study, and a new

feed forward neural networks approach based on MNM is

proposed in order to deal with outlier problem. In the

proposed MNM, unlike other neuron models, aggregation

function based on median, which is not affected much by

outliers, is employed instead of using functions based on

summation or mean. It is a fact that unlike other measures

of location statistics such as mean, median is not affected

much by outliers of a data set. Using a mean-based

aggregation function in a neuron will prevent that this

neuron produces an extreme output value for an outlier

input value. Therefore, MNM-MFF model consists of

MNM is a robust multilayer neural network approach that

is not affected by outliers. In the training process of MNM-

MFF model, it is very hard to obtain derivate of cost

function with respect to the weights of the model since

median-based aggregation functions are used in the model.

That means it is not easy to use back propagation learning

algorithm to determine the best values of the weights.

Therefore, the modified particle swarm optimization

method [3] is utilized to train MNM-MFF model. To assess

the forecasting performance of the proposed model MNM-

MFF, it was applied to two well-known real-time series

which are Australian beer consumption and Box-Jenkins

gas furnace. In addition, different data scenarios were

considered in the implementation to examine the perfor-

mance of the proposed approach better. Furthermore, other

forecasting models available in the literature were also

used for the aim of comparison.

The remaining parts of the paper are organized as fol-

lows. The modified particle swarm optimization method

that is used as a learning algorithm to train MNM-MFF

model is briefly summarized in the next section. MNM is

introduced in Sect. 3. In Sect. 4, MNM-MFF model is

described and how the modified particle swarm optimiza-

tion method is employed to train this model is addressed.

Section 5 presents the implementation and the obtained

results. Finally, the results are discussed in the last section.

2 The modified particle swarm optimization (MPSO)

Particle swarm optimization is a population-based heuristic

algorithm, and it was firstly proposed by Kennedy and Eberhart

[13]. Distinguishing feature of this heuristic algorithm is that it

simultaneously examines different points in different regions

of the solution space to obtain the global optimum solution.

Local optimum traps can be avoided because of this feature of

the method. In this study, MPSO was used to train MNM-MFF

model. The detailed information about MPSO method can be

found in [3]. The MPSO algorithm has time varying inertia

weight like in [19]. In a similar way, this algorithm also has

time varying acceleration coefficient like in [15].

Algorithm 1 The modified particle swarm optimization

Step 1 Positions of each kth (k = 1, 2, … , pn) particles

are randomly determined and kept in a vector Xk given as

follows:

Xk ¼ xk1; xk2; . . .; xkdf g; k ¼ 1; 2; . . .; pn ð1Þ

where xki (i = 1,2,…,d) represents ith position of kth par-

ticle. pn and d represent the number of particles in a swarm

and positions, respectively.

Step 2 Velocities are randomly determined and stored in

a vector Vk given below.

Vk ¼ vk1; vk2; . . .; vkdf g; k ¼ 1; 2; . . .; pn ð2Þ

Step 3 According to the evaluation function, Pbest and

Gbest particles given in (3) and (4), respectively, are

determined.

Pbestk ¼ pk;1; pk;2; . . .; pk;d

� �
; k ¼ 1; 2; . . .; pn ð3Þ

Gbest ¼ pg;1; pg;2; . . .; pg;d

� �
ð4Þ

where Pbestk is a vector stores the positions corresponding

to the kth particle’s best individual performance, and Gbest

and g represent the best particle and index number of best

particle respectively, which has the best evaluation func-

tion value, found so far.

Step 4 Let c1 and c2 represent cognitive and social

coefficients, respectively, and w is the inertia parameter.

Let (c1i, c1f), (c2i, c2f), and (w1, w2) be the intervals which

includes possible values for c1, c2 and w, respectively. At

each iteration, these parameters are calculated by using the

formulas given in (5), (6), and (7).
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c1 ¼ c1f � c1i

� � t

maxt
þ c1i ð5Þ

c2 ¼ c2f � c2i

� � t

maxt
þ c2i ð6Þ

w ¼ w2 � w1ð Þmax t � t

max t
þ w1 ð7Þ

where maxt, t, f, and i represent maximum iteration

number, current iteration number, final, and initial,

respectively.

Step 5 Values of velocities and positions are updated by

using the formulas given in (8) and (9), respectively.

vtþ1
i;d ¼ w� vt

i;d þ c1 � rand1 � pi;d � xi;d

� �h

þ c2 � rand2 � pg;d � xi;d

� ��
ð8Þ

xtþ1
i;d ¼ xi;d þ vtþ1

i;d ð9Þ

where rand1 and rand2 are random values from the interval

[0 1].

Step 6 Steps 3 to 5 are repeated until a predetermined

maximum iteration number (maxt) is reached.

3 Median neuron model

The first artificial neuron model was proposed by McCul-

loch and Pitts [16]. Then, various neuron models have been

proposed in the literature. One of the most preferred types

of artificial neural networks is MLP. In each neuron of

MLP, the function in (10) has been generally employed as

aggregation function.

net xj;wj

� �
¼
XN

j¼1

wjxj þ w0 ð10Þ

where xj, wj, N (j = 0, 1, 2, … ,N) represent input signals,

weights, and number of input signals, respectively. And, w0

is the weight for bias. It is very clear that the neuron model

given in (10) is negatively affected by input signals from

outliers since this model is based on summation operation.

Besides, mean-based neuron models such as GMN and

G-MN have same problem since mean is also negatively

affected by outliers. In this study, a new neuron model

MNM, in which median is utilized as aggregation function,

is proposed to deal with outlier problem. It is a well-known

fact that median is not affected much by outliers so MNM

is not affected by outliers. MNM is illustrated in Fig. 1.

In Fig. 1, y and f represent output signal of the neuron

and activation function, respectively. The bias value is 1 as

seen from the figure. net is the activation value obtained

from aggregation function. This value is calculated as

follows:

net ¼ Medianðw1x1;w2x2; . . .;wNxN ;w0Þ ð11Þ

where xj, wj, N (j = 0,1,2, … ,N) represent input signals,

weights, and number of input signals, respectively. And, w0

is the weight for bias.

4 Multilayer feed forward network with median

neuron model

MNM-MFF model proposed in this study is a multilayer

feed forward neural network model. This neural network

model is composed of MNM. Architecture structure of the

proposed MNM-MFF model that has N and M neurons in

input and hidden layers, respectively, is shown in Fig. 2.

As seen from this figure, input and output vectors of the

model are X ¼ x1; x2; . . .; xN½ � and [y], respectively.

If whij
is a weight that connects the ith hidden neuron

with jth input, the activation value of the ith hidden neuron

can be given as

f(net)

x 1

2

N

x

x

y

1

w

w

w w

N

1

2

0

Fig. 1 MNM

N
Inputs

M
Hidden Layer Output Layer

Fig. 2 The architecture of MNM-MFF
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nethi
¼ Median whi1

x1;whi2
x2; . . .;whiN

xN ;whi0
ð Þ;

i ¼ 1; 2; . . .;M
ð12Þ

where whi0
is the weight for the bias of the ith hidden

neuron. The nonlinear transformation performed by each of

M neurons in the network is given as

yhi
¼ f nethi
ð Þ; i ¼ 1; 2; . . .;M ð13Þ

where f denotes a sigmoid function. Similarly, the output of

neuron in the output layer can be given as (15).

net ¼ Median wo1
yh1
;wo2

yh2
; . . .;woM

yhM
;wo0

ð Þ ð14Þ
y ¼ f ðnetÞ ð15Þ

where woi
is the weight that connects the ith neuron of

hidden layer to neuron of the output layer, and wo0
is the

weight for the bias to corresponding output layer neuron.

To train MNM-MFF whose architecture structure is shown

in Fig. 2, MPSO method which is presented in Sect. 2 is uti-

lized. A particle in MPSO consists of positions which are

weights of MNM-MFF. A particle is presented in Fig. 3.

In MPSO algorithm, mean square error (MSE) is

employed as evaluation function. The formula in (16) can

be used to calculate MSE value.

MSE ¼ 1

n

Xn

t¼1

ðoutputt � targettÞ
2 ð16Þ

where n represents the number of learning samples. The

algorithm of MPSO approach used in training process of

MNM-MFF can be given as follows:

Algorithm 2 The modified particle swarm optimization

to train MNM-MFF

Step 1 The parameters of the method are determined.

In the first step, the parameters which direct the MPSO

algorithm are determined. These parameters are pn, vm, c1i,

c1f, c2i, c2f, w1, and w2 that were given in Sect. 2. Where

-vm, vm show that minimum and maximum velocities size.

Step 2 Initial values of positions and velocities are

determined.

The initial positions and velocities of each particle in a

swarm are randomly generated from uniform distribution

(0,1) and (-vm, vm), respectively.

Step 3 Evaluation function values are computed.

Evaluation function values for each particle are calculated.

Evaluation function is MSE whose formula given in (16).

Step 4 Pbestk (k = 1, 2, … , pn) and Gbest are deter-

mined due to evaluation function values calculated in the

previous step.

Pbestk is a vector stores the positions corresponding to

the kth particle’s best individual performance, and Gbest is

the best particle, which has the best evaluation function

value, found so far.

Step 5 The parameters are updated.

The updated values of cognitive coefficient c1, social

coefficient c2, and inertia parameter w are calculated using

the formulas given in (5), (6), and (7).

Step 6 New values of positions and velocities are calculated.

New values of positions and velocities for each particle

are computed by using the formulas given in (8) and (9). If

weights connects
input and hidden layers

weights connects
hidden and output layers

Fig. 3 Structure of a particle in

MPSO

Fig. 4 1956 Q1—1994 Q1

quarterly Australian beer

consumption
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maximum iteration number is reached, the algorithm goes

to Step 3; otherwise, it goes to Step 7.

Step 7 The optimal solution is determined.

The elements of Gbest are taken as the optimal weight

values of the MNM-MFF.

5 The application

In order to evaluate the forecasting performance of MNM-

MFF model, it was applied to two well-known real-time

series which are Australian beer consumption and Box-

Jenkins gas furnace. When MNM-MFF and other neural

networks models were used for forecasting, lagged vari-

ables of the time series were taken as inputs of models.

5.1 Australian beer consumption data

The first time series is quarterly Australian beer con-

sumption [12] between 1956 Q1 and 1994 Q1. The graph

of this time series is shown in Fig. 4. The last 16 obser-

vations of the time series are used for test set. For Aus-

tralian beer consumption, three data scenarios were

Table 1 The MSE values calculated over the test set for Case 1

Method Model MSE

SARIMA (1,1,0)(0,1,1) 2,212.45

WMES Trend-seasonal 2,844.04

MLP 4-3-1 582.61

PSO-MLP 4-2-1 2,005.07

MNM-MFF 4-1-1 538.48

Table 2 The training and testing MSE values are obtained from

different architectures for MLP

Number of hidden layer neurons

1 2 3 4

Training data

Number of input layer neuron

1 3,071.04 2,876.79 2,896.57 2,894.26

2 3,040.25 1,271.57 3,040.24 1,172.51

3 1,849.97 40,972.80 493.18 319.81

4 417.38 367.44 284.36 209.11

Test data

Number of input layer neuron

1 4,108.38 4,118.67 4,288.16 4,254.04

2 4,139.15 1,751.77 4,135.25 1,955.43

3 3,955.80 57,618.43 1,483.99 708.83

4 751.71 703.05 582.61 721.95

Table 3 The training and testing MSE values are obtained from

different architectures for PSO-MLP

Number of hidden layer neurons

1 2 3 4

Training data

Number of input layer neuron

1 3,486.49 3,311.56 5,540.58 3,444.82

2 3,932.92 4,243.54 4,946.45 4,659.43

3 3,002.11 2,959.94 2,790.66 4,704.31

4 2,397.70 2,289.59 3,423.24 5,227.17

Test data

Number of input layer neuron

1 4,786.70 4,225.31 3,986.68 3,672.37

2 4,040.10 5,550.34 3,950.50 4,696.87

3 3,858.48 4,435.14 5,434.63 7,117.05

4 3,577.65 2,005.07 4,067.21 3,688.90

Table 4 The training and testing MSE values are obtained from

different architectures for MNM-MFF

Number of hidden layer neurons

1 2 3 4

Training data

Number of input layer neuron

1 3,516.60 2,993.79 3,161.90 3,024.09

2 3,287.07 5,488.02 3,140.49 5,488.02

3 1,865.84 5,205.32 1,267.48 4,816.52

4 499.26 3,903.88 515.44 3,887.11

Test data

Number of input layer neuron

1 4,796.17 4,066.55 4,251.82 3,979.26

2 4,192.75 4,466.25 4,314.72 4,466.43

3 3,188.76 4,141.72 2,910.69 4,411.00

4 538.48 2,798.88 820.14 2,895.61

Table 5 The training and testing performances of MLP, PSO-MLP,

and MNM-MFF for Case 1

n MLP PSO-MLP MNM-MFF

Training data

Mean 16 4,073.58 3,772.53 3,253.80

SD 16 9,911.00 1,011.71 1,596.40

Test data

Mean 16 5,954.83 4,318.32 3,514.95

SD 16 13,866.63 1,104.30 1,272.76

SD standard deviation
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Fig. 5 The prediction results of

MLP, PSO-MLP, and proposed

method for Case 1

Fig. 6 Scatter plot of forecasts

and observations for Case 1

Table 6 The training and testing MSE values are obtained from

different architectures for MLP

Number of hidden layer neurons

1 2 3 4

Training data

Number of input layer neuron

1 59,198.89 59,194.50 100,754.68 55,833.34

2 59,099.78 100,687.88 53,068.71 100,687.87

3 100,668.45 3,235.96 2,456.08 1,287.74

4 100,647.48 52,447.49 58,098.04 100,671.96

Test data

Number of input layer neuron

1 4,437.26 4,419.25 57,618.98 3,682.92

2 4,377.86 57,618.98 3,761.84 57,618.97

3 57,614.59 3,505.10 3,633.02 1,658.80

4 57,590.82 1,068.01 4,085.72 57,618.98

Table 7 The training and testing MSE values are obtained from

different architectures for PSO-MLP

Number of hidden layer neurons

1 2 3 4

Training data

Number of input layer neuron

1 56,611.81 56,696.63 58,734.83 59,646.08

2 59,467.31 54,933.55 59,522.14 59,712.03

3 60,044.17 59,959.30 59,519.23 60,039.69

4 57,808.43 57,303.23 59,421.21 60,132.28

Test data

Number of input layer neuron

1 3,686.47 3,705.32 5,015.05 4,425.78

2 4,243.75 3,911.14 4,639.97 4,470.36

3 4,151.49 4,156.60 4,218.89 4,252.87

4 3,114.27 3,765.91 3,834.07 4,241.61
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examined to assess the performance of the proposed

approach in case of the data have outliers. In the first case,

seasonal autoregressive integrated moving average (SAR-

IMA), Winter’s multiplicative exponential smoothing

(WMES), MLP, and MNM-MFF methods were applied to

original Australian beer consumption data set between

1956 Q1 and 1994 Q1. In the second case, an outlier value

was obtained by multiplying the maximum observation

value of the original data by 5, and then, this outlier was

added to data. In the last scenarios, outlier value was

obtained by multiplying the maximum observation value of

the original data by 10, and then this outlier was added to

data.

Case 1 Original Australian beer consumption data are

forecasted by using SARIMA, WMES, MLP, and the

proposed model MNM-MFF. When both MLP and MNM-

MFF were employed, the number of input was changed

between 1 and 4 since the period of this time series is 4.

And, for both methods, the number of neuron in hidden

layer was changed from 1 to 8. Thus, 32 different archi-

tectures were totally examined for each neural networks

method to determine the best architecture. The obtained

best architectures can be seen in Table 1. The best models

and corresponding MSE values obtained from all methods

are also summarized in Table 1.

When Table 1 is examined, it is seen that artificial

neural networks methods MLP, PSO-MLP, and MNM-

MFF produced better forecasts than those obtained from

other conventional methods in terms of MSE. In addition, it

is observed that the proposed MNM-MFF method has the

best forecasting accuracy. When the data are forecasted

with the proposed method, 4-1-1 was found as the best

architecture. That is, the best architecture has 4, 1, and 1

neuron in input, hidden, and output layers, respectively.

To examine the performance of MNM-MFF better,

MNM-MFF, PSO-MLP, and MLP were compared in more

details. For training and test sets, the results obtained from

16 architectures are given in Tables 2, 3 and 4. Mean and

standard deviation of MSE values calculated from 16

architectures are presented in Table 5.

As seen from Table 5, for both training and test sets,

mean values of errors produced by MNM-MFF are less

than those obtained from MLP and PSO-MLP. Further-

more, MNM-MFF has minimum standard deviation values

for both training and test sets. In other words, MNM-MFF

and PSO-MLP give more consistent results than those

Table 8 The training and testing MSE values are obtained from

different architectures for MNM-MFF

Number of hidden layer neurons

1 2 3 4

Training data

Number of input layer neuron

1 59,477.55 58,429.68 59,481.45 59,539.03

2 58,917.54 57,346.26 58,598.12 57,612.87

3 58,360.28 58,707.37 58,265.46 58,442.06

4 56,410.00 58,137.66 56,670.90 57,565.44

Test data

Number of input layer neuron

1 4,309.46 4,257.44 4,138.77 4,694.39

2 4,399.04 4,030.70 4,495.15 4,148.23

3 4,080.28 3,762.47 3,655.18 3,914.54

4 848.87 2,516.91 1,749.87 2,720.77

Table 9 The training and testing performances of MLP, PSO-MLP,

and MNM-MFF for Case 2

n MLP PSO-MLP MNM-MFF

Training data

Mean 16 63,002.42 58,721.99 58,247.60

SD 16 36,420.52 1,568.73 935.43

Test data

Mean 16 23,769.44 4,114.60 3,607.63

SD 16 27,090.36 444.92 1,084.59

SD standard deviation

Fig. 7 The prediction results of

MLP and proposed method for

Case 2
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obtained from MLP. Therefore, it is clear that MNM-MFF

produces the most accurate forecasts for Australian beer

consumption data. The forecasts of test set for MLP, PSO-

MLP, and MNM-MFF are graphically shown in Fig. 5.

In addition to RMSE values and forecasting graph,

scatter plot of forecasts obtained from the proposed method

and observations is depicted in Fig. 6.

Case 2 In Case 1, it is seen that MNM-MFF has a

superior forecasting performance. In the second case, per-

formances of MLP,PSO-MLP, and MNM-MFF methods

were compared to each other when the data include an

outlier. An outlier value was obtained by multiplying the

maximum observation value of the original data by 5.

Then, 15th observation of the original data, which is the

maximum observation value, was changed by this outlier.

The obtained data set was forecasted using MLP, PSO-

MLP, and MNM-MFF by using same settings in Case 1.

All obtained results are shown in Tables 6, 7, 8, and 9.

According to Table 9, the mean error and standard

deviation values obtained from MNM-MFF are less than

those produced by MLP and PSO-MLP for both training

and test sets. In Case 2, MNM-MFF produces more accu-

rate and consistent forecasting results. In addition, if

Tables 5 and 9 are compared, it is seen that MLP and PSO-

MLP produce worse forecasting results when the data have

an outlier. On the other hand, MNM-MFF gives almost

same forecasting results even if the data include an outlier

especially for test set. In other words, the proposed

approach is not affected by outlier as much as MLP and

PSO-MLP methods. The forecasts of test set for MLP,

Fig. 8 Scatter plot of forecasts

and observations for Case 2

Table 10 The training and testing MSE values are obtained from

different architectures for MLP

Number of hidden layer neurons

1 2 3 4

Training data

Number of input layer neuron

1 243,398.17 239,972.74 243,247.81 243,091.93

2 243,486.08 240,353.34 294,936.95 294,932.27

3 243,229.44 294,918.12 239,395.87 294,916.81

4 294,910.08 294,919.28 294,921.96 9,125.56

Test data

Number of input layer neuron

1 3,664.67 4,067.36 3,672.21 3,729.33

2 3,674.07 5,734.70 57,618.03 57,618.98

3 3,666.29 57,618.68 6,812.04 57,615.90

4 57,606.69 57,616.22 57,618.98 4,888.30

Table 11 The training and testing MSE values are obtained from

different architectures for PSO-MLP

Number of hidden layer neurons

1 2 3 4

Training data

Number of input layer neuron

1 297,256.62 245,106.56 245,624.49 245,484.50

2 247,286.18 246,935.36 291,246.30 246,935.29

3 251,810.09 249,197.56 248,186.12 255,839.58

4 304,138.28 304,039.26 304,138.28 250,437.88

Test data

Number of input layer neuron

1 57,618.98 3,664.29 3,713.44 3,670.78

2 3,785.01 3,667.91 49,556.32 3,667.35

3 6,839.52 4,399.50 3,662.55 11,077.94

4 57,618.98 57,618.98 57,618.98 3,664.67
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PSO-MLP, and MNM-MFF are graphically shown in

Fig. 7.

Also, scatter plot of forecasts obtained from the pro-

posed method, and observations can be shown in Fig. 8.

Case 3 In the last case, an outlier value was obtained by

multiplying the maximum observation value, which is 15th

observation of the original data, by 10. Then, the observation

which has the maximum value was changed by this outlier.

MLP, PSO-MLP, and MNM-MFF methods were applied to

the obtained data set by using same settings in Case 1. All

obtained results are presented in Tables 10, 11, 12, and 13.

When Table 13 is examined, it is observed that MNM-

MFF has the minimum mean error and standard deviation

for both training and test sets. Thus, in Case 3, MNM-MFF

again gives the most accurate and consistent forecasting

results. In light of the results obtained in all cases, it can be

clearly said that the proposed MNM-MFF model is not

affected by outlier as much as MLP model. For both

training and test sets, the results produced by MLP and

PSO-MLP methods are inaccurate and inconsistent in

Cases 2 and 3 where the data have an outlier. However,

MNM-MFF is not affected by these extreme values as

much as MLP and PSO-MLP. Besides, MNM-MFF pro-

duces very similar forecasting results especially for test set

whether or not the data have an outlier.

In order to compare the forecasting performances of the

methods MLP, PSO-MLP, and MNM-MFF better, aver-

ages for MSE values for test sets are also summarized in

Table 14 for all cases. According to Table 14, it is clearly

seen that MNM-MFF produces more accurate out of

sample forecasts than those produced by MLP and PSO-

MLP in all cases. In Cases 2 and 3 where the data have an

outlier, the proposed MNM-MFF model gives accurate

forecasts like in Case 1. On the other hand, MLP and PSO-

MLP models cannot produce good results in Cases 2 and 3.

This is an important finding indicates that MNM-MFF

model is not affected by outlier as much as MLP and PSO-

MLP models for Australian beer consumption data. The

forecasts of test set for MLP, PSO-MLP, and MNM-MFF

are graphically shown in Fig. 9.

Table 12 The training and testing MSE values are obtained from

different architectures for MNM-MFF

Number of hidden layer neurons

1 2 3 4

Training data

Number of input layer neuron

1 245,285.46 245,481.61 245,300.10 245,159.54

2 246,364.01 246,762.62 246,633.76 246,266.25

3 248,404.00 248,784.07 248,114.02 248,885.91

4 250,069.35 249,583.93 249,085.65 249,578.25

Test data

Number of input layer neuron

1 3,648.08 3,684.06 3,649.03 3,812.73

2 3,365.87 3,365.01 3,680.61 3,290.51

3 3,576.56 3,537.85 3,523.68 3,666.78

4 3,483.31 3,103.18 1,866.73 2,839.56

Table 13 The training and testing performances of MLP, MLP-PSO,

and MNM-MFF for Case 3

n MLP PSO-MLP MNM-MFF

Training data

Mean 16 250,609.70 264,603.90 247,484.90

SD 16 69,604.50 25,080.33 1,750.04

Test data

Mean 16 27,701.40 20,740.32 3,380.05

SD 16 27,260.48 24,699.07 473.18

SD standard deviation

Table 14 Average values obtained from MLP, MLP-PSO, and

MNM-MFF for all cases

MLP MLP-PSO MNM-MFF

Case 1 5,954.83 4,318.32 3,514.95

Case 2 23,769.44 4,114.60 3,607.63

Case 3 27,701.40 20,740.32 3,380.05

Fig. 9 The prediction results of

MLP and proposed method for

Case 3
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In addition, scatter plot of forecasts obtained from the

proposed method, and observations are given in Fig. 10.

5.2 The gas furnace data

The second time series used in the implementation is Box-

Jenkins gas furnace data set [7]. In gas furnace data, gas

flow rate x(t) and CO2 concentration y(t) are input and

output, respectively. Because of the characteristic of this

well-known data set, when artificial neural networks have

been applied to the data, x(t - 4) and y(t - 1) have been

taken as inputs, while y(t) has been taken as output in all

studies in the literature. The first 146 and the last 150

observations were used for training and test, respectively,

like in other studies [24, 27]. To show the forecasting

performance of the proposed MNM-MFF model, the data

were forecasted using MNM-MFF and other artificial

neural networks models available in the literature. When

artificial neural networks have been utilized, the architec-

ture 2-2-1 has been used in all these studies [24, 27]. That

is, the architecture has 2, 2, and 1 neuron in input, hidden,

Fig. 10 Scatter plot of forecasts

and observations for Case 3

Table 15 MSE values obtained from all methods for training and test sets

BP-SMN PSO-SMN CRPSO-SMN GA-SMN MLP PSO-MLP MNM-MFF

Training 0.0016 0.0016 0.0016 0.0016 0.0082 0.0397 0.0005

Test 0.0018 0.0019 0.0018 0.0018 0.0226 0.0432 0.0015

Fig. 11 The prediction results

of MNM-MFF for the gas

furnace data

Table 16 MSE values obtained from MLP, PSO-MLP, and MNM-

MFF

MLP PSO-MLP MNM-MFF

Train 0.0732 0.0818 0.0068

Test 0.0682 0.0130 0.0003
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and output layers, respectively. Thus, the same architecture

2-2-1 was used for the proposed MNM-MFF model in the

implementation. MSE values calculated over both the

training and the test sets are summarized in Table 15. The

results obtained from back propagation single multiplica-

tive neuron model (BP-SMN) and MLP were taken from

[24]. The other results produced by particle swarm opti-

mization single multiplicative neuron model (PSO-SMN),

cooperative random learning particle swarm optimization

single multiplicative neuron model (CRPSO-SMN), and

genetic algorithm single multiplicative neuron model

(GA-SMN) were taken from [27].

When Table 15 is examined, it is clearly seen that

the best forecasts for the test set were obtained when the

proposed MNM-MFF model was employed. Also, the

proposed model produced the best result for training set in

terms of MSE. To examine the results visually, the graph of

the observations (targets) and predictions (outputs) pro-

duced by MNM-MFF is given in Fig. 11. According to

Fig. 11, it is obvious that the proposed MNM-MFF model

gives very accurate results for gas furnace data. The

agreement between the observations and the predictions of

the proposed model is quite satisfactory.

In the first case, the gas furnace data were forecasted and

it was seen that MNM-MFF has a superior forecasting

performance. In the second case, performances of MLP,

PSO-MLP, and MNM-MFF methods were compared to

each other when the data include an outlier. An outlier

value was obtained by multiplying the maximum obser-

vation value of the original data by 10. Then, 15th obser-

vation of the original data, which is the maximum

observation value, was changed by this outlier. The

obtained data set was forecasted using MLP and MNM-

MFF by utilizing the same architecture in the first case. All

obtained results are shown in Table 16. According to

Table 16, the proposed MNM-MFF has the best accuracy

for both training and test sets. This is also indicates that

MNM-MFF model was not affected much by the outlier.

However, the outlier leaded MLP model to misleading

results.

In addition to RMSE values and forecasting graph,

scatter plot of forecasts obtained from the proposed method

and observations is depicted in Fig. 12.

6 Conclusions

In this study, a new neuron model which is called MNM is

proposed. The proposed neuron model can produce an

output which is not affected extreme values since it

employs a median-based aggregation function. In addition,

a new multilayer feed forward neural network (MNM-

MFF) model that consists of MNM is firstly proposed in

this study in order to reach high accuracy level and to cope

with outlier problem. The proposed MNM-MFF model is a

robust neural network model since its ability to deal with

the outlier problem. Also, the modified particle swarm

optimization method is used to train the proposed MNM-

MFF model. In order to evaluate the performance of the

proposed approach, it was applied to two real-time series.

These time series were also forecasted using some other

methods available in the literature for comparison. As a

Fig. 12 Scatter plot of forecasts

and observations for the gas

furnace data
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result of the comparison, it was clearly seen that the pro-

posed approach produces very accurate forecasts for both

Australian beer consumption and the gas furnace data sets.

In addition to this, different data scenarios were considered

in the implementation to examine the performance of the

proposed approach when the data have outlier. Then, the

forecasts obtained from the proposed approach were

compared to those produced by MLP model, which has

been the most preferred type of artificial neural networks in

many implementations. It was shown that the proposed

model is not affected much by outliers. To sum up, the

proposed MNM-MFF model composed of MNM provides

two important advantages. First, the proposed approach can

produce very accurate forecasts. Secondly, it can be used to

forecasts time series which include outliers. It should be

noted that these results are obtained for the parameter sets

given above, and two time series examined in the study.

For instance, if the length of test set is shifted, the results

can change or similarly if these parameter sets are used for

other time series, the obtained results can change. There-

fore, the obtained results are valid for only these parameter

sets and these time series. In order to reach general results,

a comprehensive simulation study has to be made. How-

ever, it is very hard to perform such a simulation study

since there are many types of time series and many

parameter combinations.
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